Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 220(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33914026

RESUMO

Rac1 GTPase is hyperactivated in tumors and contributes to malignancy. Rac1 disruption of junctions requires its effector PAK1, but the precise mechanisms are unknown. Here, we show that E-cadherin is internalized via micropinocytosis in a PAK1-dependent manner without catenin dissociation and degradation. In addition to internalization, PAK1 regulates E-cadherin transport by fine-tuning Rab small GTPase function. PAK1 phosphorylates a core Rab regulator, RabGDIß, but not RabGDIα. Phosphorylated RabGDIß preferentially associates with Rab5 and Rab11, which is predicted to promote Rab retrieval from membranes. Consistent with this hypothesis, Rab11 is activated by Rac1, and inhibition of Rab11 function partially rescues E-cadherin destabilization. Thus, Rac1 activation reduces surface cadherin levels as a net result of higher bulk flow of membrane uptake that counteracts Rab11-dependent E-cadherin delivery to junctions (recycling and/or exocytosis). This unique small GTPase crosstalk has an impact on Rac1 and PAK1 regulation of membrane remodeling during epithelial dedifferentiation, adhesion, and motility.


Assuntos
Junções Aderentes/fisiologia , Exocitose , Queratinócitos/fisiologia , Quinases Ativadas por p21/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Junções Aderentes/química , Células Cultivadas , Humanos , Queratinócitos/citologia , Transdução de Sinais , Quinases Ativadas por p21/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/genética
2.
Biochim Biophys Acta Biomembr ; 1862(9): 183316, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32360073

RESUMO

Epithelial and endothelial monolayers are multicellular sheets that form barriers between the 'outside' and 'inside' of tissues. Cell-cell junctions, made by adherens junctions, tight junctions and desmosomes, hold together these monolayers. They form intercellular contacts by binding their receptor counterparts on neighboring cells and anchoring these structures intracellularly to the cytoskeleton. During tissue development, maintenance and pathogenesis, monolayers encounter a range of mechanical forces from the cells themselves and from external systemic forces, such as blood pressure or tissue stiffness. The molecular landscape of cell-cell junctions is diverse, containing transmembrane proteins that form intercellular bonds and a variety of cytoplasmic proteins that remodel the junctional connection to the cytoskeleton. Many junction-associated proteins participate in mechanotransduction cascades to confer mechanical cues into cellular responses that allow monolayers to maintain their structural integrity. We will discuss force-dependent junctional molecular events and their role in cell-cell contact organization and remodeling.


Assuntos
Junções Aderentes/química , Junções Intercelulares/química , Fenômenos Mecânicos , Proteínas de Membrana/química , Junções Aderentes/genética , Pressão Sanguínea/genética , Citoesqueleto/química , Desmossomos/química , Desmossomos/genética , Células Endoteliais/química , Células Epiteliais/química , Humanos , Junções Intercelulares/genética , Proteínas de Membrana/genética , Junções Íntimas/química , Junções Íntimas/genética
3.
Biochim Biophys Acta Biomembr ; 1862(2): 183143, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31812626

RESUMO

Tricellular junctions are specialized cell-cell junctions formed at sites where three epithelial or endothelial cells make contact at their apical side. By holding three cells together, tricellular junctions contribute to the maintenance of epithelial barrier function and mechanical integrity. In addition, recent studies have uncovered new functions of tricellular junctions at both cellular and physiological levels. In this review, we describe the architecture and molecular components of tricellular junctions and discuss how tricellular junctions participate in various biological processes.


Assuntos
Junções Aderentes/metabolismo , Desmossomos/metabolismo , Junções Íntimas/metabolismo , Junções Aderentes/química , Animais , Desmossomos/química , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Humanos , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/química
4.
Proc Natl Acad Sci U S A ; 116(43): 21545-21555, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591245

RESUMO

The cadherin-catenin adhesion complex is the central component of the cell-cell adhesion adherens junctions that transmit mechanical stress from cell to cell. We have determined the nanoscale structure of the adherens junction complex formed by the α-catenin•ß-catenin•epithelial cadherin cytoplasmic domain (ABE) using negative stain electron microscopy, small-angle X-ray scattering, and selective deuteration/small-angle neutron scattering. The ABE complex is highly pliable and displays a wide spectrum of flexible structures that are facilitated by protein-domain motions in α- and ß-catenin. Moreover, the 107-residue intrinsically disordered N-terminal segment of ß-catenin forms a flexible "tongue" that is inserted into α-catenin and participates in the assembly of the ABE complex. The unanticipated ensemble of flexible conformations of the ABE complex suggests a dynamic mechanism for sensitivity and reversibility when transducing mechanical signals, in addition to the catch/slip bond behavior displayed by the ABE complex under mechanical tension. Our results provide mechanistic insight into the structural dynamics for the cadherin-catenin adhesion complex in mechanotransduction.


Assuntos
Caderinas/química , Caderinas/metabolismo , Mecanotransdução Celular , alfa Catenina/química , alfa Catenina/metabolismo , beta Catenina/química , beta Catenina/metabolismo , Junções Aderentes/química , Junções Aderentes/genética , Junções Aderentes/metabolismo , Motivos de Aminoácidos , Caderinas/genética , Humanos , Conformação Molecular , Ligação Proteica , Domínios Proteicos , Espalhamento a Baixo Ângulo , alfa Catenina/genética , beta Catenina/genética
5.
Biomolecules ; 9(10)2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652629

RESUMO

Adherens junctions, consisting of cadherins and catenins, are a group of cell-to-cell junctions that mediate mechanistic linkage between neighboring cells. By doing so, adherens junctions ensure direct intercellular contact and play an indispensable role in maintaining tissue architecture. Considering these critical functions, it is not surprising that adherens junctions are frequently involved in disease. In the present study, the effects of bile duct ligation-a surgical procedure to experimentally induce cholestatic and fibrotic liver pathology-on hepatic adherens junctions were investigated in mice. In essence, it was found that liver mRNA and protein levels of E-cadherin, ß-catenin and γ-catenin drastically increase following bile duct ligation. These results could suggest a cytoprotective role for hepatic adherens junctions following bile duct ligation.


Assuntos
Junções Aderentes/química , Junções Aderentes/metabolismo , Ductos Biliares/cirurgia , Colestase/metabolismo , Colestase/cirurgia , Cirrose Hepática/metabolismo , Cirrose Hepática/cirurgia , Fígado/metabolismo , Animais , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Heart Fail Rev ; 24(1): 115-132, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30288656

RESUMO

Intercalated discs (ICDs) are highly orchestrated structures that connect neighboring cardiomyocytes in the heart. Three major complexes are distinguished in ICD: desmosome, adherens junction (AJ), and gap junction (GJ). Desmosomes are major cell adhesion junctions that anchor cell membrane to the intermediate filament network; AJs connect the actin cytoskeleton of adjacent cells; and gap junctions metabolically and electrically connect the cytoplasm of adjacent cardiomyocytes. All these complexes work as a single unit, the so-called area composita, interdependently rather than individually. Mutation or altered expression of ICD proteins results in various cardiac diseases, such as ARVC (arrhythmogenic right ventricular cardiomyopathy), dilated cardiomyopathy, and hypotrophy cardiomyopathy, eventually leading to heart failure. In this article, we first review the recent findings on the structural organization of ICD and their functions and then focus on the recent advances in molecular pathogenesis of the ICD-related heart diseases, which include two major areas: i) the ICD gene mutations in cardiac diseases, and ii) the involvement of ICD proteins in signal transduction pathways leading to myocardium remodeling and eventual heart failure. These major ICD-related signaling pathways include Wnt/ß-catenin pathway, p38 MAPK cascade, Rho-dependent serum response factor (SRF) signaling, calcineurin/NFAT signaling, Hippo kinase cascade, etc., which are differentially regulated in pathological conditions.


Assuntos
Junções Aderentes/metabolismo , Adesão Celular , Desmossomos/metabolismo , Junções Comunicantes/metabolismo , Cardiopatias/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Junções Aderentes/química , Junções Aderentes/genética , Animais , Desmossomos/química , Desmossomos/genética , Junções Comunicantes/química , Junções Comunicantes/genética , Cardiopatias/genética , Humanos , Mutação de Sentido Incorreto , Transdução de Sinais
7.
J Cell Sci ; 131(7)2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29507118

RESUMO

The apical junctional complex (AJC), which includes tight junctions (TJs) and adherens junctions (AJs), determines the epithelial polarity, cell-cell adhesion and permeability barrier. An intriguing characteristic of a TJ is the dynamic nature of its multiprotein complex. Occludin is the most mobile TJ protein, but its significance in TJ dynamics is poorly understood. On the basis of phosphorylation sites, we distinguished a sequence in the C-terminal domain of occludin as a regulatory motif (ORM). Deletion of ORM and expression of a deletion mutant of occludin in renal and intestinal epithelia reduced the mobility of occludin at the TJs. ORM deletion attenuated Ca2+ depletion, osmotic stress and hydrogen peroxide-induced disruption of TJs, AJs and the cytoskeleton. The double point mutations T403A/T404A, but not T403D/T404D, in occludin mimicked the effects of ORM deletion on occludin mobility and AJC disruption by Ca2+ depletion. Both Y398A/Y402A and Y398D/Y402D double point mutations partially blocked AJC disruption. Expression of a deletion mutant of occludin attenuated collective cell migration in the renal and intestinal epithelia. Overall, this study reveals the role of ORM and its phosphorylation in occludin mobility, AJC dynamics and epithelial cell migration.


Assuntos
Junções Aderentes/química , Ocludina/química , Fosfoproteínas/química , Junções Íntimas/química , Junções Aderentes/genética , Animais , Cálcio/metabolismo , Movimento Celular/genética , Polaridade Celular/genética , Citoesqueleto/química , Citoesqueleto/genética , Cães , Células Epiteliais/química , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Junções Intercelulares/química , Junções Intercelulares/genética , Células Madin Darby de Rim Canino , Ocludina/genética , Fosfoproteínas/genética , Fosforilação/genética , Mutação Puntual/genética , Domínios Proteicos/genética , Junções Íntimas/genética
8.
Sci Rep ; 7(1): 16778, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196707

RESUMO

The Crumbs (Crb) complex is a key epithelial determinant. To understand its role in morphogenesis, we examined its function in the Drosophila pupal wing, an epithelium undergoing hexagonal packing and formation of planar-oriented hairs. Crb distribution is dynamic, being stabilized to the subapical region just before hair formation. Lack of crb or stardust, but not DPatj, affects hexagonal packing and delays hair formation, without impairing epithelial polarities but with increased fluctuations in cell junctions and perimeter length, fragmentation of adherens junctions and the actomyosin cytoskeleton. Crb interacts with Moesin and Yurt, FERM proteins regulating the actomyosin network. We found that Moesin and Yurt distribution at the subapical region depends on Crb. In contrast to previous reports, yurt, but not moesin, mutants phenocopy crb junctional defects. Moreover, while unaffected in crb mutants, cell perimeter increases in yurt mutant cells and decreases in the absence of moesin function. Our data suggest that Crb coordinates proper hexagonal packing and hair formation, by modulating junction integrity via Yurt and stabilizing cell perimeter via both Yurt and Moesin. The Drosophila pupal wing thus appears as a useful system to investigate the functional diversification of the Crb complex during morphogenesis, independently of its role in polarity.


Assuntos
Junções Aderentes/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Asas de Animais/crescimento & desenvolvimento , Actomiosina/química , Junções Aderentes/metabolismo , Animais , Caderinas/química , Polaridade Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Morfogênese , Mutação , Estabilidade Proteica , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Distribuição Tecidual , Asas de Animais/metabolismo
9.
J Med Invest ; 64(1.2): 14-19, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28373611

RESUMO

The adherens junction (AJ) is a cadherin-based and actin filament associated cell-to-cell junction. AJs can contribute to tissue morphogenesis and homeostasis and their association with actin filaments is crucial for the functions. There are three types of AJs in terms of the mode of actin filament/AJ association. Among many actin-binding proteins associated with AJs, α-catenin is one of the most important actin filament/AJ linkers that functions in all types of AJs. Although α-catenin in cadherin-catenin complex appears to bind to actin filaments within cells, it fails to bind to actin filaments in vitro mysteriously. Recent report revealed that α-catenin in the complex can bind to actin filaments in vitro when forces are applied to the filament. In addition to force-sensitive vinculin binding, α-catenin has another force-sensitive property of actin filament-binding. Elucidation of its significance and the molecular mechanism is indispensable for understanding AJ formation and maintenance during tissue morphogenesis, function and repair. J. Med. Invest. 64: 14-19, February, 2017.


Assuntos
Citoesqueleto de Actina/metabolismo , Junções Aderentes/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestrutura , Actinas/química , Actinas/metabolismo , Junções Aderentes/química , Junções Aderentes/ultraestrutura , Animais , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , alfa Catenina/química , alfa Catenina/metabolismo
10.
PLoS Comput Biol ; 13(3): e1005411, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28273072

RESUMO

Mechanical coherence of cell layers is essential for epithelia to function as tissue barriers and to control active tissue dynamics during morphogenesis. RhoA signaling at adherens junctions plays a key role in this process by coupling cadherin-based cell-cell adhesion together with actomyosin contractility. Here we propose and analyze a mathematical model representing core interactions involved in the spatial localization of junctional RhoA signaling. We demonstrate how the interplay between biochemical signaling through positive feedback, combined with diffusion on the cell membrane and mechanical forces generated in the cortex, can determine the spatial distribution of RhoA signaling at cell-cell junctions. This dynamical mechanism relies on the balance between a propagating bistable signal that is opposed by an advective flow generated by an actomyosin stress gradient. Experimental observations on the behavior of the system when contractility is inhibited are in qualitative agreement with the predictions of the model.


Assuntos
Actomiosina/fisiologia , Junções Aderentes/fisiologia , Células Epiteliais/fisiologia , Mecanotransdução Celular/fisiologia , Contração Muscular/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Actomiosina/química , Junções Aderentes/química , Animais , Simulação por Computador , Células Epiteliais/química , Humanos , Modelos Biológicos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/fisiologia , Estresse Mecânico , Proteína rhoA de Ligação ao GTP/química
11.
J Proteomics ; 151: 66-73, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27457269

RESUMO

The main bottleneck in studies aiming to identify novel biomarkers in acute kidney injury (AKI) has been the identification of markers that are organ and process specific. Here, we have used different tissues from a controlled porcine renal ischemia/reperfusion (I/R) model to identify new, predominantly renal biomarker candidates for kidney disease. Urine and serum samples were analyzed in pre-ischemia, ischemia (60min) and 4, 11 and 16h post-reperfusion, and renal cortex samples after 24h of reperfusion. Peptides were analyzed on the Q-Exactive™. In renal cortex proteome, we observed an increase in the synthesis of proteins in the ischemic kidney compared to the contralateral, highlighted by transcription factors and epithelial adherens junction proteins. Intersecting the set of proteins up- or down-regulated in the ischemic tissue with both serum and urine proteomes, we identified 6 proteins in the serum that may provide a set of targets for kidney injury. Additionally, we identified 49, being 4 predominantly renal, proteins in urine. As prove of concept, we validated one of the identified biomarkers, dipeptidyl peptidase IV, in a set of patients with diabetic nephropathy. In conclusion, we identified 55 systemic proteins, some of them predominantly renal, candidates for biomarkers of renal disease. BIOLOGICAL SIGNIFICANCE: The main bottleneck in studies aiming to identify novel biomarkers in acute kidney injury (AKI) has been the identification of markers that are predominantly renal. In fact, putative biomarkers for this condition have also been identified in a number of other clinical scenarios, such as cardiovascular diseases, chronic kidney failure or in patients being treated in intensive care units from a number of conditions. Here we propose a comprehensive, sequential screening procedure able to identify and validate potential biomarkers for kidney disease, using kidney ischemia/reperfusion as a paradigm for a kidney pathological event.


Assuntos
Injúria Renal Aguda/diagnóstico , Proteoma/análise , Injúria Renal Aguda/sangue , Junções Aderentes/química , Animais , Biomarcadores/sangue , Regulação da Expressão Gênica , Córtex Renal/química , Proteínas/análise , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/diagnóstico , Suínos , Fatores de Transcrição
12.
Sci Rep ; 6: 28822, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27357130

RESUMO

Quantifying multi-molecular complex assembly in specific cytoplasmic compartments is crucial to understand how cells use assembly/disassembly of these complexes to control function. Currently, biophysical methods like Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy provide quantitative measurements of direct protein-protein interactions, while traditional biochemical approaches such as sub-cellular fractionation and immunoprecipitation remain the main approaches used to study multi-protein complex assembly/disassembly dynamics. In this article, we validate and quantify multi-protein adherens junction complex assembly in situ using light microscopy and Fluorescence Covariance Analysis. Utilizing specific fluorescently-labeled protein pairs, we quantified various stages of adherens junction complex assembly, the multiprotein complex regulating epithelial tissue structure and function following de novo cell-cell contact. We demonstrate: minimal cadherin-catenin complex assembly in the perinuclear cytoplasm and subsequent localization to the cell-cell contact zone, assembly of adherens junction complexes, acto-myosin tension-mediated anchoring, and adherens junction maturation following de novo cell-cell contact. Finally applying Fluorescence Covariance Analysis in live cells expressing fluorescently tagged adherens junction complex proteins, we also quantified adherens junction complex assembly dynamics during epithelial monolayer formation.


Assuntos
Caderinas/metabolismo , Mecanotransdução Celular/fisiologia , beta Catenina/metabolismo , Junções Aderentes/química , Junções Aderentes/metabolismo , Análise de Variância , Animais , Caderinas/análise , Cálcio/metabolismo , Citoplasma/metabolismo , Cães , Transferência Ressonante de Energia de Fluorescência , Técnica Indireta de Fluorescência para Anticorpo , Processamento de Imagem Assistida por Computador , Células Madin Darby de Rim Canino , Microscopia de Fluorescência , Miosinas/metabolismo
13.
J Histochem Cytochem ; 64(1): 67-76, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26416242

RESUMO

Nephrin, a major intercellular junction (ICJ) molecule of mammalian podocytes in the renal glomerulus, is absent in the avian genome. We hypothesized that birds use ICJ molecules other than nephrin in their podocytes. Therefore, in the present study, we examined the possible involvement of adherens junction (AJ) proteins in the ICJs of avian podocytes. We found the AJ proteins N-cadherin and α- and ß-catenins in podocytes of quail and chickens but not in those of rats, pigs or humans. The AJ proteins were prominent in avian glomerulus-rich fractions in immunoblot analyses, and in immunofluorescence microscopy analyses, they were localized along glomerular capillary walls appearing in at least two staining patterns: weakly diffuse and distinctly granular. Immunoelectron microscopy demonstrated that the significant accumulation of immunogold particles for the AJ proteins were especially evident in avian slit diaphragms and AJs. Furthermore, N-cadherin was found to be expressed in all nephron cells in the early developmental stage but became confined to podocytes during maturation. These results indicate that avian slit diaphragms clearly express AJ proteins as compared with that in the mammal-where AJ proteins are suppressed to an extremely low level-and that avian podocytes are interconnected by AJs per se in addition to slit diaphragms.


Assuntos
Junções Aderentes/química , Junções Aderentes/metabolismo , Proteínas de Membrana/deficiência , Podócitos/química , Podócitos/metabolismo , Animais , Caderinas/metabolismo , Cateninas/metabolismo , Galinhas , Coturnix , Feminino , Humanos , Ratos , Ratos Wistar , Suínos
14.
Eur J Cardiothorac Surg ; 49(3): 937-43, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26069241

RESUMO

OBJECTIVES: Previous animal studies have demonstrated that endothelial adherens-junction molecules are significantly altered in animal myocardium and microvasculature after cardioplegia and cardiopulmonary bypass (CP/CPB). We investigated the effects of diabetes on expression/phosphorylation/localization of vascular endothelial (VE)-cadherin, ß- and γ-catenin in human atrial myocardium and coronary vasculature in the setting of CP/CPB. METHODS: Right atrial tissue was harvested pre- and post-CP/CPB from non-diabetic (ND) [haemoglobin A1c (HbA1c): 5.4 ± 0.15], controlled (CDM) (HbA1c: 6.3 ± 0.14) and uncontrolled diabetic (UDM) (HbA1c: 9.9 ± 0.72) patients (n = 10/group). Expression/phosphorylation/localization of VE-cadherin, ß- and γ-catenin were assessed by immunoblotting, immunoprecipitation and immunohistochemistry. In vitro atrial microvascular reactivity was assessed by videomicroscopy in response to the endothelium-dependent vasodilator adenosine 5'-diphosphate (ADP). RESULTS: There were no significant differences in VE-cadherin protein expression between pre- and post-CP/CPB among groups. There were significant decreases in VE-cadherin densities in vessels of the UDM group versus the ND group at baseline or post-CP/CPB, respectively (P < 0.05). The level of basal phosphorylated VE-cadherin tends to be higher in the UDM compared with the ND group (P < 0.05). CP/CPB induced more phosphorylation of VE-cadherin in all groups (versus pre-CP/CPB; P < 0.05, respectively) and this effect was more pronounced in the UDM group (P < 0.05 versus ND or CDM). The protein levels of both catenins (ß and γ) were lower in post-CP/CPB in UDM than ND patients (P < 0.05). There were significant decreases in vasodilatory response to endothelial-dependent vasodilator ADP after CP/CPB (P < 0.05). This alteration was more pronounced in UDM patients (P < 0.05). CONCLUSIONS: These data suggest that poorly controlled diabetes down-regulates endothelial adherens-junction protein activation/expression/localization in the setting of CP/CPB. The increased tyrosine phosphorylation and deterioration of VE-cadherin indicate the damage of the cell-cell endothelial junctions in the diabetic vessels undergoing CP/CPB and cardiac surgery. These alterations may lead to increase in vascular permeability and endothelial dysfunction and affect outcomes in diabetic patients after cardiac surgery.


Assuntos
Junções Aderentes/metabolismo , Diabetes Mellitus/metabolismo , Parada Cardíaca Induzida/efeitos adversos , Junções Aderentes/química , Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar , Diabetes Mellitus/epidemiologia , Endotélio Vascular/química , Endotélio Vascular/metabolismo , Feminino , Parada Cardíaca Induzida/estatística & dados numéricos , Humanos , Masculino , Fosforilação , gama Catenina/metabolismo
15.
Cardiovasc Pathol ; 24(6): 359-67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26345253

RESUMO

AIMS: Dysregulation of the transforming growth factor beta (TGF-ß) 1 pathway has been associated with either syndromic or isolated mitral valve (MV) prolapse due to myxoid degeneration (floppy MV). The activation of Smad receptor-mediated intracellular TGF-ß pathway and its effect on adherens junction (AJ) molecular pattern of activated valvular interstitial cells (VICs) in MV prolapse are herein investigated. METHODS: Floppy MV leaflets were obtained from 30 patients (24 males, mean age 55.5±12.7 years) who underwent surgical repair, and 10 age- and sex-matched Homograft Tissue Bank samples served as controls. MV leaflet cellular and extracellular matrix composition, including collagen I and III, was evaluated by histology and transmission electron microscopy. Smad2 active phosphorylated form (p-Smad2), α-smooth muscle actin (α-SMA), and junctional proteins (N-cadherin, cadherin-11, ß-catenin, plakoglobin, plakophilin-2) in VICs were assessed by immunohistochemistry and immunofluorescence and confirmed by immunoblotting. Quantitative real-time polymerase chain reaction was carried out for components of TGF-ß pathway cascade and filamin A (FLN-A). RESULTS: Floppy MV leaflets were thicker (P<.001) and had higher α-SMA+ cell density (P=.002) and collagen III expression (P<.001) than controls. Enhanced p-Smad2 nuclear immunoreactivity (P<.001) and TGF-ß1 gene (P=.045), TIMP1 (P=.020), and CTGF (P=.047) expression but no differences in FLN-A and total Smad2 gene expression levels were found between floppy MV and controls. Higher expression of cadherin-11, either exclusively or in colocalization with N-cadherin, and aberrant presence of plakophilin-2 at the AJ were found in floppy MV vs. CONCLUSIONS: TGF-ß1 pathway activation in nonsyndromic MV prolapse induces VICs differentiation into contractile myofibroblasts and is associated with changes in the molecular pattern of the AJ, with increased cadherin-11 and aberrant plakophilin-2 expression. AJ reinforcement might promote latent TGF-ß1 activation leading to extracellular matrix remodeling in floppy MV.


Assuntos
Junções Aderentes/química , Prolapso da Valva Mitral/metabolismo , Valva Mitral/química , Miofibroblastos/química , Fator de Crescimento Transformador beta1/análise , Actinas/análise , Junções Aderentes/ultraestrutura , Adulto , Idoso , Caderinas/análise , Estudos de Casos e Controles , Transdiferenciação Celular , Colágeno Tipo I/análise , Colágeno Tipo III/análise , Desmoplaquinas/análise , Matriz Extracelular/química , Feminino , Filaminas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Valva Mitral/cirurgia , Valva Mitral/ultraestrutura , Prolapso da Valva Mitral/genética , Prolapso da Valva Mitral/patologia , Prolapso da Valva Mitral/cirurgia , Miofibroblastos/ultraestrutura , Fenótipo , Fosforilação , Placofilinas/análise , Transdução de Sinais , Proteína Smad2/análise , Fator de Crescimento Transformador beta1/genética , beta Catenina/análise , gama Catenina
16.
Proc Natl Acad Sci U S A ; 112(17): 5395-400, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25855637

RESUMO

Desmosomes and adherens junctions are intercellular adhesive structures essential for the development and integrity of vertebrate tissue, including the epidermis and heart. Their cell adhesion molecules are cadherins: type 1 cadherins in adherens junctions and desmosomal cadherins in desmosomes. A fundamental difference is that desmosomes have a highly ordered structure in their extracellular region and exhibit calcium-independent hyperadhesion, whereas adherens junctions appear to lack such ordered arrays, and their adhesion is always calcium-dependent. We present here the structure of the entire ectodomain of desmosomal cadherin desmoglein 2 (Dsg2), using a combination of small-angle X-ray scattering, electron microscopy, and solution-based biophysical techniques. This structure reveals that the ectodomain of Dsg2 is flexible even in the calcium-bound state and, on average, is shorter than the type 1 cadherin crystal structures. The Dsg2 structure has an excellent fit with the electron tomography reconstructions of human desmosomes. This fit suggests an arrangement in which desmosomal cadherins form trans interactions but are too far apart to interact in cis, in agreement with previously reported observations. Cadherin flexibility may be key to explaining the plasticity of desmosomes that maintain tissue integrity in their hyperadhesive form, but can adopt a weaker, calcium-dependent adhesion during wound healing and early development.


Assuntos
Junções Aderentes/química , Desmogleína 2/química , Desmossomos/química , Junções Aderentes/genética , Junções Aderentes/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Cristalografia por Raios X , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmossomos/genética , Desmossomos/metabolismo , Humanos , Estrutura Terciária de Proteína
17.
Nature ; 518(7538): 245-8, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25607361

RESUMO

Epithelium folding is a basic morphogenetic event that is essential in transforming simple two-dimensional epithelial sheets into three-dimensional structures in both vertebrates and invertebrates. Folding has been shown to rely on apical constriction. The resulting cell-shape changes depend either on adherens junction basal shift or on a redistribution of myosin II, which could be driven by mechanical signals. Yet the initial cellular mechanisms that trigger and coordinate cell remodelling remain largely unknown. Here we unravel the active role of apoptotic cells in initiating morphogenesis, thus revealing a novel mechanism of epithelium folding. We show that, in a live developing tissue, apoptotic cells exert a transient pulling force upon the apical surface of the epithelium through a highly dynamic apico-basal myosin II cable. The apoptotic cells then induce a non-autonomous increase in tissue tension together with cortical myosin II apical stabilization in the surrounding tissue, eventually resulting in epithelium folding. Together our results, supported by a theoretical biophysical three-dimensional model, identify an apoptotic myosin-II-dependent signal as the initial signal leading to cell reorganization and tissue folding. This work further reveals that, far from being passively eliminated as generally assumed (for example, during digit individualization), apoptotic cells actively influence their surroundings and trigger tissue remodelling through regulation of tissue tension.


Assuntos
Apoptose , Polaridade Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Células Epiteliais/citologia , Epitélio/embriologia , Morfogênese , Junções Aderentes/química , Junções Aderentes/metabolismo , Animais , Forma Celular , Células Epiteliais/metabolismo , Modelos Biológicos , Miosina Tipo II/metabolismo
18.
Cell Tissue Res ; 360(3): 749-60, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25238996

RESUMO

The epithelial monolayer of the intestine is a selective barrier permitting nutrient and electrolyte absorption yet acting to protect the underlying tissue compartments and cellular components from attack and infiltration by antigens, bacteria and bacterial products present in the lumen. Disruption of this barrier has been associated with inflammatory bowel disease (IBD). The adherens junction (AJ), together with tight junctions (TJ) and desmosomes, form an apical junction complex that controls epithelial cell-to-cell adherence and barrier function as well as regulation of the actin cytoskeleton, intracellular signalling pathways and transcriptional regulation. Numerous studies and reviews highlight the responses of TJs to physiological and pathological stimuli. By comparison, the response of AJ proteins, and the subsequent consequences for barrier function, when exposed to the IBD inflammatory milieu, is less well studied. In this review, we will highlight the roles and responses of the AJ proteins in IBD and provide suggestions for future studies. We will also consider recently proposed therapeutic strategies to preserve or restore epithelial barrier functions to prevent and treat IBD.


Assuntos
Junções Aderentes/metabolismo , Caderinas/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , beta Catenina/metabolismo , Junções Aderentes/química , Animais , Epitélio/patologia , Humanos , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/terapia
19.
Elife ; 3: e03282, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25479385

RESUMO

Force transduction at cell­cell adhesions regulates tissue development, maintenance and adaptation. We developed computational and experimental approaches to quantify, with both sub-cellular and multi-cellular resolution, the dynamics of force transmission in cell clusters. Applying this technology to spontaneously-forming adherent epithelial cell clusters, we found that basal force fluctuations were coupled to E-cadherin localization at the level of individual cell­cell junctions. At the multi-cellular scale, cell­cell force exchange depended on the cell position within a cluster, and was adaptive to reconfigurations due to cell divisions or positional rearrangements. Importantly, force transmission through a cell required coordinated modulation of cell-matrix adhesion and actomyosin contractility in the cell and its neighbors. These data provide insights into mechanisms that could control mechanical stress homeostasis in dynamic epithelial tissues, and highlight our methods as a resource for the study of mechanotransduction in cell­cell adhesions [corrected].


Assuntos
Junções Aderentes/metabolismo , Junções Célula-Matriz/metabolismo , Células Epiteliais/metabolismo , Mecanotransdução Celular/fisiologia , Actomiosina/genética , Actomiosina/metabolismo , Junções Aderentes/química , Junções Aderentes/ultraestrutura , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Comunicação Celular/fisiologia , Divisão Celular/fisiologia , Linhagem Celular Tumoral , Junções Célula-Matriz/química , Junções Célula-Matriz/ultraestrutura , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Expressão Gênica , Humanos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA