Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.284
Filtrar
1.
Molecules ; 29(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893334

RESUMO

Thiazolin-4-ones and their derivatives represent important heterocyclic scaffolds with various applications in medicinal chemistry. For that reason, the synthesis of two 5-substituted thiazolidin-4-one derivatives was performed. Their structure assignment was conducted by NMR experiments (2D-COSY, 2D-NOESY, 2D-HSQC and 2D-HMBC) and conformational analysis was conducted through Density Functional Theory calculations and 2D-NOESY. Conformational analysis showed that these two molecules adopt exo conformation. Their global minimum structures have two double bonds (C=N, C=C) in Z conformation and the third double (C=N) in E. Our DFT results are in agreement with the 2D-NMR measurements. Furthermore, the reaction isomerization paths were studied via DFT to check the stability of the conformers. Finally, some potential targets were found through the SwissADME platform and docking experiments were performed. Both compounds bind strongly to five macromolecules (triazoloquinazolines, mglur3, Jak3, Danio rerio HDAC6 CD2, acetylcholinesterase) and via SwissADME it was found that these two molecules obey Lipinski's Rule of Five.


Assuntos
Conformação Molecular , Simulação de Acoplamento Molecular , Tiazolidinas , Tiazolidinas/química , Tiazolidinas/síntese química , Isomerismo , Animais , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Peixe-Zebra , Espectroscopia de Ressonância Magnética , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/metabolismo , Janus Quinase 3/química , Estrutura Molecular
2.
Bioorg Chem ; 149: 107499, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815476

RESUMO

Janus Kinase 3 (JAK3) is important for the signaling transduction of cytokines in immune cells and is identified as potential target for treatment of rheumatoid arthritis (RA). Recently, we designed and synthesized two JAK3 inhibitors J1b and J1f, which featured with high selectivity but mild bioactivity. Therefore, in present study the structure was optimized to increase the potency. As shown in the results, most of the compounds synthesized showed stronger inhibitory activities against JAK3 in contrast to the lead compounds, among which 9a was the most promising candidate because it had the most potent effect in ameliorating carrageenan-induced inflammation of mice and exhibited low acute in vivo toxicity (MTD > 2 g/kg). Further analysis revealed that 9a was highly selective to JAK3 (IC50 = 0.29 nM) with only minimal effect on other JAK members (>3300-fold) and those kinases bearing a thiol in a position analogous to that of Cys909 in JAK3 (>150-fold). Meanwhile, the selectivity of JAK3 was also confirmed by PBMC stimulation assay, in which 9a irreversibly bound to JAK3 and robustly inhibited the signaling transduction with mild suppression on other JAKs. Moreover, it was showed that 9a could remarkably inhibited the proliferation of lymphocytes in response to concanavalin A and significantly mitigate disease severity in collagen induced arthritis. Therefore, present data indicate that compound 9a is a selective JAK3 inhibitor and could be a promising candidate for clinical treatment of RA.


Assuntos
Artrite Reumatoide , Janus Quinase 3 , Inibidores de Proteínas Quinases , Pirimidinas , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/metabolismo , Artrite Reumatoide/tratamento farmacológico , Animais , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Humanos , Relação Estrutura-Atividade , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Estrutura Molecular , Relação Dose-Resposta a Droga , Pirróis/química , Pirróis/farmacologia , Pirróis/síntese química , Carragenina , Masculino , Artrite Experimental/tratamento farmacológico , Artrite Experimental/induzido quimicamente , Antirreumáticos/farmacologia , Antirreumáticos/química , Antirreumáticos/síntese química , Simulação de Acoplamento Molecular
3.
J Clin Immunol ; 44(4): 98, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598033

RESUMO

Biallelic null or hypomorphic variants in JAK3 cause SCID and less frequently Omenn syndrome. We investigated homozygous hypomorphic JAK3 mutations in two patients, and expression and function of a novel JAK3R431P variant in Omenn syndrome. Immunophenotyping of PBMC from the patient with the novel JAK3R431P variant was undertaken, by flow cytometry and Phosflow after stimulation with IL-2, IL-7, and IL-15. JAK3 expression was investigated by Western blotting. We report two patients with homozygous hypomorphic JAK3 variants and clinical features of Omenn syndrome. One patient had a previously described JAK3R775H variant, and the second had a novel JAK3R431P variant. One patient with a novel JAK3R431P variant had normal expression of JAK3 in immortalised EBV-LCL cells but reduced phosphorylation of STAT5 after stimulation with IL-2, IL-7, and IL-15 consistent with impaired kinase activity. These results suggest the JAK3R431P variant to be hypomorphic. Both patients are alive and well after allogeneic haematopoietic stem cell transplantation. They have full donor chimerism, restitution of thymopoiesis and development of appropriate antibody responses following vaccination. We expand the phenotype of hypomorphic JAK3 deficiency and demonstrate the importance of functional testing of novel variants in disease-causing genes.


Assuntos
Janus Quinase 3 , Imunodeficiência Combinada Severa , Humanos , Lactente , Interleucina-15 , Interleucina-2 , Interleucina-7 , Janus Quinase 3/genética , Leucócitos Mononucleares , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia
4.
J Transl Med ; 22(1): 370, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637842

RESUMO

JAK-STAT signalling pathway inhibitors have emerged as promising therapeutic agents for the treatment of hair loss. Among different JAK isoforms, JAK3 has become an ideal target for drug discovery because it only regulates a narrow spectrum of γc cytokines. Here, we report the discovery of MJ04, a novel and highly selective 3-pyrimidinylazaindole based JAK3 inhibitor, as a potential hair growth promoter with an IC50 of 2.03 nM. During in vivo efficacy assays, topical application of MJ04 on DHT-challenged AGA and athymic nude mice resulted in early onset of hair regrowth. Furthermore, MJ04 significantly promoted the growth of human hair follicles under ex-vivo conditions. MJ04 exhibited a reasonably good pharmacokinetic profile and demonstrated a favourable safety profile under in vivo and in vitro conditions. Taken together, we report MJ04 as a highly potent and selective JAK3 inhibitor that exhibits overall properties suitable for topical drug development and advancement to human clinical trials.


Assuntos
Desenvolvimento de Medicamentos , Cabelo , Camundongos , Animais , Humanos , Camundongos Nus , Descoberta de Drogas , Janus Quinase 3
5.
Int Immunopharmacol ; 132: 111931, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38547769

RESUMO

Peficitinib is a selective Janus kinase (JAK3) inhibitor recently developed and approved for the treatment of rheumatoid arthritis in Japan. Glycolysis in macrophages could induce NOD-like receptor (NLR) family and pyrin domain-containing protein 3 (NLRP3) inflammasome activation, thus resulting in pyroptosis and acute lung injury (ALI). The aim of our study was to investigate whether Peficitinib could alleviate lipopolysaccharide (LPS)-induced ALI by inhibiting NLRP3 inflammasome activation. Wild type C57BL/6J mice were intraperitoneally injected with Peficitinib (5 or 10 mg·kg-1·day-1) for 7 consecutive days before LPS injection. The results showed that Peficitinib pretreatment significantly relieved LPS-induced pulmonary edema, inflammation, and apoptosis. NLRP3 inflammasome and glycolysis in murine lung tissues challenged with LPS were also blocked by Peficitinib. Furthermore, we found that the activation of JAK3/signal transducer and activator of transcription 3 (STAT3) was also suppressed by Peficitinib in mice with ALI. However, in Jak3 knockout mice, Peficitinib did not show obvious protective effects after LPS injection. In vitro experiments further showed that Jak3 overexpression completely abolished Peficitinib-elicited inhibitory effects on pyroptosis and glycolysis in LPS-induced RAW264.7 macrophages. Finally, we unveiled that LPS-induced activation of JAK3/STAT3 was mediated by toll-like receptor 4 (TLR4) in RAW264.7 macrophages. Collectively, our study proved that Peficitinib could protect against ALI by blocking JAK3-mediated glycolysis and pyroptosis in macrophages, which may serve as a promising candidate against ALI in the future.


Assuntos
Lesão Pulmonar Aguda , Adamantano/análogos & derivados , Glicólise , Janus Quinase 3 , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Niacinamida , Niacinamida/análogos & derivados , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Janus Quinase 3/metabolismo , Janus Quinase 3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Glicólise/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Knockout , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Inflamassomos/metabolismo , Piroptose/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia
6.
Arch Pharm (Weinheim) ; 357(6): e2300753, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38442328

RESUMO

Selective inhibition of Janus kinase 3 (JAK3) is a promising strategy for the treatment of autoimmune diseases. Based on the discovery of a hydrophobic pocket unutilized between the lead compound RB1 and the JAK3 protein, a series of covalent JAK3 inhibitors were prepared by introducing various aromatic fragments to RB1. Among them, J1b (JAK3 IC50 = 7.2 nM, other JAKs IC50 > 1000 nM) stood out because of its low toxicity (MTD > 2 g/kg) and superior anti-inflammatory activity in Institute of Cancer Research mice. Moreover, the acceptable bioavailability (F% = 31.69%) ensured that J1b displayed excellent immune regulation in collagen-induced arthritis mice, whose joints in the high-dose group were almost recovered to a normal state. Given its clear kinase selectivity (Bmx IC50 = 539.9 nM, other Cys909 kinases IC50 > 1000 nM), J1b was nominated as a highly selective JAK3 covalent inhibitor, which could be used to safely treat arthritis and other autoimmune diseases.


Assuntos
Artrite Experimental , Artrite Reumatoide , Desenho de Fármacos , Janus Quinase 3 , Inibidores de Proteínas Quinases , Animais , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/metabolismo , Camundongos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/induzido quimicamente , Artrite Experimental/enzimologia , Artrite Reumatoide/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Camundongos Endogâmicos DBA , Humanos , Relação Dose-Resposta a Droga , Estrutura Molecular , Masculino , Simulação de Acoplamento Molecular
7.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474223

RESUMO

The Janus kinase (JAK) family is a small group of protein tyrosine kinases that represent a central component of intracellular signaling downstream from a myriad of cytokine receptors. The JAK3 family member performs a particularly important role in facilitating signal transduction for a key set of cytokine receptors that are essential for immune cell development and function. Mutations that impact JAK3 activity have been identified in a number of human diseases, including somatic gain-of-function (GOF) mutations associated with immune cell malignancies and germline loss-of-function (LOF) mutations associated with immunodeficiency. The structure, function and impacts of both GOF and LOF mutations of JAK3 are highly conserved, making animal models highly informative. This review details the biology of JAK3 and the impact of its perturbation in immune cell-related diseases, including relevant animal studies.


Assuntos
Síndromes de Imunodeficiência , Neoplasias , Animais , Humanos , Janus Quinase 3/metabolismo , Transdução de Sinais , Janus Quinases/metabolismo , Receptores de Citocinas/metabolismo , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo
8.
J Pharmacol Exp Ther ; 389(1): 40-50, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336380

RESUMO

B-cell acute lymphoblastic leukemia (B-ALL) is the most prevalent type of cancer in young children and is associated with high levels of reactive oxygen species (ROS). The antioxidant N-acetylcysteine (NAC) was tested for its ability to alter disease progression in a mouse model of B-ALL. Mb1-CreΔPB mice have deletions in genes encoding PU.1 and Spi-B in B cells and develop B-ALL at 100% incidence. Treatment of Mb1-CreΔPB mice with NAC in drinking water significantly reduced the frequency of CD19+ pre-B-ALL cells infiltrating the thymus at 11 weeks of age. However, treatment with NAC did not reduce leukemia progression or increase survival by a median 16 weeks of age. NAC significantly altered gene expression in leukemias in treated mice. Mice treated with NAC had increased frequencies of activating mutations in genes encoding Janus kinases 1 and 3. In particular, frequencies of Jak3 R653H mutations were increased in mice treated with NAC compared with control drinking water. NAC opposed oxidization of PTEN protein ROS in cultured leukemia cells. These results show that NAC alters leukemia progression in this mouse model, ultimately selecting for leukemias with high Jak3 R653H mutation frequencies. SIGNIFICANCE STATEMENT: In a mouse model of precursor B-cell acute lymphoblastic leukemia associated with high levels of reactive oxygen species, treatment with N-acetylcysteine did not delay disease progression but instead selected for leukemic clones with activating R653H mutations in Janus kinase 3.


Assuntos
Água Potável , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Camundongos , Animais , Pré-Escolar , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Janus Quinases , Taxa de Mutação , Espécies Reativas de Oxigênio/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Mutação , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Progressão da Doença
9.
Mol Biomed ; 5(1): 3, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172378

RESUMO

The disruptor of telomeric silencing 1-like (DOT1L), a specific histone methyltransferase that catalyzed methylation of histone H3 on lysine 79, was associated with the pathogenesis of many diseases, but its role in peritoneal fibrosis remained unexplored. Here, we examined the role of DOT1L in the expression and activation of protein tyrosine kinases and development of peritoneal fibrosis. We found that a significant rise of DOT1L expression in the fibrotic peritoneum tissues from long-term PD patients and mice. Inhibition of DOT1L significantly attenuated the profibrotic phenotypic differentiation of mesothelial cells and macrophages, and alleviated peritoneal fibrosis. Mechanistically, RNA sequencing and proteomic analysis indicated that DOT1L was mainly involved in the processes of protein tyrosine kinase binding and extracellular matrix structural constituent in the peritoneum. Chromatin immunoprecipitation (ChIP) showed that intranuclear DOT1L guided H3K79me2 to upregulate EGFR in mesothelial cells and JAK3 in macrophages. Immunoprecipitation and immunofluorescence showed that extranuclear DOT1L could interact with EGFR and JAK3, and maintain the activated signaling pathways. In summary, DOT1L promoted the expression and activation of tyrosine kinases (EGFR in mesothelial cells and JAK3 in macrophages), promoting cells differentiate into profibrotic phenotype and thus peritoneal fibrosis. We provide the novel mechanism of dialysis-related peritoneal fibrosis (PF) and the new targets for clinical drug development. DOT1L inhibitor had the PF therapeutic potential.


Assuntos
Histona-Lisina N-Metiltransferase , Fibrose Peritoneal , Proteínas Tirosina Quinases , Animais , Feminino , Humanos , Masculino , Camundongos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Janus Quinase 3/metabolismo , Janus Quinase 3/genética , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fibrose Peritoneal/patologia , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
10.
Am J Clin Dermatol ; 25(2): 299-314, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263353

RESUMO

BACKGROUND: The ALLEGRO phase 2a and 2b/3 studies demonstrated that ritlecitinib, an oral JAK3/TEC family kinase inhibitor, is efficacious at doses of ≥ 30 mg in patients aged ≥ 12 years with alopecia areata (AA). OBJECTIVE: The objective of this study was to evaluate the safety of ritlecitinib in an integrated analysis of four studies in AA. METHODS: Two cohorts were analyzed: a placebo-controlled and an all-exposure cohort. Proportions and study size-adjusted incidence rates (IRs) of adverse events (AEs) of interest and laboratory abnormalities are reported. RESULTS: In the placebo-controlled cohort (n = 881; median exposure: 169 days), the proportion of ritlecitinib-treated patients with AEs was 70.2-75.4% across doses versus 69.5% in the placebo group; serious AEs occurred in 0-3.2% versus 1.9% for the placebo. A total of 19 patients permanently discontinued due to AEs (5 while receiving the placebo). In the all-exposure cohort (n = 1294), median ritlecitinib exposure was 624 days [2091.7 total patient-years (PY)]. AEs were reported in 1094 patients (84.5%) and serious AEs in 57 (4.4%); 78 (6.0%) permanently discontinued due to AEs. The most common AEs were headache (17.7%; 11.9/100 PY), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive test (15.5%; 9.8/100 PY), and nasopharyngitis (12.4%; 8.2/100 PY). There were two deaths (breast cancer and acute respiratory failure/cardiorespiratory arrest). Proportions (IRs) were < 0.1% (0.05/100 PY) for opportunistic infections, 1.5% (0.9/100 PY) for herpes zoster, 0.5% (0.3/100 PY) for malignancies (excluding nonmelanoma skin cancer), and 0.2% (0.1/100 PY) for major adverse cardiovascular events. CONCLUSIONS: Ritlecitinib is well tolerated with an acceptable safety profile up to 24 months in patients aged ≥ 12 years with AA (video abstract and graphical plain language summary available). TRIAL REGISTRIES: ClinicalTrials.gov: NCT02974868 (date of registration: 11/29/2016), NCT04517864 (08/18/2020), NCT03732807 (11/07/2018), and NCT04006457 (07/05/2019).


Assuntos
Alopecia em Áreas , Antineoplásicos , Triptaminas , Humanos , Alopecia em Áreas/tratamento farmacológico , Alopecia em Áreas/epidemiologia , Carbazóis , Janus Quinase 3 , Inibidores de Proteínas Quinases/efeitos adversos , SARS-CoV-2 , Resultado do Tratamento
11.
Hematol Oncol ; 42(1): e3233, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37876297

RESUMO

Peripheral T-cell lymphoma (PTCL) is a clinically heterogeneous group that represents 10%-15% of all lymphomas. Despite improved genetic and molecular understanding, treatment outcomes for PTCL have not shown significant improvement. Although Janus kinase-2 (JAK2) plays an important role in myeloproliferative neoplasms, the critical role of JAK isoforms in mediating prosurvival signaling in PTCL cells is not well defined. Immunohistochemical analysis of PTCL tumors (n = 96) revealed high levels of constitutively active JAK3 (pJAK3) that significantly (p < 0.04) correlated with the activation state of its canonical substrate STAT3. Furthermore, constitutive activation of JAK3 and STAT3 positively correlated, at least in part, with an oncogenic tyrosine phosphatase PTPN11. Pharmacological inhibition of JAK3 but not JAK1/JAK2 significantly (p < 0.001) decreased PTCL proliferation, survival and STAT3 activation. A sharp contrast was observed in the pJAK3 positivity between ALK+ (85.7%) versus ALK-negative (10.0%) in human PTCL tumors and PTCL cell lines. Moreover, JAK3 and ALK reciprocally interacted in PTCL cells, forming a complex to possibly regulate STAT3 signaling. Finally, combined inhibition of JAK3 (by WHI-P154) and ALK (by crizotinib or alectinib) significantly (p < 0.01) decreased the survival of PTCL cells as compared to either agent alone by inhibiting STAT3 downstream signaling. Collectively, our findings establish that JAK3 is a therapeutic target for a subset of PTCL, and provide rationale for the clinical evaluation of JAK3 inhibitors combined with ALK-targeted therapy in PTCL.


Assuntos
Linfoma de Células T Periférico , Humanos , Linfoma de Células T Periférico/tratamento farmacológico , Linfoma de Células T Periférico/genética , Linhagem Celular Tumoral , Transdução de Sinais , Fosforilação , Receptores Proteína Tirosina Quinases , Janus Quinase 3
12.
J Allergy Clin Immunol ; 153(1): 161-172.e8, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37777018

RESUMO

BACKGROUND: Vitiligo is an autoimmune depigmenting disorder with no effective and safe treatments. Its pathogenesis is not fully elucidated. OBJECTIVE: This substudy of a randomized, double-blind, placebo-controlled phase 2b trial (NCT03715829) evaluated effects of ritlecitinib, an oral JAK3/TEC family kinase inhibitor, on skin and blood biomarkers in participants with nonsegmental vitiligo (NSV). METHODS: Sixty-five adults with NSV participated in the substudy and received daily treatment for 24 weeks with placebo (n = 14) or ritlecitinib with or without a 4-week loading dose: 200 (loading dose)/50 mg (n = 13), 100/50 mg (n = 12), 50 mg (n = 11), 30 mg (n = 8), or 10 mg (n = 6). Skin (lesional and nonlesional) biopsy samples were obtained at baseline and at 4 and 24 weeks. Changes from baseline to weeks 4 and 24 in skin and blood molecular and cellular biomarkers were evaluated by RNA sequencing, quantitative real-time PCR, proteomic analysis, and flow cytometry. RESULTS: Ritlecitinib-treated groups showed downregulation of immune biomarkers and upregulation of melanocyte-related markers at weeks 4 and 24 compared to baseline and/or placebo. Significant reductions were seen in CD3+/CD8+ T-cell infiltrates, with significant increases in melanocyte markers (tyrosinase; Melan-A) in NSV lesions in the 50 mg ritlecitinib groups (both P < .05). There was significant, dose-dependent downregulation in T-cell activation, NK, cytotoxic, and regulatory markers in lesional skin (IL-2, IL2-RA, IL-15, CCR7, CD5, CRTAM, NCR1, XCL1, KIR3DL1, FASLG, KLRD; P < .05). TH1 and TH2 markers were also downregulated in lesional skin and blood in a dose-dependent manner (P < .05). Changes in immune biomarkers correlated with clinical response. CONCLUSIONS: Ritlecitinib significantly downregulated proinflammatory biomarkers and increased melanocyte products in skin and blood of participants with NSV, suggesting its potential in treatment. Ritlecitinib-mediated changes positively correlated with clinical response.


Assuntos
Vitiligo , Adulto , Humanos , Vitiligo/tratamento farmacológico , Proteômica , Melanócitos , Pele , Biomarcadores , Janus Quinase 3
13.
J Clin Pharmacol ; 64(1): 67-79, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37691236

RESUMO

Ritlecitinib is a small molecule in clinical development that covalently and irreversibly inhibits Janus kinase 3 (JAK3) and the TEC family of kinases (BTK, BMX, ITK, TXK, and TEC). This phase 1, open-label, parallel-group study assessed target occupancy and functional effects of ritlecitinib on JAK3 and TEC family kinases in healthy participants aged 18-60 years who received 50 or 200 mg single doses of ritlecitinib on day 1. Blood samples to assess ritlecitinib pharmacokinetics, target occupancy, and pharmacodynamics were collected over 48 hours. Target occupancy was assessed using mass spectroscopy. Functional inhibition of JAK3-dependent signaling was measured by the inhibition of the phosphorylation of its downstream target signal transducer and activator of transcription 5 (pSTAT5), following activation by interleukin 15 (IL-15). The functional inhibition of Bruton's tyrosine kinase (BTK)-dependent signaling was measured by the reduction in the upregulation of cluster of differentiation 69 (CD69), an early marker of B-cell activation, following treatment with anti-immunoglobulin D. Eight participants received one 50 mg ritlecitinib dose and 8 participants received one 200 mg dose. Ritlecitinib plasma exposure increased in an approximately dose-proportional manner from 50 to 200 mg. The maximal median JAK3 target occupancy was 72% for 50 mg and 64% for 200 mg. Ritlecitinib 50 mg had >94% maximal target occupancy of all TEC kinases, except BMX (87%), and 200 mg had >97% for all TEC kinases. For BTK and TEC, ritlecitinib maintained high target occupancy throughout a period of 48 hours. Ritlecitinib reduced pSTAT5 levels following IL-15- and BTK-dependent signaling in a dose-dependent manner. These target occupancy and functional assays demonstrate the dual inhibition of the JAK3- and BTK-dependent pathways by ritlecitinib. Further studies are needed to understand the contribution to clinical effects of inhibiting these pathways.


Assuntos
Interleucina-15 , Janus Quinase 3 , Humanos , Tirosina Quinase da Agamaglobulinemia , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Fatores Imunológicos
14.
Aging (Albany NY) ; 15(24): 14764-14790, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38095643

RESUMO

OBJECTIVES: This study conducted integrated analysis of bulk RNA sequencing, single-cell RNA sequencing and Weighted Gene Co-expression Network Analysis (WGCNA), to comprehensively decode the most essential genes of intervertebral disc degeneration (IDD); then mainly focused on the JAK3 macromolecule to identify natural compounds to provide more candidate drug options in alleviating IDD. METHODS: In the first part, we performed single-cell transcriptome analysis and WGCNA workflow to delineate the most pivotal genes of IDD. Then series of structural biology approaches and high-throughput virtual screening techniques were performed to discover potential compounds targeting JAK-STAT signaling pathway, such as Libdock, ADMET, precise molecular docking algorithm and in-vivo drug stability assessment. RESULTS: Totally 4 hub genes were determined in the development of IDD, namely VEGFA, MMP3, TNFSF11, and TIMP3, respectively. Then, 3 novel natural materials, ZINC000014952116, ZINC000003938642 and ZINC000072131515, were determined as potential compounds, with less toxicities and moderate ADME characteristics. In-vivo drug stability assessment suggested that these drugs could interact with JAK3, and their ligand-JAK3 complexes maintained the homeostasis in-vivo, which acted as regulatory role to JAK3 protein. Among them, ZINC000072131515, also known as Menaquinone, demonstrated significant protective roles to alleviate the progression of IDD in vitro, which proved the nutritional therapy in alleviating IDD. CONCLUSIONS: This study reported the essential genes in the development of IDD, and also the roles of Menaquinone to ameliorate IDD through inhibiting JAK3 protein. This study also provided more options and resources on JAK3 targeted screening, which may further expand the drug resources in the pharmaceutical market.


Assuntos
Degeneração do Disco Intervertebral , Janus Quinase 3 , Humanos , Biologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Janus Quinase 3/genética , Simulação de Acoplamento Molecular , Transcriptoma , Vitamina K 2
15.
Skinmed ; 21(6): 434-438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38051245

RESUMO

LITFULOTM (ritlecitinib) capsules were recently approved for the treatment of severe alopecia areata in adolescents and adults, aged ≥12 years. Ritlecitinib is the active ingredient and a dual inhibitor of Janus kinase 3 and the tyrosine kinase expressed in hepatocellular carcinoma kinase family. It prevents immune attack on the hair follicles that leads to hair loss. In a phase 2b-3 dose-dependant study, five doses of oral ritlecitinib and placebo administered once daily (QD) were investigated. Ritlecitinib demonstrated efficacy in achieving the primary outcome, Severity of Alopecia Tool (SALT) score of ≤20, at week 24 (31% [38/124] 200-mg ritlecitinib QD for 4 weeks, then 50 mg QD for 20 weeks; 22% [27/121] 200-mg ritlecitinib QD for 4 weeks, then 30 mg QD for 20 weeks; 23% [29/124] 50-mg ritlecitinib QD; 14% [17/119] 30-mg ritlecitinib QD; 2% [1/59] 10-mg ritlecitinib QD; and 2% [2/130] placebo). Mild to moderate common adverse effects were observed, which included headache, nasopharyngitis, and upper respiratory tract infection. The recommended regimen of ritlecitinib capsules is 50 mg QD with without food and swallowed whole.


Assuntos
Alopecia em Áreas , Inibidores de Janus Quinases , Adulto , Adolescente , Humanos , Alopecia em Áreas/induzido quimicamente , Inibidores de Janus Quinases/efeitos adversos , Janus Quinase 3 , Pirimidinas/efeitos adversos , Alopecia/tratamento farmacológico , Inibidores de Proteínas Quinases/efeitos adversos
16.
J Immunol Res ; 2023: 8924603, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106519

RESUMO

Natural killer (NK) cell is an essential cytotoxic lymphocyte in our innate immunity. Activation of NK cells is of paramount importance in defending against pathogens, suppressing autoantibody production and regulating other immune cells. Common gamma chain (γc) cytokines, including IL-2, IL-15, and IL-21, are defined as essential regulators for NK cell homeostasis and development. However, it is inconclusive whether γc cytokine-driven NK cell activation plays a protective or pathogenic role in the development of autoimmunity. In this study, we investigate and correlate the differential effects of γc cytokines in NK cell expansion and activation. IL-2 and IL-15 are mainly responsible for NK cell activation, while IL-21 preferentially stimulates NK cell proliferation. Blockade of Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway by either JAK inhibitors or antibodies targeting γc receptor subunits reverses the γc cytokine-induced NK cell activation, leading to suppression of its autoimmunity-like phenotype in vitro. These results underline the mechanisms of how γc cytokines trigger autoimmune phenotype in NK cells as a potential target to autoimmune diseases.


Assuntos
Doenças Autoimunes , Interleucina-2 , Humanos , Interleucina-2/metabolismo , Interleucina-15 , Citocinas/metabolismo , Janus Quinases/metabolismo , Células Matadoras Naturais , Doenças Autoimunes/tratamento farmacológico , Janus Quinase 3
17.
Sci Adv ; 9(51): eadi3770, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38117887

RESUMO

Steroids are the standard treatment for allergic airway inflammation in asthma, but steroid-refractory asthma poses a challenge. Group 2 innate lymphoid cells (ILC2s), such as T helper 2 (TH2) cells, produce key asthma-related type 2 cytokines. Recent insights from mouse and human studies indicate a potential connection between ILC2s and steroid-resistant asthma. Here, we highlight that lung ILC2s, rather than TH2 cells, can develop steroid resistance, allowing them to persist and maintain their disease-driving activity even during steroid treatment. The emergence of multipotent IL-5+IL-13+IL-17A+ ILC2s is associated with steroid-resistant ILC2s. The Janus kinase 3 (JAK3)/signal transducer and activator of transcription (STAT) 3, 5, and 6 pathways contribute to the acquisition of steroid-resistant ILC2s. The JAK3 inhibitor reduces ILC2 survival, proliferation, and cytokine production in vitro and ameliorates ILC2-driven Alternaria-induced asthma. Furthermore, combining a JAK3 inhibitor with steroids results in the inhibition of steroid-resistant asthma. These findings suggest a potential therapeutic approach for addressing this challenging condition in chronic asthma.


Assuntos
Asma , Inibidores de Janus Quinases , Humanos , Animais , Camundongos , Imunidade Inata , Linfócitos/metabolismo , Asma/tratamento farmacológico , Asma/metabolismo , Citocinas/metabolismo , Inflamação , Esteroides , Janus Quinase 3
18.
Cells ; 12(21)2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37947625

RESUMO

Glioblastoma multiforme (GBM) is the most deadly brain tumor, effective treatment options for which still remain elusive. The current treatment procedure of maximal resection followed by chemotherapy has proved to be grossly insufficient to prevent disease progression and death. Despite best efforts, the maximum survival post-diagnosis is a mere 1.5 years. Therefore, there is a huge unmet clinical need to find effective therapeutic procedures to prevent the pathogenesis and relapse of GBM. Small-molecule inhibitors of signaling pathways are an attractive option to prevent various types of tumors. However, no effective small-molecule inhibitors have been successful against GBM in clinical trials. Various signaling pathways are altered and an array of signaling molecules, transcription factors (TFs), and epigenetic modifying factors have been implicated in the pathogenesis of GBM. JAK-STAT pathway alteration is an important contributor to GBM pathogenesis and relapse. Many small-molecule inhibitors of JAKs, or STAT TFs, especially JAK2 and STAT3, have been assessed for their anti-tumor activity in GBM. However, no definitive success so far has been achieved. Herein, by using two small-molecule inhibitors of JAK3, we show that they are quite effective in inhibiting GBM cell proliferation and neurosphere formation, downregulating their stemness character, and inducing differentiation into neuronal origin cells. The effect of a single treatment with the drugs, both in a serum-containing differentiation medium and in a proliferation medium containing EGF and FGF, was really strong in limiting GBM cell growth, suggesting a potential therapeutic application for these JAK inhibitors in GBM therapy.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Janus Quinases , Fatores de Transcrição STAT , Transdução de Sinais , Recidiva Local de Neoplasia , Recidiva , Janus Quinase 3
19.
Bioorg Med Chem ; 96: 117354, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944414

RESUMO

Rheumatoid arthritis (RA) is a chronically systemic autoimmune disorder, which is related with various cellular signal pathways. Both BTK (Bruton's Tyrosine Kinase) and JAK3 (Janus Kinase 3) play important roles in the pathogenesis of rheumatoid arthritis. Herein, we reported the discovery of dual BTK/JAK3 inhibitors through bioisosterism and computer-aided drug design based on the structure of BTK inhibitor ibrutinib. We reported the discovery of dual BTK/JAK3 inhibitors which are based on the structure of BTK inhibitor ibrutinib via the method of bioisosterism and computer-aided drug design) Most of the target compounds exhibited moderate to strong inhibitory activities against BTK and JAK3. Among them, compound XL-12 stood out as the most promising candidate targeting BTK and JAK3 with potent inhibitory activities (IC50 = 2.0 nM and IC50 = 14.0 nM respectively). In the in vivo studies, compound XL-12 (40 mg/kg) exhibited more potent antiarthritic activity than ibrutinib (10 mg/kg) in adjuvant arthritis (AA) rat model. Furthermore, compound XL-12 (LD50 > 1600 mg/kg) exerted improved safety compared with ibrutinib (LD50 = 750 mg/kg). These results indicated that compound XL-12, the dual BTK/JAK3 inhibitor, might be a potent drug candidate for the treatment of RA.


Assuntos
Artrite Reumatoide , Inibidores de Janus Quinases , Ratos , Animais , Tirosina Quinase da Agamaglobulinemia , Inibidores de Janus Quinases/uso terapêutico , Janus Quinase 3 , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo
20.
Cells ; 12(19)2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37830594

RESUMO

Constitutively activated tyrosine kinase JAK3 is implicated in the pathogenesis of cutaneous T-cell lymphomas (CTCL). The mechanisms of constitutive JAK3 activation are unknown although a JAK3 mutation was reported in a small portion of CTCL patients. In this study, we assessed the oncogenic roles of a newly identified JAK3-INSL3 fusion transcript in CTCL. Total RNA from malignant T-cells in 33 patients with Sézary syndrome (SS), a leukemic form of CTCL, was examined for the new JAK3-INSL3 fusion transcript by RT-PCR followed by Sanger sequencing. The expression levels were assessed by qPCR and correlated with patient survivals. Knockdown and/or knockout assays were conducted in two CTCL cell lines (MJ cells and HH cells) by RNA interference and/or CRISPR/Cas9 gene editing. SS patients expressed heterogeneous levels of a new JAK3-INSL3 fusion transcript. Patients with high-level expression of JAK3-INSL3 showed poorer 5-year survival (n = 19, 42.1%) than patients with low-level expression (n = 14, 78.6%). CTCL cells transduced with specific shRNAs or sgRNAs had decreased new JAK3-INSL3 fusion transcript expression, reduced cell proliferation, and decreased colony formation. In NSG xenograft mice, smaller tumor sizes were observed in MJ cells transduced with specific shRNAs than cells transduced with controls. Our results suggest that the newly identified JAK3-INSL3 fusion transcript confers an oncogenic event in CTCL.


Assuntos
Linfoma Cutâneo de Células T , Proteínas de Fusão Oncogênica , Síndrome de Sézary , Neoplasias Cutâneas , Animais , Humanos , Camundongos , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Linfoma Cutâneo de Células T/metabolismo , RNA Guia de Sistemas CRISPR-Cas , RNA Interferente Pequeno , Síndrome de Sézary/genética , Neoplasias Cutâneas/patologia , Proteínas de Fusão Oncogênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA