Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34528064

RESUMO

Visual information is transmitted from the eye to the brain along the optic nerve, a structure composed of retinal ganglion cell (RGC) axons. The optic nerve is highly vulnerable to damage in neurodegenerative diseases, such as glaucoma, and there are currently no FDA-approved drugs or therapies to protect RGCs from death. Zebrafish possess remarkable neuroprotective and regenerative abilities. Here, utilizing an optic nerve transection (ONT) injury and an RNA-seq-based approach, we identify genes and pathways active in RGCs that may modulate their survival. Through pharmacological perturbation, we demonstrate that Jak/Stat pathway activity is required for RGC survival after ONT. Furthermore, we show that immune responses directly contribute to RGC death after ONT; macrophages/microglia are recruited to the retina and blocking neuroinflammation or depleting these cells after ONT rescues survival of RGCs. Taken together, these data support a model in which crosstalk between macrophages/microglia and RGCs, mediated by Jak/Stat pathway activity, regulates RGC survival after optic nerve injury.


Assuntos
Imunidade Inata , Janus Quinases/imunologia , Traumatismos do Nervo Óptico/imunologia , Células Ganglionares da Retina/imunologia , Fatores de Transcrição STAT/imunologia , Transdução de Sinais/imunologia , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/imunologia , Animais , Animais Geneticamente Modificados , Feminino , Janus Quinases/genética , Masculino , Traumatismos do Nervo Óptico/genética , Fatores de Transcrição STAT/genética , Transdução de Sinais/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
2.
Front Immunol ; 12: 767939, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858425

RESUMO

The tumor microenvironment (TME) is composed of a heterogenous population of cells that exist alongside the extracellular matrix and soluble components. These components can shape an environment that is conducive to tumor growth and metastatic spread. It is well-established that stromal cancer-associated fibroblasts (CAFs) in the TME play a pivotal role in creating and maintaining a growth-permissive environment for tumor cells. A growing body of work has uncovered that tumor cells recruit and educate CAFs to remodel the TME, however, the mechanisms by which this occurs remain incompletely understood. Recent studies suggest that the signal transducer and activator of transcription 3 (STAT3) is a key transcription factor that regulates the function of CAFs, and their crosstalk with tumor and immune cells within the TME. CAF-intrinsic STAT3 activity within the TME correlates with tumor progression, immune suppression and eventually the establishment of metastases. In this review, we will focus on the roles of STAT3 in regulating CAF function and their crosstalk with other cells constituting the TME and discuss the utility of targeting STAT3 within the TME for therapeutic benefit.


Assuntos
Fibroblastos Associados a Câncer/imunologia , Neoplasias/imunologia , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Fibroblastos Associados a Câncer/metabolismo , Comunicação Celular/imunologia , Progressão da Doença , Humanos , Janus Quinases/imunologia , Janus Quinases/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Fosforilação/imunologia , Fator de Transcrição STAT3/metabolismo
3.
Bioengineered ; 12(2): 12461-12469, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34931923

RESUMO

Severe mortality due to the COVID-19 pandemic resulted from the lack of effective treatment. Although COVID-19 vaccines are available, their side effects have become a challenge for clinical use in patients with chronic diseases, especially cancer patients. In the current report, we applied network pharmacology and systematic bioinformatics to explore the use of biochanin A in patients with colorectal cancer (CRC) and COVID-19 infection. Using the network pharmacology approach, we identified two clusters of genes involved in immune response (IL1A, IL2, and IL6R) and cell proliferation (CCND1, PPARG, and EGFR) mediated by biochanin A in CRC/COVID-19 condition. The functional analysis of these two gene clusters further illustrated the effects of biochanin A on interleukin-6 production and cytokine-cytokine receptor interaction in CRC/COVID-19 pathology. In addition, pathway analysis demonstrated the control of PI3K-Akt and JAK-STAT signaling pathways by biochanin A in the treatment of CRC/COVID-19. The findings of this study provide a therapeutic option for combination therapy against COVID-19 infection in CRC patients.


Assuntos
Anticarcinógenos/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genisteína/uso terapêutico , Fitoestrógenos/uso terapêutico , Atlas como Assunto , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/virologia , Ciclina D1/genética , Ciclina D1/imunologia , Receptores ErbB/genética , Receptores ErbB/imunologia , Humanos , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Janus Quinases/genética , Janus Quinases/imunologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Terapia de Alvo Molecular/métodos , Família Multigênica , Farmacologia em Rede/métodos , PPAR gama/genética , PPAR gama/imunologia , Farmacogenética/métodos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/imunologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/imunologia , Transdução de Sinais
4.
Int J Mol Sci ; 22(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34830176

RESUMO

The unprecedented successes of immunotherapies (IOs) including immune checkpoint blockers (ICBs) and adoptive T-cell therapy (ACT) in patients with late-stage cancer provide proof-of-principle evidence that harnessing the immune system, in particular T cells, can be an effective approach to eradicate cancer. This instills strong interests in understanding the immunomodulatory effects of radiotherapy (RT), an area that was actually investigated more than a century ago but had been largely ignored for many decades. With the "newly" discovered immunogenic responses from RT, numerous endeavors have been undertaken to combine RT with IOs, in order to bolster anti-tumor immunity. However, the underlying mechanisms are not well defined, which is a subject of much investigation. We therefore conducted a systematic literature search on the molecular underpinnings of RT-induced immunomodulation and IOs, which identified the IFN-JAK-STAT pathway as a major regulator. Our further analysis of relevant studies revealed that the signaling strength and duration of this pathway in response to RT and IOs may determine eventual immunological outcomes. We propose that strategic targeting of this axis can boost the immunostimulatory effects of RT and radiosensitizing effects of IOs, thereby promoting the efficacy of combination therapy of RT and IOs.


Assuntos
Imunoterapia/métodos , Neoplasias/terapia , Radioterapia/métodos , Linfócitos T/imunologia , Terapia Combinada , Humanos , Interferons/imunologia , Interferons/metabolismo , Janus Quinases/imunologia , Janus Quinases/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Fatores de Transcrição STAT/imunologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/metabolismo
5.
J Hematol Oncol ; 14(1): 198, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809691

RESUMO

STAT proteins represent an important family of evolutionarily conserved transcription factors that play key roles in diverse biological processes, notably including blood and immune cell development and function. Classically, STAT proteins have been viewed as inducible activators of transcription that mediate cellular responses to extracellular signals, particularly cytokines. In this 'canonical' paradigm, latent STAT proteins become tyrosine phosphorylated following receptor activation, typically via downstream JAK proteins, facilitating their dimerization and translocation into the nucleus where they bind to specific sequences in the regulatory region of target genes to activate transcription. However, growing evidence has challenged this paradigm and identified alternate 'non-canonical' functions, such as transcriptional repression and roles outside the nucleus, with both phosphorylated and unphosphorylated STATs involved. This review provides a revised framework for understanding the diverse kaleidoscope of STAT protein functional modalities. It further discusses the implications of this framework for our understanding of STAT proteins in normal blood and immune cell biology and diseases such as cancer, and also provides an evolutionary context to place the origins of these alternative functional modalities.


Assuntos
Neoplasias/imunologia , Fatores de Transcrição STAT/imunologia , Animais , Humanos , Imunidade , Janus Quinases/imunologia , Janus Quinases/metabolismo , Neoplasias/metabolismo , Fosforilação , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
6.
J Allergy Clin Immunol ; 148(4): 953-963, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34625142

RESUMO

Asthma is an inflammatory disease of the airways characterized by intermittent episodes of wheezing, chest tightness, and cough. Many of the inflammatory pathways implicated in asthma involve cytokines and growth factors that activate Janus kinases (JAKs). The discovery of the JAK/signal transducer and activator of transcription (STAT) signaling pathway was a major breakthrough that revolutionized our understanding of cell growth and differentiation. JAK inhibitors are under active investigation for immune and inflammatory diseases, and they have demonstrated clinical efficacy in diseases such as rheumatoid arthritis and atopic dermatitis. Substantial preclinical data support the idea that inhibiting JAKs will ameliorate airway inflammation and hyperreactivity in asthma. Here, we review the rationale for use of JAK inhibitors in different asthma endotypes as well as the preclinical and early clinical evidence supporting such use. We review preclinical data from the use of systemic and inhaled JAK inhibitors in animal models of asthma and safety data based on the use of JAK inhibitors in other diseases. We conclude that JAK inhibitors have the potential to usher in a new era of anti-inflammatory treatment for asthma.


Assuntos
Asma/tratamento farmacológico , Inibidores de Janus Quinases/uso terapêutico , Animais , Vias de Administração de Medicamentos , Humanos , Inibidores de Janus Quinases/administração & dosagem , Inibidores de Janus Quinases/efeitos adversos , Janus Quinases/antagonistas & inibidores , Janus Quinases/imunologia , Fatores de Transcrição STAT/imunologia
7.
J Allergy Clin Immunol ; 148(4): 911-925, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34625141

RESUMO

Since its discovery, the Janus kinase-signal transduction and activation of transcription (JAK-STAT) pathway has become recognized as a central mediator of widespread and varied human physiological processes. The field of JAK-STAT biology, particularly its clinical relevance, continues to be shaped by 2 important advances. First, the increased use of genomic sequencing has led to the discovery of novel clinical syndromes caused by mutations in JAK and STAT genes. This has provided insights regarding the consequences of aberrant JAK-STAT signaling for immunity, lymphoproliferation, and malignancy. In addition, since the approval of ruxolitinib and tofacitinib, the therapeutic use of JAK inhibitors (jakinibs) has expanded to include a large spectrum of diseases. Efficacy and safety data from over a decade of clinical studies have provided additional mechanistic insights while improving the care of patients with inflammatory and neoplastic conditions. This review discusses major advances in the field, focusing on updates in genetic diseases and in studies of clinical jakinibs in human disease.


Assuntos
Doenças Genéticas Inatas/tratamento farmacológico , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/imunologia , Fatores de Transcrição STAT/imunologia , Animais , Citocinas/imunologia , Doenças Genéticas Inatas/imunologia , Humanos , Janus Quinases/genética , Mutação , Fatores de Transcrição STAT/genética , Transdução de Sinais
8.
Inflamm Res ; 70(10-12): 1043-1061, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34476533

RESUMO

BACKGROUND: The insulin/IGF-1 signaling pathway has a major role in the regulation of longevity both in Caenorhabditis elegans and mammalian species, i.e., reduced activity of this pathway extends lifespan, whereas increased activity accelerates the aging process. The insulin/IGF-1 pathway controls protein and energy metabolism as well as the proliferation and differentiation of insulin/IGF-1-responsive cells. Insulin/IGF-1 signaling also regulates the functions of the innate and adaptive immune systems. The purpose of this review was to elucidate whether insulin/IGF-1 signaling is linked to immunosuppressive STAT3 signaling which is known to promote the aging process. METHODS: Original and review articles encompassing the connections between insulin/IGF-1 and STAT3 signaling were examined from major databases including Pubmed, Scopus, and Google Scholar. RESULTS: The activation of insulin/IGF-1 receptors stimulates STAT3 signaling through the JAK and AKT-driven signaling pathways. STAT3 signaling is a major activator of immunosuppressive cells which are able to counteract the chronic low-grade inflammation associated with the aging process. However, the activation of STAT3 signaling stimulates a negative feedback response through the induction of SOCS factors which not only inhibit the activity of insulin/IGF-1 receptors but also that of many cytokine receptors. The inhibition of insulin/IGF-1 signaling evokes insulin resistance, a condition known to be increased with aging. STAT3 signaling also triggers the senescence of both non-immune and immune cells, especially through the activation of p53 signaling. CONCLUSIONS: Given that cellular senescence, inflammaging, and counteracting immune suppression increase with aging, this might explain why excessive insulin/IGF-1 signaling promotes the aging process.


Assuntos
Envelhecimento/imunologia , Tolerância Imunológica , Fator de Crescimento Insulin-Like I/imunologia , Insulina/imunologia , Fator de Transcrição STAT3/imunologia , Animais , Senescência Celular , Humanos , Janus Quinases/imunologia , Transdução de Sinais
9.
Biomolecules ; 11(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34439829

RESUMO

Retinitis pigmentosa (RP) is a hereditary disease of the retina that results in complete blindness. Currently, there are very few treatments for the disease and those that exist work only for the recessively inherited forms. To better understand the pathogenesis of RP, multiple mouse models have been generated bearing mutations found in human patients including the human Q344X rhodopsin knock-in mouse. In recent years, the immune system was shown to play an increasingly important role in RP degeneration. By way of electroretinography, optical coherence tomography, funduscopy, fluorescein angiography, and fluorescent immunohistochemistry, we show degenerative and vascular phenotypes, microglial activation, photoreceptor phagocytosis, and upregulation of proinflammatory pathway proteins in the retinas of the human Q344X rhodopsin knock-in mouse. We also show that an FDA-approved pharmacological agent indicated for the treatment of rheumatoid arthritis is able to halt activation of pro-inflammatory signaling in cultured retinal cells, setting the stage for pre-clinical trials using these mice to inhibit proinflammatory signaling in an attempt to preserve vision. We conclude from this work that pro- and autoinflammatory upregulation likely act to enhance the progression of the degenerative phenotype of rhodopsin Q344X-mediated RP and that inhibition of these pathways may lead to longer-lasting vision in not only the Q344X rhodopsin knock-in mice, but humans as well.


Assuntos
Antirreumáticos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Fator Inibidor de Leucemia/farmacologia , Mutação , Retina/efeitos dos fármacos , Retinose Pigmentar/tratamento farmacológico , Rodopsina/genética , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Janus Quinases/antagonistas & inibidores , Janus Quinases/genética , Janus Quinases/imunologia , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/patologia , NF-kappa B/genética , NF-kappa B/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Retina/imunologia , Retina/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/imunologia , Retinose Pigmentar/patologia , Rodopsina/deficiência , Fatores de Transcrição STAT/antagonistas & inibidores , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/imunologia , Transdução de Sinais , Transgenes , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
10.
Clin Immunol ; 230: 108793, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34242749

RESUMO

Rheumatoid arthritis (RA) is characterized by systemic synovitis leading to joint destruction in which imbalances in pro-inflammatory and anti-inflammatory cytokines promote the induction of autoimmunity. Some pro-inflammatory cytokines can trigger the signaling pathways which responsible for immune-mediated inflammation in RA, and the activated signaling pathways produce pro-inflammatory cytokines, resulting in aggravation of RA. Hence, understanding of the signaling pathways and their inhibitors might be advantageous in the development of therapeutic targets and new drugs for RA. In the current review, we summarize the signaling pathways involved in the pathogenesis of RA as well as the potential role of specific inhibitors in its management. We hope this paper may serve a reference for future studies on signaling pathways implicated in the pathogenesis of RA and benefit the treatment of RA.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Transdução de Sinais/imunologia , Artrite Reumatoide/etiologia , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Inibidores de Janus Quinases/farmacologia , Janus Quinases/imunologia , Janus Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/imunologia , Modelos Imunológicos , NF-kappa B/antagonistas & inibidores , NF-kappa B/imunologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Immunobiology ; 226(5): 152114, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34303919

RESUMO

The induction of major histocompatibility complex (MHC) class II proteins by interferon gamma (IFN-γ) in macrophages play an important role during immune responses. Here we explore the signaling pathways involved in the induction by IFN-γ of the MHC II transactivator (CIIta) required for MHC II transcriptional activation. Cyclophilin A (CypA) is required for IFN-γ-dependent induction of MHC II in macrophages, but not when it is mediated by GM-CSF. The effect of CypA appears to be specific because it does not affect the expression of other molecules or genes triggered by IFN-γ, such as FcγR, NOS2, Lmp2, and Tap1. We found that CypA inhibition blocked the IFN-γ-induced expression of CIIta at the transcriptional level in two phases. In an early phase, during the first 2 h of IFN-γ treatment, STAT1 is phosphorylated at Tyrosine 701 and Serine 727, residues required for the induction of the transcription factor IRF1. In a later phase, STAT1 phosphorylation and JNK activation are required to trigger CIIta expression. CypA is needed for STAT1 phosphorylation in this last phase and to bind the CIIta promoter. Our findings demonstrate that STAT1 is required in a two-step induction of CIIta, once again highlighting the significance of cross talk between signaling pathways in macrophages.


Assuntos
Interferon gama/imunologia , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , Janus Quinases/imunologia , Proteínas Nucleares/imunologia , Fator de Transcrição STAT1/imunologia , Transativadores/imunologia , Animais , Linhagem Celular , Ciclosporina/farmacologia , Lactonas/farmacologia , Camundongos Endogâmicos BALB C , Proteínas Nucleares/genética , Compostos de Espiro/farmacologia , Transativadores/genética
12.
EMBO J ; 40(15): e107826, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34101213

RESUMO

SARS-CoV-2 infection causes broad-spectrum immunopathological disease, exacerbated by inflammatory co-morbidities. A better understanding of mechanisms underpinning virus-associated inflammation is required to develop effective therapeutics. Here, we discover that SARS-CoV-2 replicates rapidly in lung epithelial cells despite triggering a robust innate immune response through the activation of cytoplasmic RNA sensors RIG-I and MDA5. The inflammatory mediators produced during epithelial cell infection can stimulate primary human macrophages to enhance cytokine production and drive cellular activation. Critically, this can be limited by abrogating RNA sensing or by inhibiting downstream signalling pathways. SARS-CoV-2 further exacerbates the local inflammatory environment when macrophages or epithelial cells are primed with exogenous inflammatory stimuli. We propose that RNA sensing of SARS-CoV-2 in lung epithelium is a key driver of inflammation, the extent of which is influenced by the inflammatory state of the local environment, and that specific inhibition of innate immune pathways may beneficially mitigate inflammation-associated COVID-19.


Assuntos
COVID-19/imunologia , Proteína DEAD-box 58/imunologia , Células Epiteliais/imunologia , Helicase IFIH1 Induzida por Interferon/imunologia , Macrófagos/imunologia , RNA Viral/imunologia , Receptores Imunológicos/imunologia , SARS-CoV-2 , COVID-19/genética , COVID-19/virologia , Linhagem Celular , Citocinas/genética , Citocinas/imunologia , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Inflamação/genética , Inflamação/imunologia , Inflamação/virologia , Janus Quinases/imunologia , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Ativação de Macrófagos , NF-kappa B/imunologia , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Fatores de Transcrição STAT/imunologia , Replicação Viral
13.
J Immunol ; 206(11): 2682-2691, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34021047

RESUMO

Type I/III IFNs induce expression of hundreds of IFN-stimulated genes through the JAK/STAT pathway to combat viral infections. Although JAK/STAT signaling is seemingly straightforward, it is nevertheless subjected to complex cellular regulation. In this study, we show that an ubiquitination regulatory X (UBX) domain-containing protein, UBXN6, positively regulates JAK-STAT1/2 signaling. Overexpression of UBXN6 enhanced type I/III IFNs-induced expression of IFN-stimulated genes, whereas deletion of UBXN6 inhibited their expression. RNA viral replication was increased in human UBXN6-deficient cells, accompanied by a reduction in both type I/III IFN expression, when compared with UBXN6-sufficient cells. Mechanistically, UBXN6 interacted with tyrosine kinase 2 (TYK2) and inhibited IFN-ß-induced degradation of both TYK2 and type I IFNR. These results suggest that UBXN6 maintains normal JAK-STAT1/2 signaling by stabilizing key signaling components during viral infection.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , Proteínas Relacionadas à Autofagia/imunologia , Janus Quinases/imunologia , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT2/imunologia , Animais , Células Cultivadas , Chlorocebus aethiops , Humanos , Transdução de Sinais/imunologia
14.
Front Immunol ; 12: 650708, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927721

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS) and a CD4+ T cell-mediated autoimmune disease. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is recognized as the major mechanism that regulates the differentiation and function of T helper (Th) 1 and Th17 cells, which are recognized as pivotal effector cells responsible for the development of EAE. We used baricitinib, a JAK 1/2 inhibitor, to investigate the therapeutic efficacy of inhibiting the JAK/STAT pathway in EAE mice. Our results showed that baricitinib significantly delayed the onset time, decreased the severity of clinical symptoms, shortened the duration of EAE, and alleviated demyelination and immune cell infiltration in the spinal cord. In addition, baricitinib treatment downregulated the proportion of interferon-γ+CD4+ Th1 and interleukin-17+CD4+ Th17 cells, decreased the levels of retinoic acid-related orphan receptor γ t and T-bet mRNA, inhibited lymphocyte proliferation, and decreased the expression of proinflammatory cytokines and chemokines in the spleen of mice with EAE. Furthermore, our results showed the role of baricitinib in suppressing the phosphorylation of STATs 1, 3, and 4 in the spleen of EAE mice. Therefore, our study demonstrates that baricitinib could potentially alleviate inflammation in mice with EAE and may be a promising candidate for treating MS.


Assuntos
Azetidinas/farmacologia , Encefalomielite Autoimune Experimental/prevenção & controle , Janus Quinases/antagonistas & inibidores , Purinas/farmacologia , Pirazóis/farmacologia , Fatores de Transcrição STAT/imunologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Administração Oral , Animais , Azetidinas/administração & dosagem , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Janus Quinases/imunologia , Janus Quinases/metabolismo , Camundongos Endogâmicos C57BL , Purinas/administração & dosagem , Pirazóis/administração & dosagem , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/imunologia , Sulfonamidas/administração & dosagem
15.
Mol Ther ; 29(3): 1174-1185, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33352107

RESUMO

Self-amplifying RNA (saRNA) is a cutting-edge platform for both nucleic acid vaccines and therapeutics. saRNA is self-adjuvanting, as it activates types I and III interferon (IFN), which enhances the immunogenicity of RNA vaccines but can also lead to inhibition of translation. In this study, we screened a library of saRNA constructs with cis-encoded innate inhibiting proteins (IIPs) and determined the effect on protein expression and immunogenicity. We observed that the PIV-5 V and Middle East respiratory syndrome coronavirus (MERS-CoV) ORF4a proteins enhance protein expression 100- to 500-fold in vitro in IFN-competent HeLa and MRC5 cells. We found that the MERS-CoV ORF4a protein partially abates dose nonlinearity in vivo, and that ruxolitinib, a potent Janus kinase (JAK)/signal transducer and activator of transcription (STAT) inhibitor, but not the IIPs, enhances protein expression of saRNA in vivo. Both the PIV-5 V and MERS-CoV ORF4a proteins were found to enhance the percentage of resident cells in human skin explants expressing saRNA and completely rescued dose nonlinearity of saRNA. Finally, we observed that the MERS-CoV ORF4a increased the rabies virus (RABV)-specific immunoglobulin G (IgG) titer and neutralization half-maximal inhibitory concentration (IC50) by ∼10-fold in rabbits, but not in mice or rats. These experiments provide a proof of concept that IIPs can be directly encoded into saRNA vectors and effectively abate the nonlinear dose dependency and enhance immunogenicity.


Assuntos
Imunidade Inata/efeitos dos fármacos , Imunogenicidade da Vacina , Biossíntese de Proteínas/efeitos dos fármacos , Vacinas Sintéticas/farmacologia , Proteínas do Envelope Viral/administração & dosagem , Animais , Linhagem Celular , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Vírus da Encefalite Equina Venezuelana/imunologia , Vírus da Encefalite Equina Venezuelana/patogenicidade , Fibroblastos , Regulação da Expressão Gênica , Células HeLa , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunoglobulina G/biossíntese , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Janus Quinases/antagonistas & inibidores , Janus Quinases/genética , Janus Quinases/imunologia , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , NF-kappa B/genética , NF-kappa B/imunologia , Nitrilas , Vírus da Parainfluenza 5/efeitos dos fármacos , Vírus da Parainfluenza 5/imunologia , Vírus da Parainfluenza 5/patogenicidade , Pirazóis/farmacologia , Pirimidinas , Coelhos , Vírus da Raiva/efeitos dos fármacos , Vírus da Raiva/imunologia , Vírus da Raiva/patogenicidade , Ratos , Fatores de Transcrição STAT/antagonistas & inibidores , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/imunologia , Transdução de Sinais , Vacinas Sintéticas/biossíntese , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas de mRNA
16.
Dev Comp Immunol ; 116: 103964, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33301792

RESUMO

Mosquitoes are vectors of a large number of viral pathogens. In recent years, increased urbanization and climate change has expanded the range of many vector mosquitoes. The lack of effective medical interventions has made the control of mosquito-borne viral diseases very difficult. Understanding the interactions between the mosquito immune system and viruses is critical if we are to develop effective control strategies against these diseases. Mosquitoes harbor multiple conserved immune pathways that curb invading viral pathogens. Despite the conservation of these pathways, the activation and intensity of the mosquito immune response varies with the mosquito species, tissue, and the infecting virus. This article reviews major conserved antiviral immune pathways in vector mosquitoes, their interactions with invading viral pathogens, and how these interactions restrict or promote infection of these medically important viruses.


Assuntos
Culicidae/imunologia , Mosquitos Vetores/imunologia , Transdução de Sinais/imunologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Animais Geneticamente Modificados/virologia , Antivirais/imunologia , Arbovírus/fisiologia , Proteínas de Transporte/imunologia , Culicidae/genética , Culicidae/virologia , Janus Quinases/imunologia , Proteínas Quinases Ativadas por Mitógeno , Mosquitos Vetores/genética , Mosquitos Vetores/virologia , Interferência de RNA/imunologia , Fatores de Transcrição STAT/imunologia , Receptores Toll-Like/imunologia
17.
Front Immunol ; 11: 606456, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329603

RESUMO

For several decades there has been accumulating evidence implicating type I interferons (IFNs) as key elements of the immune response. Therapeutic approaches incorporating different recombinant type I IFN proteins have been successfully employed to treat a diverse group of diseases with significant and positive outcomes. The biological activities of type I IFNs are consequences of signaling events occurring in the cytoplasm and nucleus of cells. Biochemical events involving JAK/STAT proteins that control transcriptional activation of IFN-stimulated genes (ISGs) were the first to be identified and are referred to as "canonical" signaling. Subsequent identification of JAK/STAT-independent signaling pathways, critical for ISG transcription and/or mRNA translation, are denoted as "non-canonical" or "non-classical" pathways. In this review, we summarize these signaling cascades and discuss recent developments in the field, specifically as they relate to the biological and clinical implications of engagement of both canonical and non-canonical pathways.


Assuntos
Interferon Tipo I/imunologia , Biossíntese de Proteínas/imunologia , Transdução de Sinais/imunologia , Transcrição Gênica/imunologia , Animais , Humanos , Janus Quinases/imunologia , Fatores de Transcrição STAT/imunologia
18.
Front Immunol ; 11: 1303, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655571

RESUMO

Secretory IgA is critical to prevent the invasion of pathogens via mucosa. However, the key factors and the mechanisms of IgA generation in the porcine gut are not well-understood. In this study, a panel of factors, including BAFF, APRIL, CD40L, TGF-ß1, IL-6, IL-10, IL-17A, and IL-21, were employed to stimulate IgM+ B lymphocytes from porcine ileum Peyer's patches. The results showed that IL-21 significantly upregulated IgA production of B cells and facilitated cell proliferation and differentiation of antibody-secreting cells. In addition, three transcripts in porcine IgA class switch recombination (CSR), germ-line transcript α, post-switch transcript α, and circle transcript α, were first amplified by (nest-)PCR and sequenced. All these key indicators of IgA CSR were upregulated by IL-21 treatment. Furthermore, we found that IL-21 predominantly activated JAK1, STAT1, and STAT3 proteins and confirmed that the JAK-STAT signaling pathway was involved in porcine IgA CSR. Thus, IL-21 plays an important role in the proliferation and differentiation of IgA-secreting cells in porcine Peyer's patches through the JAK-STAT signaling pathway. These findings provide insights into the mucosal vaccine design by regulation of IL-21 for the prevention and control of enteric pathogens in the pig industry.


Assuntos
Imunoglobulina A/biossíntese , Interleucinas/imunologia , Janus Quinases/imunologia , Nódulos Linfáticos Agregados/imunologia , Plasmócitos/imunologia , Fatores de Transcrição STAT/imunologia , Animais , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Imunoglobulina A/imunologia , Switching de Imunoglobulina/imunologia , Interleucinas/metabolismo , Transdução de Sinais/imunologia , Suínos
19.
Cytokine ; 133: 155147, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32492632

RESUMO

Interferons (IFN) have been shown to alter lipid metabolism in immune and some non-hematopoietic cells and this affects host cell response to pathogens. In type 1 diabetes, IFNγ acts as a proinflammatory cytokine that, along with other cytokines, is released during pancreatic beta cell autoinflammation and contributes to immune response and beta cell dysfunction. The hypothesis tested herein is that IFN modifies beta cell lipid metabolism and this is associated with enhanced anti-viral response and beta cell stress. Treatment of INS-1 cells with IFNγ for 6 to 24 h led to a dynamic change in TAG and lipid droplet (LD) levels, with a decrease at 6 h and an increase at 24 h. The later accumulation of TAG was associated with increased de novo lipogenesis (DNL), and impaired mitochondrial fatty acid oxidation (FAO). Gene expression results suggested that IFNγ regulates lipolytic, lipogenic, LD and FAO genes in a temporal manner. The changes in lipid gene expression are dependent on the classical Janus kinase (JAK) pathway. Pretreatment with IFNγ robustly enhanced anti-viral gene expression induced by the viral mimetic polyinosinic: polycytidylic acid (PIC), and this potentiating effect of IFNγ was markedly attenuated by inhibitors of DNL. The IFNγ-induced accumulation of lipid, however, was insufficient to cause endoplasmic reticulum (ER) stress. These studies demonstrated a non-canonical effect of IFNγ in regulation of pancreatic beta cell lipid metabolism that is intimately linked with host cell defense and might alter cellular function early in the progression to type 1 diabetes.


Assuntos
Antivirais/imunologia , Células Secretoras de Insulina/imunologia , Interferon gama/imunologia , Metabolismo dos Lipídeos/imunologia , Animais , Células Cultivadas , Diabetes Mellitus Tipo 1/imunologia , Estresse do Retículo Endoplasmático/imunologia , Janus Quinases/imunologia , Poli I-C/imunologia , Ratos
20.
Fish Shellfish Immunol ; 104: 228-236, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32502613

RESUMO

Interleukin (IL)-34 is a relatively recently discovered cytokine with pleiotropic effects on various cellular activities, including immune response. In fish, the knowledge on the function of IL-34 is limited. In the present work, we investigated the function of Japanese flounder Paralichthys olivaceus IL-34 (PoIL-34) in association with inflammation and immune defense. PoIL-34 possesses the conserved structure of IL-34 superfamily and shares 21.52% sequence identity with murine IL-34. PoIL-34 expression was detected in a wide range of tissues of flounder, in particular intestine, and was regulated to a significant extent by bacterial infection in a time-dependent fashion. In vitro studies showed that recombinant PoIL-34 (rPoIL-34) bound peripheral blood leukocytes (PBLs) and promoted ROS production, acid phosphatase activity, and cellular resistance against bacterial infection. At the molecular level, rPoIL-34 enhanced the expressions of inflammatory cytokines and specific JAK and STAT genes. Similar stimulatory effects of rPoIL-34 were observed in vivo. When PoIL-34 was overexpressed in flounder, the expressions of pro- and anti-inflammatory mediators were significantly affected in a tissue-dependent manner, which correlated with an augmented ability of the fish to eliminate invading pathogens from tissues. Together, these results indicated that PoIL-34 regulated inflammatory response probably via specific JAK/STAT pathways and had a significant influence on the immune defense of flounder against bacterial infection.


Assuntos
Citocinas/imunologia , Edwardsiella tarda , Infecções por Enterobacteriaceae/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Linguado/imunologia , Animais , Citocinas/genética , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Linguado/microbiologia , Rim Cefálico/imunologia , Inflamação/imunologia , Janus Quinases/genética , Janus Quinases/imunologia , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/imunologia , Baço/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA