Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cancer Lett ; 523: 182-194, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34627950

RESUMO

Rab1A overexpression has been observed in several cancer types, however, its significance and the underlying mechanisms in non-small cell lung cancer (NSCLC) remain largely unexplored. This study demonstrated that Rab1A overexpression in NSCLC was significantly correlated to short survival and metastasis. Rab1A overexpression promoted cancer cell migration, invasion, and metastasis both in vitro and in vivo, by activating JAK1/STAT6 signaling through stabilizing IL-4Rα protein. Strikingly, high Rab1A level was associated with sensitivity to JAK1 inhibitor, and Rab1A overexpression rendered cancer cells vulnerable to JAK1-targeted agents. JAK1 inhibitor, Itacitinib adipate, dramatically inhibited high Rab1A NSCLC metastasis, in both cell line and patient derived xenograft models. Collectively, these findings demonstrated that Rab1A plays a critical role in the aggressive properties of NSCLC, revealing a unique mechanism by which it promotes metastasis. In addition, we found that Rab1A is a determinant of JAK1 inhibitor sensitivity, which could be explored for improving JAK1-targeted cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Janus Quinase 1/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Interleucina-4/fisiologia , Fator de Transcrição STAT6/fisiologia , Proteínas rab1 de Ligação ao GTP/fisiologia , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Humanos , Janus Quinase 1/fisiologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Metástase Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Front Immunol ; 12: 710977, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566964

RESUMO

Growth differentiation factor 15 (GDF15) is involved in the occurrence and development of many diseases, and there are few studies on its relationship with sepsis. This article aims to explore the clinical value of GDF15 in sepsis and to preliminarily explore its prospective regulatory effect on macrophage inflammation and its functions. We recruited 320 subjects (132 cases in sepsis group, 93 cases in nonsepsis group, and 95 cases in control group), then detected the serum GDF15 levels and laboratory indicators, and further investigated the correlation between GDF15 and laboratory indicators, and also analyzed the clinical value of GDF15 in sepsis diagnosis, severity assessment, and prognosis. In vitro, we used LPS to stimulate THP-1 and RAW264.7 cells to establish the inflammatory model, and detected the expression of GDF15 in the culture medium and cells under the inflammatory state. After that, we added GDF15 recombinant protein (rGDF15) pretreatment to explore its prospective regulatory effect on macrophage inflammation and its functions. The results showed that the serum GDF15 levels were significantly increased in the sepsis group, which was correlated with laboratory indexes of organ damage, coagulation indexes, inflammatory factors, and SOFA score. GDF15 also has a high AUC in the diagnosis of sepsis, which can be further improved by combining with other indicators. The dynamic monitoring of GDF15 levels can play an important role in the judgment and prognosis of sepsis. In the inflammatory state, the expression of intracellular and extracellular GDF15 increased. GDF15 can reduce the levels of cytokines, inhibit M1 polarization induced by LPS, and promote M2 polarization. Moreover, GDF15 also enhances the phagocytosis and bactericidal function of macrophages. Finally, we observed a decreased level of the phosphorylation of JAK1/STAT3 signaling pathway and the nuclear translocation of NF-κB p65 with the pretreatment of rGDF15. In summary, our study found that GDF15 has good clinical application value in sepsis and plays a protective role in the development of sepsis by regulating the functions of macrophages and inhibiting the activation of JAK1/STAT3 pathway and nuclear translocation of NF-κB p65.


Assuntos
Fator 15 de Diferenciação de Crescimento/fisiologia , Sepse/etiologia , Adulto , Idoso , Animais , Feminino , Fator 15 de Diferenciação de Crescimento/sangue , Humanos , Janus Quinase 1/fisiologia , Macrófagos/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Células RAW 264.7 , Fator de Transcrição STAT3/fisiologia , Sepse/sangue , Sepse/diagnóstico , Sepse/mortalidade , Índice de Gravidade de Doença , Choque Séptico/diagnóstico , Transdução de Sinais , Células THP-1 , Fator de Transcrição RelA/metabolismo
3.
Clin Exp Med ; 21(2): 287-296, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33423149

RESUMO

Breast cancer is the most common cancer among women, with metastasis as the principal cause of mortality. MiR-1225 has been reported to play roles in the progression of various cancers, but its role in breast cancer was unclear. The expression of miR-1225 was investigated in breast cancer tissues and cells by quantitative real-time PCR. The role of miR-1225 in the cell process of OS was analyzed by CCK-8 assay and Transwell assay. The prognostic value of miR-1225 was evaluated by Kaplan-Meier survival curves and Cox regression analysis. miR-1225 was significantly upregulated in breast cancer tissues, which was associated with the TNM stage of breast cancer patients. The prognosis of patients with high miR-1225 expression was worse than that of patients with low miR-1225 expression, which indicated that miR-1225 acted as an independent factor for the prognosis of breast cancer. Additionally, the upregulation of miR-1225 promoted cell proliferation, migration, and invasion of breast cancer, which suggested miR-1225 might be involved in the progression of breast cancer. JAK1 was identified as the direct target of miR-1225, which was also involved in cell proliferation, migration, and invasion of breast cancer. The overexpression of miR-1225 in breast cancer indicates a poor prognosis of patients and promotes the progression of breast cancer by targeting JAK1. miR-1225 may be a biomarker and therapeutic target for the treatment of breast cancer.


Assuntos
Neoplasias da Mama/etiologia , MicroRNAs/fisiologia , Adulto , Idoso , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Janus Quinase 1/genética , Janus Quinase 1/fisiologia , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico
4.
Indian J Dermatol Venereol Leprol ; 85(5): 455-461, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031313

RESUMO

BACKGROUND: Alopecia areata is an autoimmune disease that occurs as a result of the loss of the inherent immune privilege of the hair follicle. It has been recently demonstrated that the interferon-γ/interleukin-15 feedback loop that signals via the Janus kinase-signal transducer and activator of transcription pathway is critical to the breakdown of this immune privilege. AIMS: To evaluate the immunological distribution of CD4+ T-cells, CD8+ T-cells, phosphorylated signal transducer and activator of transcription 1 and study its relation with the clinical and histopathological findings of the disease. MATERIALS AND METHODS: A total of 30 patients of alopecia areata were included in the study. Following a detailed history and clinical examination, a scalp biopsy was performed. Histopathology was studied and immunohistochemistry was done to demonstrate the positivity and distribution of CD4+ T-cells, CD8+ T-cells and phosphorylated signal transducer and activator of transcription 1. RESULTS: The follicular count, number of anagen and terminal hair were found to be decreased, whereas the catagen, telogen and vellus hair were found to be increased in number. A peribulbar CD4+ T-cell infiltrate was seen in 70% cases, whereas a CD8+ T-cell infiltrate was seen in 83.3% cases. An intrabulbar CD4+ T-cell infiltrate was seen in 26.7% cases, whereas a CD8+ T-cell infiltrate was seen in 70% cases. Among the 25 hair follicles dermal papilla identified, 36.8% cases were found to be positive for phospho-signal transducer and activation of transcription-1. LIMITATIONS: The drawbacks of our study included a small sample size and the use of only vertical sectioning for the scalp biopsy samples. CONCLUSION: Phosphorylated signal transducer and activator of transcription 1 positivity as an indicator of signalling via the Janus kinase-1/2 pathway was seen in 36.8% of our cases highlighting the integral role of this pathway in the pathogenesis of alopecia areata.


Assuntos
Alopecia em Áreas/imunologia , Alopecia em Áreas/patologia , Janus Quinase 1/fisiologia , Janus Quinase 2/fisiologia , Transcrição Gênica/fisiologia , Adolescente , Adulto , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Folículo Piloso/imunologia , Folículo Piloso/patologia , Humanos , Janus Quinases/fisiologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Leukemia ; 33(8): 1964-1977, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30842608

RESUMO

Tyrosine kinase inhibitor (TKI) therapy effectively blocks oncogenic Bcr-Abl signaling and induces molecular remission in the majority of CML patients. However, the disease-driving stem cell population is not fully targeted by TKI therapy in the majority of patients, and leukemic stem cells (LSCs) capable of re-inducing the disease can persist. In TKI-resistant CML, STAT3 inhibition was previously shown to reduce malignant cell survival. Here, we show therapy-resistant cell-extrinsic STAT3 activation in TKI-sensitive CML cells, using cell lines, HoxB8-immortalized murine BM cells, and primary human stem cells. Moreover, we identified JAK1 but not JAK2 as the STAT3-activating kinase by applying JAK1/2 selective inhibitors and genetic inactivation. Employing an IL-6-blocking peptide, we identified IL-6 as a mediator of STAT3 activation. Combined inhibition of Bcr-Abl and JAK1 further reduced CFUs from murine CML BM, human CML MNCs, as well as CD34+ CML cells, and similarly decreased LT-HSCs in a transgenic CML mouse model. In line with these observations, proliferation of human CML CD34+ cells was strongly reduced upon combined Bcr-Abl and JAK1 inhibition. Remarkably, the combinatory therapy significantly induced apoptosis even in quiescent LSCs. Our findings suggest JAK1 as a potential therapeutic target for curative CML therapies.


Assuntos
Janus Quinase 1/fisiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Neoplásicas/patologia , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais/fisiologia , Animais , Apoptose , Linhagem Celular Tumoral , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/fisiologia , Humanos , Janus Quinase 1/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Camundongos
6.
Brain Behav Immun ; 79: 174-185, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30711510

RESUMO

Neuroinflammation occurs after germinal matrix hemorrhage (GMH) and induces secondary brain injury. Interferon-α (IFN-α) has been shown to exert anti-inflammatory effects in infectious diseases via activating IFNAR and its downstream signaling. We aimed to investigate the anti-inflammatory effects of Recombinant human IFN-α (rh-IFN-α) and the underlying mechanisms in a rat GMH model. Two hundred and eighteen P7 rat pups of both sexes were subjected to GMH by an intraparenchymal injection of bacterial collagenase. Rh-IFN-α was administered intraperitoneally. Small interfering RNA (siRNA) of IFNAR, and siRNA of tumor necrosis factor receptor associated factor 3 (TRAF3) were administered through intracerebroventricular (i.c.v.) injections. JAK1 inhibitor ruxolitinib was given by oral lavage. Post-GMH evaluation included neurobehavioral function, Nissl staining, Western blot analysis, and immunofluorescence. Our results showed that endogenous IFN-α and phosphorylated IFNAR levels were increased after GMH. Administration of rh-IFN-α improved neurological functions, attenuated neuroinflammation, inhibited microglial activation, and ameliorated post-hemorrhagic hydrocephalus after GMH. These observations were concomitant with IFNAR activation, increased expression of phosphorylated JAK1, phosphorylated STAT1 and TRAF3, and decreased levels of phosphorylated NF-κB, IL-6 and TNF-α. Specifically, knockdown of IFNAR, JAK1 and TRAF3 abolished the protective effects of rh-IFN-α. In conclusion, our findings demonstrated that rh-IFN-α treatment attenuated neuroinflammation, neurological deficits and hydrocephalus formation through inhibiting microglial activation after GMH, which might be mediated by IFNAR/JAK1-STAT1/TRAF3/NF-κB signaling pathway. Rh-IFN-α may be a promising therapeutic agent to attenuate brain injury via its anti-inflammatory effect.


Assuntos
Hemorragia Cerebral Intraventricular/imunologia , Interferon-alfa/metabolismo , Neuroimunomodulação/fisiologia , Animais , Animais Recém-Nascidos , Lesões Encefálicas/metabolismo , Hemorragia Cerebral Intraventricular/induzido quimicamente , Hemorragia Cerebral Intraventricular/fisiopatologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Proteínas I-kappa B/metabolismo , Inflamação/metabolismo , Interferon-alfa/farmacologia , Interferon-alfa/fisiologia , Janus Quinase 1/metabolismo , Janus Quinase 1/fisiologia , Masculino , Microglia/metabolismo , NF-kappa B/imunologia , NF-kappa B/metabolismo , Neuroimunomodulação/imunologia , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/fisiologia , Transdução de Sinais/efeitos dos fármacos , Fator 3 Associado a Receptor de TNF/metabolismo
7.
J Hepatol ; 70(5): 904-917, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30654066

RESUMO

BACKGROUND & AIMS: Genetic variability in the hepatitis B virus X gene (HBx) is frequently observed and is associated with hepatocellular carcinoma (HCC) progression. However, a genotype classification based on the full-length HBx sequence and the impact of genotypes on hepatitis B virus (HBV)-related HCC prognosis remain unclear. We therefore aimed to perform this genotype classification and assess its clinical impact. METHODS: We classified the genotypes of the full-length HBx gene through sequencing and a cluster analysis of HBx DNA from a cohort of patients with HBV-related HCC, which served as the primary cohort (n = 284). Two independent HBV-related HCC cohorts, a validation cohort (n = 171) and a serum cohort (n = 168), were used to verify the results. Protein microarray assay analysis was performed to explore the underlying mechanism. RESULTS: In the primary cohort, the HBx DNA was classified into 3 genotypes: HBx-EHBH1, HBx-EHBH2, and HBx-EHBH3. HBx-EHBH2 (HBx-E2) indicated better recurrence-free survival and overall survival for patients with HCC. HBx-E2 was significantly correlated with the absence of liver cirrhosis, a small tumor size, a solitary tumor, complete encapsulation and Barcelona Clinic Liver Cancer (BCLC) stage A-0 tumors. Additionally, HBx-E2 served as a significant prognostic factor for patients with BCLC stage B HCC after hepatectomy. Mechanistically, HBx-E2 is unable to promote proliferation in HCC cells and normal hepatocytes. It also fails to activate the Janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3)/STAT5 pathway. CONCLUSION: Our study identifies a novel HBx genotype that is unable to promote the proliferation of HCC cells and suggests a potential marker to preoperatively predict the prognosis of patients with BCLC stage B, HBV-associated, HCC. LAY SUMMARY: We classified a novel genotype of the full-length hepatitis B virus X gene (HBx), HBx-E2. This genotype was identified in tumor and nontumor tissues from patients with hepatitis B virus-related hepatocellular carcinoma. HBx-E2 could preoperatively predict the prognosis of patients with intermediate stage hepatocellular carcinoma, after resection.


Assuntos
Carcinoma Hepatocelular/genética , Janus Quinase 1/fisiologia , Neoplasias Hepáticas/genética , Fatores de Transcrição STAT/fisiologia , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias/genética , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Linhagem Celular Tumoral , Genótipo , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Estadiamento de Neoplasias , Prognóstico , Transdução de Sinais/fisiologia , Transativadores/sangue , Transativadores/classificação , Proteínas Virais Reguladoras e Acessórias/sangue , Proteínas Virais Reguladoras e Acessórias/classificação
8.
Nanotoxicology ; 12(5): 470-484, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29658397

RESUMO

Nowadays, nanotechnology environmental health and safety (nanoEHS) is gaining attention. We previously found that silica nanoparticles (SiNPs) could induce vascular endothelial damage. However, the subsequent toxicologic response to SiNPs-induced endothelial damage was still largely unknown. In this study, we explored the inflammation-coagulation response and thrombotic effects of SiNPs in endothelial cells and zebrafish embryos. For in vitro study, swollen mitochondria and autophagosome were observed in ultrastructural analysis. The cytoskeleton organization was disrupted by SiNPs in vascular endothelial cells. The release of proinflammatory and procoagulant cytokines including IL-6, IL-8, MCP-1, PECAM-1, TF and vWF, were markedly elevated in a dose-dependent manner. For in vivo study, based on the NOAEL for dosimetry selection, and using two transgenic zebrafish, Tg(mpo:GFP) and Tg(fli-1:EGFP), SiNPs-induced neutrophil-mediated inflammation and impaired vascular endothelial cells. With the dosage higher than NOAEL, SiNPs significantly decreased blood flow and velocity, exhibiting a blood hypercoagulable state in zebrafish embryos. The thrombotic effect was assessed by o-dianisidine staining, showed that an increasing of erythrocyte aggregation occurred in SiNPs-treated zebrafish. Microarray analysis was used to screen the possible genes for inflammation-coagulation response to SiNPs in zebrafish, and the JAK1/TF signaling pathway was further verified by qRT-PCR and Western blot assays. For in-deepth study, il6st was knocked down with specific morpholinos. The whole-mount in situ hybridization and qRT-PCR analysis showed that the expression jak1 and f3b were attenuated in il6st knockdown groups. In summary, our data demonstrated that SiNPs could induce inflammation-coagulation response and thrombotic effects via JAK1/TF signaling pathway.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Inflamação/induzido quimicamente , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Trombose/induzido quimicamente , Animais , Células Cultivadas , Embrião não Mamífero/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Humanos , Janus Quinase 1/fisiologia , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/embriologia
9.
Clin Exp Rheumatol ; 36(2): 223-227, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28850026

RESUMO

OBJECTIVES: We studied the anti-angiogenic effect of interleukin-35 (IL-35) by investigating its effects on signal transmission through the Janus kinase signal transducer and activator of transcription (JAK-STAT) pathway in fibroblast-like synoviocytes (FLS). METHODS: Using the collagen-induced arthritis (CIA) model of rheumatoid arthritis (RA), we derived and cultured FLS, stimulated FLS with IL-35 at different concentrations and examined the expression levels of mRNA and protein of both vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), endostatin, TNF-α, and IL-6 using reverse transcription polymerase chain reaction (RT-PCR) and immunoblotting. We used Western blotting to study the effects of IL-35 on the function of the JAK-STAT pathway in FLS. RESULTS: IL-35 treatment inhibited the expression of VEGF, FGF-2, TNF-α and IL-6, and increased the expression of endostatin in FLS. Western blotting showed that IL-35 treatment of CIA-derived FLS resulted in signalling through STAT1, but not through STAT3 or STAT5. CONCLUSIONS: IL-35 signalling through STAT1 and inhibition of the expression of mediators of angiogenesis and inflammation in FLS provide a likely mechanism for anti-angiogenic effects seen in experimental models of RA. Our data suggest that IL-35 and its signalling pathway represent a therapeutic target for the treatment of RA and other angiogenesis-related diseases.


Assuntos
Inibidores da Angiogênese/farmacologia , Artrite Reumatoide/terapia , Interleucinas/farmacologia , Fator de Transcrição STAT1/fisiologia , Transdução de Sinais/efeitos dos fármacos , Sinoviócitos/fisiologia , Animais , Células Cultivadas , Janus Quinase 1/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Fator A de Crescimento do Endotélio Vascular/análise
10.
Drug Des Devel Ther ; 10: 631-47, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26929598

RESUMO

BACKGROUND: Epigallocatechin-3-gallate (EGCG) is the most effective compound in green tea, and possesses a wide range of beneficial effects, including anti-inflammatory, antioxidant, antiobesity, and anticancer effects. In this study, we investigated the protective effects of EGCG in concanavalin A (ConA)-induced hepatitis in mice and explored the possible mechanisms involved in these effects. METHODS: Balb/C mice were injected with ConA (25 mg/kg) to induce acute autoimmune hepatitis, and EGCG (10 or 30 mg/kg) was administered orally twice daily for 10 days before ConA injection. Serum liver enzymes, proinflammatory cytokines, and other marker proteins were determined 2, 8, and 24 hours after the ConA administration. RESULTS: BNIP3 mediated cell apoptosis and autophagy in ConA-induced hepatitis. EGCG decreased the immunoreaction and pathological damage by reducing inflammatory factors, such as TNF-α, IL-6, IFN-γ, and IL-1ß. EGCG also exhibited an antiapoptotic and antiautophagic effect by inhibiting BNIP3 via the IL-6/JAKs/STAT3 pathway. CONCLUSION: EGCG attenuated liver injury in ConA-induced hepatitis by downregulating IL-6/JAKs/STAT3/BNIP3-mediated apoptosis and autophagy.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Catequina/análogos & derivados , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Concanavalina A/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas Mitocondriais/antagonistas & inibidores , Animais , Catequina/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocinas/sangue , Janus Quinase 1/fisiologia , Janus Quinase 2/fisiologia , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Mitocondriais/fisiologia , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais
11.
Oncogene ; 35(34): 4481-94, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-26853466

RESUMO

To date, the mutational status of EGFR and PTEN has been shown as relevant for favoring pro- or anti-tumor functions of STAT3 in human glioblastoma multiforme (GBM). We have screened genomic data from 154 patients and have identified a strong positive correlation between STAT3 and HDAC7 expression. In the current work we show the existence of a subpopulation of patients overexpressing HDAC7 and STAT3 that has particularly poor clinical outcome. Surprisingly, the somatic mutation rate of both STAT3 and HDAC7 was insignificant in GBM comparing with EGFR, PTEN or TP53. Depletion of HDAC7 in a range of GBM cells induced the expression of tyrosine kinase JAK1 and the tumor suppressor AKAP12. Both proteins synergistically sustained the activity of STAT3 by inducing its phosphorylation (JAK1) and protein expression (AKAP12). In absence of HDAC7, activated STAT3 was responsible for significant imbalance of secreted pro-/anti-angiogenic factors. This inhibited the migration and sprouting of endothelial cells in paracrine fashion in vitro as well as angiogenesis in vivo. In a murine model of GBM, induced HDAC7-silencing decreased the tumor burden by threefold. The current data show for the first time that silencing HDAC7 can reset the tumor suppressor activity of STAT3, independently of the EGFR/PTEN/TP53 background of the GBM. This effect could be exploited to overcome tumor heterogeneity and provide a new rationale behind the development of specific HDAC7 inhibitors for clinical use.


Assuntos
Receptores ErbB/fisiologia , Glioblastoma/patologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/fisiologia , PTEN Fosfo-Hidrolase/fisiologia , Fator de Transcrição STAT3/fisiologia , Proteínas de Ancoragem à Quinase A/fisiologia , Animais , Encéfalo/patologia , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/análise , Humanos , Janus Quinase 1/fisiologia , Masculino , Camundongos , Neovascularização Patológica/prevenção & controle , Fator de Transcrição STAT3/análise
12.
J Heart Lung Transplant ; 35(3): 378-388, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26755202

RESUMO

BACKGROUND: In this study, we investig1ated whether microRNA let-7i regulates dendric cell maturation targeting interleukin-10 (IL-10) via the Janus kinase 1-signal transducer and activator of transcription 3 (JAK1-STAT3) signal pathway subsequently prolongs rat cardiac allograft survival. METHODS: Quantitative real-time reverse transcriptase polymerase chain reaction, enzyme linked immunosorbent assay, and dual-luciferase assay were performed to verify whether IL-10 was the target of let-7i, and regulatory T cells were assessed by flow cytometry and immunohistochemical study. Western blot was performed to detect JAK1, STAT3, and phosphorylated STAT3 expression. Lewis recipients of Dark Agouti hearts were transfused with phosphate-buffered saline, lipopolysaccharide (LPS)-mature dendritic cells (mDCs), or let-7i-inhibitor-mDCs. Allograft survival times were recorded, and histologic studies were performed. RESULTS: Expression of IL-10 messenger RNA level and production of IL-10 were increased in let-7i-inhibitor-mDCs compared with LPS-mDCs. Luciferase activity showed that the translational level of the IL-10 luciferase reporter was decreased by let-7i mimic but increased by let-7i-inhibitor. MicroRNA let-7i inhibitor suppressed DC maturation; however, pretreatment of IL-10 small interfering RNA attenuated the suppression. Expression of JAK1, STAT3, and phosphorylated STAT3 in mDCs were suppressed by let-7i mimic, and pre-treatment of IL-10 small interfering RNA, however, were upregulated by let-7i inhibitor. Lewis recipients transfused with let-7i-inhibitor-mDCs significantly prolonged Dark Agouti cardiac allograft survival. The allografts transfused with let-7i-inhibitor-mDCs showed slight cell infiltration and significantly preserved graft structure. Inhibition of let-7i increased CD4(+)CD25(+)forkhead box P3(+) regulatory T cells and modulated cytokine profiles in vivo and in vitro. CONCLUSIONS: MicroRNA let-7i regulated DC maturation and function targeting IL-10 through the JAK1-STAT3 pathway. Moreover, transfusion of LPS-induced mDCs transfected with let-7i inhibitor induced prolonged cardiac allograft survival and generated regulatory T cells.


Assuntos
Células Dendríticas/fisiologia , Transplante de Coração , Interleucina-10/fisiologia , Janus Quinase 1/fisiologia , MicroRNAs/fisiologia , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais , Aloenxertos , Animais , Masculino , Ratos , Ratos Endogâmicos Lew
13.
Diabetologia ; 59(1): 187-196, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26515423

RESUMO

AIMS/HYPOTHESIS: Non-shivering thermogenesis in adipose tissue can be activated by excessive energy intake or following cold exposure. The molecular mechanisms regulating this activation have not been fully elucidated. The Janus kinase (JAK) - signal transducer and activator of transcription (STAT) pathway mediates the signal transduction of numerous hormones and growth factors that regulate adipose tissue development and function, and may play a role in adaptive thermogenesis. METHODS: We analysed mRNA and protein levels of uncoupling protein 1 (UCP1) and JAK2 in different adipose depots in response to metabolic and thermal stress. The in vivo role of JAK2 in adaptive thermogenesis was examined using mice with adipocyte-specific Jak2 deficiency (A-Jak2 KO). RESULTS: We show in murine brown adipose tissue (BAT) that JAK2 is upregulated together with UCP1 in response to high-fat diet (HFD) feeding and cold exposure. In contrast to white adipose tissue, where JAK2 was dispensable for UCP1 induction, we identified an essential role for BAT JAK2 in diet- and cold-induced thermogenesis via mediating the thermogenic response to ß-adrenergic stimulation. Accordingly, A-Jak2 KO mice were unable to upregulate BAT UCP1 following a HFD or after cold exposure. Therefore, A-Jak2 KO mice were cold intolerant and susceptible to HFD-induced obesity and diabetes. CONCLUSIONS/INTERPRETATION: Taken together, our results suggest that JAK2 plays a critical role in BAT function and adaptive thermogenesis. Targeting the JAK-STAT pathway may be a novel therapeutic approach for the treatment of obesity and related metabolic disorders.


Assuntos
Tecido Adiposo Marrom/fisiologia , Janus Quinase 2/metabolismo , Termogênese , Adipócitos/citologia , Adipogenia , Tecido Adiposo Branco/fisiologia , Adiposidade , Animais , Dieta Hiperlipídica , Feminino , Insulina/fisiologia , Canais Iônicos/fisiologia , Janus Quinase 1/fisiologia , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/fisiologia , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Fator de Transcrição STAT1/fisiologia , Transdução de Sinais , Proteína Desacopladora 1 , Regulação para Cima
14.
Oncogene ; 34(42): 5372-82, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25639867

RESUMO

Despite ionizing radiation (IR) is being widely used as a standard treatment for lung cancer, many evidences suggest that IR paradoxically promotes cancer malignancy. However, its molecular mechanisms underlying radiation-induced cancer progression remain obscure. Here, we report that exposure to fractionated radiation (2 Gy per day for 3 days) induces the secretion of granulocyte-colony-stimulating factor (G-CSF) that has been commonly used in cancer therapies to ameliorate neutropenia. Intriguingly, radiation-induced G-CSF promoted the migratory and invasive properties by triggering the epithelial-mesenchymal cell transition (EMT) in non-small-cell lung cancer cells (NSCLCs). By irradiation, G-CSF was upregulated transcriptionally by ß-catenin/TCF4 complex that binds to the promoter region of G-CSF as a transcription factor. Importantly, irradiation increased the stability of ß-catenin through the activation of PI3K/AKT (phosphatidylinositol 3-kinase/AKT), thereby upregulating the expression of G-CSF. Radiation-induced G-CSF is recognized by G-CSFR and transduced its intracellular signaling JAK/STAT3 (Janus kinase/signal transducers and activators of transcription), thereby triggering EMT program in NSCLCs. Taken together, our findings suggest that the application of G-CSF in cancer therapies to ameliorate neutropenia should be reconsidered owing to its effect on cancer progression, and G-CSF could be a novel therapeutic target to mitigate the harmful effect of radiotherapy for the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Fator Estimulador de Colônias de Granulócitos/fisiologia , Neoplasias Pulmonares/radioterapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Fracionamento da Dose de Radiação , Transição Epitelial-Mesenquimal/efeitos da radiação , Humanos , Janus Quinase 1/fisiologia , Neoplasias Pulmonares/patologia , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Fator de Transcrição STAT3/fisiologia , beta Catenina/fisiologia
15.
Chimia (Aarau) ; 66(5): 281-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22867536

RESUMO

Human recombinant granulocyte colony stimulating factor (rhG-CSF) is widely used in hematology and oncology for the treatment of neutropenia, for the restoration of neutrophil production after bone marrow transplantation, for myelodysplastic syndromes, and aplastic anemia. The E. coli expression system is commonly used for fast recombinant production of rhG-CSF at a large scale. We have applied a novel autoinduction method for the batch expression of rhG-CSF to study whether this new system would increase cell mass and target-protein yield compared to conventional E. coli cell culture and induction with isopropyl ß-D-thiogalactopyranoside (IPTG). We could demonstrate 3-fold higher culture densities and a 5-fold higher protein yield compared to IPTG induction without the need to monitor cell growth in a shortened 24 h expression procedure. rhG-CSF expressed in autoinduction media was successfully extracted from E. coli inclusion bodies and refolded by dialysis. After size exclusion chromatography (SEC) purification, rhG-CSF showed similar conformation, biological activity and aggregation profile compared to the commercially available biosimilar TEVAgrastim(®) (TEVA Pharma AG). Expression by autoinduction is suggested as a cost- and time-effective method for rhG-CSF production.


Assuntos
Fator Estimulador de Colônias de Granulócitos/biossíntese , Animais , Proliferação de Células/efeitos dos fármacos , Química Farmacêutica , Dicroísmo Circular , Clonagem Molecular , Meios de Cultura , Indústria Farmacêutica , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Fator Estimulador de Colônias de Granulócitos/química , Fator Estimulador de Colônias de Granulócitos/farmacologia , Humanos , Janus Quinase 1/fisiologia , Camundongos , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Fluorescência , Tiogalactosídeos/farmacologia
16.
Mol Pharmacol ; 81(5): 679-88, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22323498

RESUMO

Activation of the immune system is a way for host tissue to defend itself against tumor growth. Hence, treatment strategies that are based on immunomodulation are on the rise. Conventional cytostatic drugs such as the anthracycline doxorubicin can also activate immune cell functions of macrophages and natural killer cells. In addition, cytotoxicity of doxorubicin can be enhanced by combining this drug with the cytokine interferon-γ (IFNγ). Although doxorubicin is one of the most applied cytostatics, the molecular mechanisms of its immunomodulation ability have not been investigated thoroughly. In microarray analyses of HeLa cells, a set of 19 genes related to interferon signaling was significantly over-represented among genes regulated by doxorubicin exposure, including signal transducer and activator of transcription (STAT) 1 and 2, interferon regulatory factor 9, N-myc and STAT interactor, and caspase 1. Regulation of these genes by doxorubicin was verified with real-time polymerase chain reaction and immunoblotting. An enhanced secretion of IFNγ was observed when HeLa cells were exposed to doxorubicin compared with untreated cells. IFNγ-neutralizing antibodies and inhibition of Janus tyrosine kinase (JAK)-STAT signaling [aurintricarboxylic acid (ATA), (E)-2-cyano-3-(3,4-dihydrophenyl)-N-(phenylmethyl)-2-propenamide (AG490), STAT1 small interfering RNA] significantly abolished doxorubicin-stimulated expression of interferon signaling-related genes. Furthermore, inhibition of JAK-STAT signaling significantly reduced doxorubicin-induced caspase 3 activation and desensitized HeLa cells to doxorubicin cytotoxicity. In conclusion, we demonstrate that doxorubicin induces interferon-responsive genes via IFNγ-JAK-STAT1 signaling and that this pathway is relevant for doxorubicin's cytotoxicity in HeLa cells. Immunomodulation is a promising strategy in anticancer treatment, so this novel mode of action of doxorubicin may help to further improve the use of this drug among different types of anticancer treatment strategies.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Interferon gama/fisiologia , Janus Quinase 1/fisiologia , Neoplasias/imunologia , Fator de Transcrição STAT1/fisiologia , Transdução de Sinais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Células Matadoras Naturais/imunologia , Tirfostinas/farmacologia
17.
Biol Reprod ; 86(2): 54, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22053093

RESUMO

It is well established that syncytium formation involves the fusion of mononucleated trophoblasts into a multinucleated structure and the secretion of hormonal factors, such as human chorionic gonadotropin (hCG). These morphological and biochemical changes are regulated by a plethora of ligands, which upon binding to specific receptors trigger the activation of many signaling pathways, such as janus kinase/signal transducer and activator of transcription (JAK/STAT) and the mitogen-activated protein (MAP) kinase extracellular signal-regulated kinases 1 and 2 (MAPK3/1). We used the forskolin-induced syncytialization of trophoblastlike BeWo cells to characterize at the cellular level the effect mediated by leukemia inhibitory factor (LIF) on trophoblast differentiation and to describe its action at the molecular level. Forskolin induces both hCG secretion and BeWo cell syncytial fusion. Although LIF had no effect on the undifferentiated state of the cells, the cytokine generated a strong reduction in forskolin-induced hCG release. In contrast to its effect on hCG secretion, LIF exerts a synergistic effect toward forskolin-induced fusion. LIF reduced hormonal production through a STAT1- and STAT3-dependent mechanism, whereas MAPK3/1 was not involved in this process. However, both types of signaling molecules were required to mediate the action of LIF in forskolin-induced cell fusion. These data provide novel insights into the regulation of trophoblast cell differentiation by LIF and describe for the first time the molecular mechanism underlying the effect of the cytokine.


Assuntos
Diferenciação Celular/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Janus Quinases/fisiologia , Fator Inibidor de Leucemia/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Fatores de Transcrição STAT/fisiologia , Transdução de Sinais/fisiologia , Tumor Trofoblástico de Localização Placentária/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Coriocarcinoma/patologia , Colforsina/farmacologia , Feminino , Humanos , Janus Quinase 1/fisiologia , Janus Quinase 2/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Gravidez , Fator de Transcrição STAT1/fisiologia , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Uterinas/patologia
18.
Toxicol Appl Pharmacol ; 253(2): 130-6, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21466820

RESUMO

Interferon α (IFNα) is used to treat malignancies and chronic viral infections. It has been found to decrease the rate of drug metabolism by acting on cytochrome P450 enzymes, but no studies have investigated the consequences of IFNα treatment on the CYP3A4 isoform, responsible for the metabolism of a majority of drugs. In this study, we have examined the effect of IFNα on CYP3A4 catalytic activity and expression in human hepatoma cells. We found that IFNα inhibits CYP3A4 activity and rapidly down-regulates the expression of CYP3A4, independent of de novo protein synthesis. Pharmacologic inhibitors and a dominant-negative mutant expression plasmid were used to dissect the molecular pathway required for CYP3A4 suppression, revealing roles for Jak1 and Stat1 and eliminating the involvement of the p38 mitogen-activated and extracellular regulated kinases. Treatment of hepatoma cells with IFNα did not affect the nuclear localization or relative abundance of Sp1 and Sp3 transcription factors, suggesting that the suppression of CYP3A4 by IFNα does not result from inhibitory Sp3 out-competing Sp1. To our knowledge, this is the first report that IFNα down-regulates CYP3A4 expression largely through the JAK-STAT pathway. Since IFNα suppresses CYP3A4 expression, caution is warranted when IFNα is administered in combination with CYP3A4 substrates to avoid the occurrence of adverse drug interactions.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Interferon-alfa/farmacologia , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Células Hep G2 , Humanos , Janus Quinase 1/fisiologia , Regiões Promotoras Genéticas , Biossíntese de Proteínas , RNA Mensageiro/análise , Fator de Transcrição STAT1/fisiologia
19.
J Neuroimmunol ; 233(1-2): 120-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21262542

RESUMO

Interleukin-2 (IL-2), a prototypical pro-inflammatory cytokine firstly related to T cells differentiation, exerts pleiotrophic functions in several areas of the central nervous system. Previously we had described the neurotrophic roles of this interleukin upon retinal neurons. Therefore, the aim of this work was to investigate the signaling pathways involved in the neuroprotective effect of IL-2 on axotomized RGC. Herein we demonstrated that at postnatal day 2 IL-2 receptor α subunit (IL-2Rα) is expressed in inner plexiform layer, retinal ganglion cells layer and retinal nerve fibers layer. Moreover, using a model of organotypic retinal explants and rhodamine dextran retrograde labeling for specifically quantify RGC, we showed that IL-2 increased the survival of axotomized RGC after 2 (85.43±5.43%) and 5 (50.23%±5.32) days in vitro. Western blot analysis demonstrated that IL-2 treatment increased the phosphorilation of both extracellular signal-regulated kinases (ERK)1/2 and AKT (~two fold). However, its neuroprotective effect upon RGC was dependent of Janus kinase (JAK) and ERK1/2 activity but not of AKT activity. Taken together our results showed that the IL-2 neuroprotective action upon RGC in vitro is mediated by JAK and ERK1/2 activation.


Assuntos
Interleucina-2/fisiologia , Janus Quinase 1/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Retina/enzimologia , Retina/crescimento & desenvolvimento , Células Ganglionares da Retina/enzimologia , Células Ganglionares da Retina/imunologia , Animais , Animais Recém-Nascidos , Técnicas de Cultura de Órgãos , Ratos , Retina/citologia , Células Ganglionares da Retina/efeitos dos fármacos
20.
J Immunol ; 186(2): 675-84, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21160051

RESUMO

The ability of IFN-ß to induce IL-10 production from innate immune cells is important for its anti-inflammatory properties and is believed to contribute to its therapeutic value in treating multiple sclerosis patients. In this study, we identified that IFN-ß stimulates IL-10 production by activating the JAK1- and PI3K-signaling pathways. JAK1 activity was required for IFN-ß to activate PI3K and Akt1 that resulted in repression of glycogen synthase kinase 3 (GSK3)-ß activity. IFN-ß-mediated suppression of GSK3-ß promoted IL-10, because IL-10 production by IFN-ß-stimulated dendritic cells (DC) expressing an active GSK3-ß knockin was severely reduced, whereas pharmacological or genetic inhibition of GSK3-ß augmented IL-10 production. IFN-ß increased the phosphorylated levels of CREB and STAT3 but only CREB levels were affected by PI3K. Also, a knockdown in CREB, but not STAT3, affected the capacity of IFN-ß to induce IL-10 from DC. IL-10 production by IFN-ß-stimulated DC was shown to suppress IFN-γ and IL-17 production by myelin oligodendrocyte glycoprotein-specific CD4(+) T cells, and this IL-10-dependent anti-inflammatory effect was enhanced by directly targeting GSK3 in DC. These findings highlight how IFN-ß induces IL-10 production and the importance that IL-10 plays in its anti-inflammatory properties, as well as identify a therapeutic target that could be used to increase the IL-10-dependent anti-inflammatory properties of IFN-ß.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Quinase 3 da Glicogênio Sintase/fisiologia , Interferon beta/fisiologia , Interleucina-10/biossíntese , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Células Dendríticas/enzimologia , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Epitopos de Linfócito T/imunologia , Técnicas de Introdução de Genes , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/fisiologia , Interferon gama/antagonistas & inibidores , Interferon gama/biossíntese , Interleucina-10/fisiologia , Interleucina-17/antagonistas & inibidores , Interleucina-17/biossíntese , Líquido Intracelular/enzimologia , Líquido Intracelular/imunologia , Líquido Intracelular/metabolismo , Janus Quinase 1/metabolismo , Janus Quinase 1/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas da Mielina , Glicoproteína Associada a Mielina/imunologia , Glicoproteína Associada a Mielina/farmacologia , Glicoproteína Mielina-Oligodendrócito , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA