Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11071, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745036

RESUMO

The southern coast of Africa is one of the few places in the world where water temperatures are predicted to cool in the future. This endemism-rich coastline is home to two sister species of kelps of the genus Ecklonia maxima and Ecklonia radiata, each associated with specific thermal niches, and occuring primarily on opposite sides of the southern tip of Africa. Historical distribution records indicate that E. maxima has recently shifted its distribution ~ 70 km eastward, to sites where only E. radiata was previously reported. The contact of sister species with contrasting thermal affinities and the occurrence of mixed morphologies raised the hypothesis that hybridization might be occurring in this contact zone. Here we describe the genetic structure of the genus Ecklonia along the southern coast of Africa and investigate potential hybridization and cryptic diversity using a combination of nuclear microsatellites and mitochondrial markers. We found that both species have geographically discrete genetic clusters, consistent with expected phylogeographic breaks along this coastline. In addition, depth-isolated populations were found to harbor unique genetic diversity, including a third Ecklonia lineage. Mito-nuclear discordance and high genetic divergence in the contact zones suggest multiple hybridization events between Ecklonia species. Discordance between morphological and molecular identification suggests the potential influence of abiotic factors leading to convergent phenotypes in the contact zones. Our results highlight an example of cryptic diversity and hybridization driven by contact between two closely related keystone species with contrasting thermal affinities.


Assuntos
Variação Genética , Kelp , Filogenia , Kelp/genética , Kelp/classificação , Filogeografia , Repetições de Microssatélites/genética , Hibridização Genética , DNA Mitocondrial/genética , África Austral
2.
Environ Microbiol Rep ; 16(3): e13270, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778582

RESUMO

In coastal marine ecosystems, kelp forests serve as a vital habitat for numerous species and significantly influence local nutrient cycles. Bull kelp, or Nereocystis luetkeana, is a foundational species in the iconic kelp forests of the northeast Pacific Ocean and harbours a complex microbial community with potential implications for kelp health. Here, we report the isolation and functional characterisation of 16 Nereocystis-associated bacterial species, comprising 13 Gammaproteobacteria, 2 Flavobacteriia and 1 Actinomycetia. Genome analyses of these isolates highlight metabolisms potentially beneficial to the host, such as B vitamin synthesis and nitrogen retention. Assays revealed that kelp-associated bacteria thrive on amino acids found in high concentrations in the ocean and in the kelp (glutamine and asparagine), generating ammonium that may facilitate host nitrogen acquisition. Multiple isolates have genes indicative of interactions with key elemental cycles in the ocean, including carbon, nitrogen and sulphur. We thus report a collection of kelp-associated microbial isolates that provide functional insight for the future study of kelp-microbe interactions.


Assuntos
Ecossistema , Kelp , Sequenciamento Completo do Genoma , Kelp/microbiologia , Kelp/metabolismo , Kelp/genética , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Nitrogênio/metabolismo , Genoma Bacteriano , Oceano Pacífico , Filogenia , Gammaproteobacteria/genética , Gammaproteobacteria/classificação , Gammaproteobacteria/metabolismo , Gammaproteobacteria/isolamento & purificação , Água do Mar/microbiologia , Carbono/metabolismo
3.
PLoS One ; 19(4): e0301004, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635529

RESUMO

The genetic identification of evolutionary significant units and information on their connectivity can be used to design effective management and conservation plans for species of concern. Despite having high dispersal capacity, several seabird species show population structure due to both abiotic and biotic barriers to gene flow. The Kelp Gull is the most abundant species of gull in the southern hemisphere. In Argentina it reproduces in both marine and freshwater environments, with more than 100,000 breeding pairs following a metapopulation dynamic across 140 colonies in the Atlantic coast of Patagonia. However, little is known about the demography and connectivity of inland populations. We aim to provide information on the connectivity of the largest freshwater colonies (those from Nahuel Huapi Lake) with the closest Pacific and Atlantic populations to evaluate if these freshwater colonies are receiving immigrants from the larger coastal populations. We sampled three geographic regions (Nahuel Huapi Lake and the Atlantic and Pacific coasts) and employed a reduced-representation genomic approach to genotype individuals for single-nucleotide polymorphisms (SNPs). Using clustering and phylogenetic analyses we found three genetic groups, each corresponding to one of our sampled regions. Individuals from marine environments are more closely related to each other than to those from Nahuel Huapi Lake, indicating that the latter population constitutes the first freshwater Kelp Gull colony to be identified as an evolutionary significant unit in Patagonia.


Assuntos
Charadriiformes , Kelp , Humanos , Animais , Filogenia , Charadriiformes/genética , Argentina , Lagos , Kelp/genética
4.
Ann Bot ; 133(1): 183-212, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38109285

RESUMO

BACKGROUND: The sugar kelp Saccharina latissima is a Laminariales species widely distributed in the Northern Hemisphere. Its physiology and ecology have been studied since the 1960s, given its ecological relevance on western temperate coasts. However, research interest has been rising recently, driven mainly by reports of negative impacts of anthropogenically induced environmental change and by the increased commercial interest in cultivating the species, with several industrial applications for the resulting biomass. SCOPE: We used a variety of sources published between 2009 to May 2023 (but including some earlier literature where required), to provide a comprehensive review of the ecology, physiology, biochemical and molecular biology of S. latissima. In so doing we aimed to better understand the species' response to stressors in natural communities, but also inform the sustainable cultivation of the species. CONCLUSION: Due to its wide distribution, S. latissima has developed a variety of physiological and biochemical mechanisms to adjust to environmental changes, including adjustments in photosynthetic parameters, modulation of osmolytes and antioxidants, reprogramming of gene expression and epigenetic modifications, among others summarized in this review. This is particularly important because massive changes in the abundance and distribution of S. latissima have already been observed. Namely, presence and abundance of S. latissima has significantly decreased at the rear edges on both sides of the Atlantic, and increased in abundance at the polar regions. These changes were mainly caused by climate change and will therefore be increasingly evident in the future. Recent developments in genomics, transcriptomics and epigenomics have clarified the existence of genetic differentiation along its distributional range with implications in the fitness at some locations. The complex biotic and abiotic interactions unraveled here demonstrated the cascading effects the disappearance of a kelp forest can have in a marine ecosystem. We show how S. latissima is an excellent model to study acclimation and adaptation to environmental variability and how to predict future distribution and persistence under climate change.


Assuntos
Algas Comestíveis , Kelp , Laminaria , Kelp/genética , Ecossistema , Açúcares , Mudança Climática
5.
Sci Rep ; 13(1): 12046, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491385

RESUMO

The paradigm of past climate-driven range shifts structuring the distribution of marine intraspecific biodiversity lacks replication in biological models exposed to comparable limiting conditions in independent regions. This may lead to confounding effects unlinked to climate drivers. We aim to fill in this gap by asking whether the global distribution of intraspecific biodiversity of giant kelp (Macrocystis pyrifera) is explained by past climate changes occurring across the two hemispheres. We compared the species' population genetic diversity and structure inferred with microsatellite markers, with range shifts and long-term refugial regions predicted with species distribution modelling (SDM) from the last glacial maximum (LGM) to the present. The broad antitropical distribution of Macrocystis pyrifera is composed by six significantly differentiated genetic groups, for which current genetic diversity levels match the expectations of past climate changes. Range shifts from the LGM to the present structured low latitude refugial regions where genetic relics with higher and unique diversity were found (particularly in the Channel Islands of California and in Peru), while post-glacial expansions following ~ 40% range contraction explained extensive regions with homogenous reduced diversity. The estimated effect of past climate-driven range shifts was comparable between hemispheres, largely demonstrating that the distribution of intraspecific marine biodiversity can be structured by comparable evolutionary forces across the global ocean. Additionally, the differentiation and endemicity of regional genetic groups, confers high conservation value to these localized intraspecific biodiversity hotspots of giant kelp forests.


Assuntos
Kelp , Macrocystis , Macrocystis/genética , Ecossistema , Biodiversidade , Florestas , Mudança Climática , Kelp/genética
6.
Mol Ecol ; 32(16): 4584-4598, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37332135

RESUMO

A fundamental question in holobiont biology is the extent to which microbiomes are determined by host characteristics regulated by their genotype. Studies on the interactions of host genotype and microbiomes are emerging but disentangling the role that host genotype has in shaping microbiomes remains challenging in natural settings. Host genotypes tend to be segregated in space and affected by different environments. Here we overcome this challenge by studying an unusual situation where host asexual (5 clonal lineages) and sexual genotypes (15 non-clonal lineages) of the same species co-occur under the same environment. This allowed us to partition the influence of morphological traits and genotype in shaping host-associated bacterial communities. Lamina-associated bacteria of co-occurring kelp sexual non-clonal (Ecklonia radiata) and asexual clonal (E. brevipes) morphs were compared to test whether host genotype influences microbiomes beyond morphology. Similarity of bacterial composition and predicted functions were evaluated among individuals within a single clonal genotype or among non-clonal genotypes of each morph. Higher similarity in bacterial composition and inferred functions were found among identical clones of E. brevipes compared to other clonal genotypes or unique non-clonal E. radiata genotypes. Additionally, bacterial diversity and composition differed significantly between the two morphs and were related with one morphological trait in E. brevipes (haptera). Thus, factors regulated by the host genotype (e.g. secondary metabolite production) likely drive differences in microbial communities between morphs. The strong association of genotype and microbiome found here highlights the importance of genetic relatedness of hosts in determining variability in their bacterial symbionts.


Assuntos
Kelp , Microbiota , Humanos , Kelp/genética , Microbiota/genética , Genótipo
7.
J R Soc Interface ; 20(202): 20230105, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37194268

RESUMO

Detached buoyant kelp can disperse thousands of kilometres at sea and can colonize newly available shores in the wake of disturbances that wipe out competitors. Localized earthquake uplift can cause extirpation of intertidal kelp populations followed by recolonization. Sources of recolonizing kelp can be detectable in genomic structure of contemporary populations. Our field observations combined with LiDAR mapping identified a previously unrecognized zone of uplifted rocky coastline in a region that is slowly subsiding. Intertidal kelp (Durvillaea antarctica) on the uplifted section of coast is genetically distinctive from nearby populations, with genomic signatures most similar to that of kelp 300 km to the south. Genetic divergence between these locations suggests reproductive isolation for thousands of years. Combined geological and genetic data suggest that this uplift event occurred during one of four major earthquakes between 6000 and 2000 years ago, with one of the younger events most likely. Extirpation of the pre-existing kelp required sudden uplift of approximately 2 metres, precluding several small incremental uplift events. Our results show the power of integrating biological (genomic) analyses with geological data to understand ancient geological processes and their ecological impacts.


Assuntos
Terremotos , Kelp , Kelp/genética , Genômica , Ecossistema
8.
mSystems ; 8(2): e0000223, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-36794972

RESUMO

As an important carbon sink, seaweed cultivation plays a vital role in controlling global climate change. However, most studies have been focused on the seaweed itself, and knowledge of bacterioplankton dynamics in seaweed cultivation activities is still limited. Here, a total of 80 water samples were obtained from a coastal kelp cultivation area and adjacent non-culture area in the seedling and mature stages. The bacterioplankton communities were analyzed using high-throughput sequencing of bacterial 16S rRNA genes, and the microbial genes involving biogeochemical cycles were measured by a high-throughput quantitative PCR (qPCR) chip. Seasonal variations in alpha diversity indices of bacterioplankton were found, and kelp cultivation mitigated this decline in biodiversity from the seedling to the mature stage. Further beta diversity and core taxa analyses revealed that the maintenance of biodiversity was due to kelp cultivation favoring the survival of rare bacteria. Comparisons of gene abundances between coastal water with and without kelp cultivation showed a more powerful capacity of biogeochemical cycles induced by kelp cultivation. More importantly, a positive relationship between bacterial richness and biogeochemical cycling functions was observed in samples with kelp cultivation. Finally, a co-occurrence network and pathway model indicated that the higher bacterioplankton biodiversity in kelp culture areas compared to non-mariculture regions could balance the microbial interactions to regulate biogeochemical cycles and thus enhance the ecosystem functions of kelp cultivation coasts. The findings of this study allow us to better understand the effects of kelp cultivation on coastal ecosystems and provide novel insights into the relationship between biodiversity and ecosystem functions. IMPORTANCE In this study, we tried to address the effects of seaweed cultivation on the microbial biogeochemical cycles and the underlying relationships between biodiversity and ecosystem functions. We revealed clear enhancement of biogeochemical cycles in the seaweed cultivation areas compared to the non-mariculture coasts at both the beginning and ending of the culture cycle. Moreover, the enhanced biogeochemical cycling functions in the culture areas were found to contribute to the richness and interspecies interactions of bacterioplankton communities. The findings of this study allow us to better understand the effects of seaweed cultivation on coastal ecosystems and provide novel insights into the relationship between biodiversity and ecosystem functions.


Assuntos
Kelp , Alga Marinha , Ecossistema , Kelp/genética , RNA Ribossômico 16S/genética , Organismos Aquáticos , Bactérias/genética , Água/metabolismo
9.
J Hered ; 114(4): 404-409, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-36790952

RESUMO

The surfperches (family Embiotocidae) are a unique group of mostly marine fishes whose phylogenetic position within the Ovalentaria clade (Percomorpha) is still unresolved. As a result of their viviparity and lack of a dispersive larval stage, surfperches are an excellent model for the study of speciation, gene flow, and local adaptation in the ocean. They are also the target of an immensely popular recreational fishery. Very few high-quality molecular resources, however, are available for this group and only for a single species. Here, we describe a highly complete reference genome for the kelp surfperch, Brachyistius frenatus, assembled using a combination of short-read (Illumina, ~47× coverage) and long-read (Oxford Nanopore Technologies, ~27× coverage) sequencing. The 596 Mb assembly has a completeness level of 98.1% (BUSCO), a contig N50 of 2.6 Mb (n = 56), and a contig N90 of 406.6 kb (n = 293). Comparative analysis revealed a high level of synteny between B. frenatus and its close relative, Embiotoca jacksoni. This assembly will serve as a valuable molecular resource upon which future evolutionary dynamics research will build, such as the investigation of local adaptation and the genomic potential for climate adaptation in wild populations.


Assuntos
Kelp , Perciformes , Animais , Kelp/genética , Filogenia , Larva/genética , Genoma , Perciformes/genética , Peixes/genética
10.
Sci Rep ; 13(1): 1248, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690643

RESUMO

Climate change has driven contemporary decline and loss of kelp forests globally with an accompanying loss of their ecological and economic values. Kelp populations at equatorward-range edges are particularly vulnerable to climate change as these locations are undergoing warming at or beyond thermal tolerance thresholds. Concerningly, these range-edge populations may contain unique adaptive or evolutionary genetic diversity that is vulnerable to warming. We explore haplotype diversity by generating a Templeton-Crandall-Sing (TCS) network analysis of 119 Cytochrome C Oxidase (COI) sequences among four major population groupings for extant and putatively extinct populations only known from herbarium specimens of the dominant Laminarian kelp Ecklonia radiata in the south-western Pacific, a region warming at 2-4 times the global average. Six haplotypes occurred across the region with one being widespread across most populations. Three unique haplotypes were found in a deep-water range-edge population off Moreton Island, Queensland, which likely represents both a contemporary and historic refuge during periods of climatic change. Hindcasting E. radiata cover estimates using extant data, we reveal that this region likely supported the highest kelp cover in eastern Australia during the last glacial maximum. The equatorward range edge, deep-water kelp populations off Moreton Island represent a genetically diverse evolutionary refuge that is currently threatened by warming and requires prompt ex-situ conservation measures.


Assuntos
Kelp , Kelp/genética , Mudança Climática , Austrália , Refúgio de Vida Selvagem , Água , Ecossistema
11.
Mar Biotechnol (NY) ; 24(4): 706-721, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882688

RESUMO

Ploidy variants can be utilized to increase yield, introduce sterility, and modify specific traits with an economic impact. Despite economic importance of Saccharina species, their nuclear DNA content in different cell types and life stages remain unclear. The present research was initiated to determine the nuclear DNA content and intraindividual variation at different life cycle stages of the Laminarialean kelp Saccharina latissima. Nuclear DNA content in embryonic and mature sporophytes, released and unreleased zoospores, female, and male gametophytes from Sør-Trøndelag county in Norway were estimated by image analysis using the DNA-localizing fluorochrome DAPI and chicken's red blood cells as a standard. DNA content of a total of 6905 DAPI-stained nuclei was estimated. This is the first study of nuclear DNA content which covered the life cycle of kelp. The lowest level of DNA content (1C) was observed in zoospores with an average of 0.76 pg. Male and female single spore gametophyte cultures presented higher average DNA content, more than double that of zoospores, suggesting the presence of polyteny. Female gametophyte nuclei were slightly larger and more variable in size than those of male gametophytes. The DNA content observed in embryonic sporophytes and in meristoderm cells from older sporophytes (1.51 pg) was 2C as expected and in the range of previously published studies of sporophytes of S. latissima. Mature sporophytes showed intra-plant variation with DNA content values ranging from 2-16C. The main difference was between meristoderm cells (mostly 2C) and cortical and medullary cells (2-16C).


Assuntos
Kelp , Phaeophyceae , Animais , DNA/genética , Kelp/genética , Estágios do Ciclo de Vida/genética , Phaeophyceae/genética , Ploidias , Açúcares
12.
J Hered ; 113(6): 649-656, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35778264

RESUMO

Keystone species are known to play a critical role in kelp forest health, including the well-known killer whales, sea otter, sea urchin, kelp trophic cascade in the Aleutian Islands, Alaska, USA. In California, a major player in the regulation of sea urchin abundance, and in turn, the health of kelp forests ecosystems, is a large wrasse, the California Sheephead, Semicossyphus pulcher. We present a reference genome for this ecologically important species that will serve as a key resource for future conservation research of California's inshore marine environment utilizing genomic tools to address changes in life-history traits, dispersal, range shifts, and ecological interactions among members of the kelp forest ecological assemblages. Our genome assembly of S. pulcher has a total length of 0.794 Gb, which is similar to many other marine fishes. The assembly is largely contiguous (N50 = 31.9 Mb) and nearly complete (BUSCO single-copy core gene content = 98.1%). Within the context of the California Conservation Genomics Project (CCGP), the genome of S. pulcher will be used as an important reference resource for ongoing whole genome resequencing efforts of the species.


Assuntos
Kelp , Perciformes , Animais , Kelp/genética , Ecossistema , Cadeia Alimentar , Peixes/genética , Florestas , Ouriços-do-Mar/fisiologia , California
13.
mSystems ; 7(3): e0142221, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35642511

RESUMO

Eukaryotic organisms evolved in a microbial world and often have intimate associations with diverse bacterial groups. Kelp, brown macroalgae in the order Laminariales, play a vital role in coastal ecosystems, yet we know little about the functional role of the microbial symbionts that cover their photosynthetic surfaces. Here, we reconstructed 79 bacterial metagenome-assembled genomes (MAGs) from blades of the bull kelp, Nereocystis luetkeana, allowing us to determine their metabolic potential and functional roles. Despite the annual life history of bull kelp, nearly half of the bacterial MAGs were detected across multiple years. Diverse members of the kelp microbiome, spanning 6 bacterial phyla, contained genes for transporting and assimilating dissolved organic matter (DOM), which is secreted by kelp in large quantities and likely fuels the metabolism of these heterotrophic bacteria. Bacterial genomes also contained alginate lyase and biosynthesis genes, involved in polysaccharide degradation and biofilm formation, respectively. Kelp-associated bacterial genomes contained genes for dissimilatory nitrate reduction and urea hydrolysis, likely providing a reduced source of nitrogen to the host kelp. The genome of the most abundant member of the kelp microbiome and common macroalgal symbiont, Granulosicoccus, contained a full suite of genes for synthesizing cobalamin (vitamin B12), suggesting that kelp-associated bacteria have the potential to provide their host kelp with vitamins. Finally, kelp-associated Granulosicoccus contained genes that typify the aerobic anoxygenic phototrophic bacteria, including genes for bacteriochlorophyll synthesis and photosystem II reaction center proteins, making them the first known photoheterotrophic representatives of this genus. IMPORTANCE Kelp (brown algae in the order Laminariales) are foundational species that create essential habitat in temperate and arctic coastal marine ecosystems. These photosynthetic giants host millions of microbial taxa whose functions are relatively unknown, despite their potential importance for host-microbe interactions and nutrient cycling in kelp forest ecosystems. We reconstructed bacterial genomes from metagenomic samples collected from blades of the bull kelp, Nereocystis luetkeana, allowing us to determine the functional gene content of specific members of the kelp microbiome. These bacterial genomes spanned 6 phyla and 19 families and included common alga-associated microbial symbionts such as Granulosicoccus. Key functions encoded in kelp-associated bacterial genomes included dissolved organic matter assimilation, alginate metabolism, vitamin B12 biosynthesis, and nitrogen reduction from nitrate and urea to ammonium, potentially providing the host kelp with vitamins and reduced nitrogen.


Assuntos
Kelp , Microbiota , Humanos , Metagenoma/genética , Kelp/genética , Matéria Orgânica Dissolvida , Nitratos/metabolismo , Filogenia , Microbiota/genética , Bactérias , Vitaminas/metabolismo
14.
Mol Ecol ; 31(18): 4818-4831, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35582778

RESUMO

Large-scale disturbance events have the potential to drastically reshape biodiversity patterns. Notably, newly vacant habitat space cleared by disturbance can be colonized by multiple lineages, which can lead to the evolution of distinct spatial "sectors" of genetic diversity within a species. We test for disturbance-driven sectoring of genetic diversity in intertidal southern bull kelp, Durvillaea antarctica (Chamisso) Hariot, following the high-magnitude 1855 Wairarapa earthquake in New Zealand. Specifically, we use genotyping-by-sequencing (GBS) to analyse fine-scale population structure across the uplift zone and apply machine learning to assess the fit of alternative recolonizaton models. Our analysis reveals that specimens from the uplift zone carry distinctive genomic signatures potentially linked to post-earthquake recolonization processes. Specifically, our analysis identifies two parapatric spatial-genomic sectors of D. antarctica at Turakirae Head, which experienced the most dramatic uplift. Based on phylogeographical modelling, we infer that bull kelp in the Wellington region was probably a source for recolonization of the heavily uplifted Turakirae Head coastline, via two parallel, eastward recolonization events. By identifying multiple parapatric genotypic sectors within a recently recolonized coastal region, the current study provides support for the hypothesis that competing lineage expansions can generate striking spatial structuring of genetic diversity, even in highly dispersive taxa.


Assuntos
Terremotos , Kelp , Ecossistema , Genômica , Kelp/genética , Filogeografia
15.
Sci Rep ; 12(1): 5020, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322059

RESUMO

Kelp forests are declining in many regions globally with climatic perturbations causing shifts to alternate communities and significant ecological and economic loss. Range edge populations are often at most risk and are often only sustained through localised areas of upwelling or on deeper reefs. Here we document the loss of kelp forests (Ecklonia radiata) from the Sultanate of Oman, the only confirmed northern hemisphere population of this species. Contemporary surveys failed to find any kelp in its only known historical northern hemisphere location, Sadah on the Dhofar coast. Genetic analyses of historical herbarium specimens from Oman confirmed the species to be E. radiata and revealed the lost population contained a common CO1 haplotype found across South Africa, Australia and New Zealand suggesting it once established through rapid colonisation throughout its range. However, the Omani population also contained a haplotype that is found nowhere else in the extant southern hemisphere distribution of E. radiata. The loss of the Oman population could be due to significant increases in the Arabian Sea temperature over the past 40 years punctuated by suppression of coastal upwelling. Climate-mediated warming is threatening the persistence of temperate species and precipitating loss of unique genetic diversity at lower latitudes.


Assuntos
Kelp , Ecossistema , Florestas , Kelp/genética , Omã , Temperatura
16.
Mar Genomics ; 63: 100944, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35299055

RESUMO

Brown macroalgae, including the kelp Saccharina latissima, are of both ecological and increasing economic interest. Together with their microbiota, these organisms form a singular entity, the holobiont. Sampling campaigns are required to study the microbiome of algae in natural populations, but freezing samples in liquid nitrogen is complex in the field, particularly at remote locations. Here we tested two simple alternative methods for sampling the microbial diversity associated with the kelp S. latissima: silica gel conservation of tissue and swab samples preserved in DNA/RNA shield solution. We used these techniques to compare apex and meristem samples from Roscoff (Brittany, France) and evaluated their impact on the results of 16S rDNA metabarcoding experiments. Both methods were able to separate apex and meristem microbiomes, and the results were concordant with results obtained for flash-frozen samples. However, differences were observed for several rare genera and ASVs, and the detection of contaminant sequences in the silica gel-preserved samples underline the importance of including blank samples for this method. Globally, our results confirm that the silica gel technique and swabbing combined with DNA/RNA shield preservation are valid alternatives to liquid nitrogen preservation when sampling brown macroalgae in the field. However, they also underline that, regardless of the method, caution should be taken when interpreting data on rare sequences.


Assuntos
Kelp , Microbiota , Alga Marinha , DNA Ribossômico , Kelp/genética , Nitrogênio , RNA , RNA Ribossômico 16S/genética , Sílica Gel
17.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35088860

RESUMO

Though Saccharina japonica cultivation has been established for many decades in East Asian countries, the domestication process of sugar kelp (Saccharina latissima) in the Northeast United States is still at its infancy. In this study, by using data from our breeding experience, we will demonstrate how obstacles for accelerated genetic gain can be assessed using simulation approaches that inform resource allocation decisions. Thus far, we have used 140 wild sporophytes that were sampled in 2018 from the northern Gulf of Maine to southern New England. From these sporophytes, we sampled gametophytes and made and evaluated over 600 progeny sporophytes from crosses among the gametophytes in 2019 and 2020. The biphasic life cycle of kelp gives a great advantage in selective breeding as we can potentially select both on the sporophytes and gametophytes. However, several obstacles exist, such as the amount of time it takes to complete a breeding cycle, the number of gametophytes that can be maintained in the laboratory, and whether positive selection can be conducted on farm-tested sporophytes. Using the Gulf of Maine population characteristics for heritability and effective population size, we simulated a founder population of 1,000 individuals and evaluated the impact of overcoming these obstacles on rate of genetic gain. Our results showed that key factors to improve current genetic gain rely mainly on our ability to induce reproduction of the best farm-tested sporophytes, and to accelerate the clonal vegetative growth of released gametophytes so that enough gametophyte biomass is ready for making crosses by the next growing season. Overcoming these challenges could improve rates of genetic gain more than 2-fold. Future research should focus on conditions favorable for inducing spring reproduction, and on increasing the amount of gametophyte tissue available in time to make fall crosses in the same year.


Assuntos
Kelp , Phaeophyceae , Células Germinativas Vegetais , Humanos , Kelp/genética , Melhoramento Vegetal , Açúcares
18.
J Phycol ; 58(2): 318-329, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35000198

RESUMO

Analyses of phylogeographic patterns and genetic diversity provide fundamental information for the management and conservation of species. However, little is published about these patterns in Japanese kelp species. In this study, we conducted phylogeographic analyses of a canopy-forming kelp, Eisenia bicyclis, based on genome-wide SNPs identified by ddRAD-seq. We obtained 1,299 SNPs for 76 samples from nine localities across the distribution. STRUCTURE, NeighborNet, and discriminant analysis of principal components consistently showed high genetic differentiation among the Eastern Pacific, Central Pacific, and Sea of Japan coastal regions. Relatively strong gene flow was detected only within populations in the Eastern Pacific and in the Sea of Japan. Genetic diversity and genetic uniqueness were high in the Central Pacific and low in the Sea of Japan. These results suggest that there were at least three independent refugia corresponding to the three regions during the Last Glacial Maximum (LGM). Furthermore, relatively larger populations in the Central Pacific and smaller populations in the Sea of Japan have been maintained in the demographic history from before the LGM to the present. These phylogeographic histories were supported by an Approximate Bayesian Computation analysis. From a conservation genetics perspective, the loss of southern populations in the Central Pacific would greatly reduce the total genetic diversity of the species. Southern populations in the Sea of Japan, which have relatively low genetic diversity, may be highly vulnerable to environmental change, such as heat waves and increased feeding. Therefore, careful monitoring and conservation are needed in the two regions.


Assuntos
Kelp , Phaeophyceae , Teorema de Bayes , Variação Genética , Haplótipos , Kelp/genética , Filogenia , Filogeografia
19.
PLoS One ; 16(11): e0253104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34735443

RESUMO

Environmental DNA (eDNA) metabarcoding is an increasingly important tool for surveying biodiversity in marine ecosystems. However, the scale of temporal and spatial variability in eDNA signatures, and how this variation may impact eDNA-based marine biodiversity assessments, remains uncertain. To address this question, we systematically examined variation in vertebrate eDNA signatures across depth (0 m to 10 m) and horizontal space (nearshore kelp forest and surf zone) over three successive days in Southern California. Across a broad range of teleost fish and elasmobranchs, results showed significant variation in species richness and community assemblages between surface and depth, reflecting microhabitat depth preferences of common Southern California nearshore rocky reef taxa. Community assemblages between nearshore and surf zone sampling stations at the same depth also differed significantly, consistent with known habitat preferences. Additionally, assemblages also varied across three sampling days, but 69% of habitat preferences remained consistent. Results highlight the sensitivity of eDNA in capturing fine-scale vertical, horizontal, and temporal variation in marine vertebrate communities, demonstrating the ability of eDNA to capture a highly localized snapshot of marine biodiversity in dynamic coastal environments.


Assuntos
Biodiversidade , DNA Ambiental/genética , Monitoramento Ambiental , Peixes/genética , Kelp/genética , Animais , California
20.
J Phycol ; 57(6): 1721-1738, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510441

RESUMO

The genomic era continues to revolutionize our understanding of the evolution of biodiversity. In phycology, emphasis remains on assembling nuclear and organellar genomes, leaving the full potential of genomic datasets to answer long-standing questions about the evolution of biodiversity largely unexplored. Here, we used whole-genome sequencing (WGS) datasets to survey species diversity in the kelp genus Alaria, compare phylogenetic signals across organellar and nuclear genomes, and specifically test whether phylogenies behave like trees or networks. Genomes were sequenced from across the global distribution of Alaria (including Alaria crassifolia, A. praelonga, A. crispa, A. marginata, and A. esculenta), representing over 550 GB of data and over 2.2 billion paired reads. Genomic datasets retrieved 3,814 and 4,536 single-nucleotide polymorphisms (SNPs) for mitochondrial and chloroplast genomes, respectively, and upwards of 148,542 high-quality nuclear SNPs. WGS revealed an Arctic lineage of Alaria, which we hypothesize represents the synonymized taxon A. grandifolia. The SNP datasets also revealed inconsistent topologies across genomic compartments, and hybridization (i.e., phylogenetic networks) between Pacific A. praelonga, A. crispa, and putative A. grandifolia, and between some lineages of the A. marginata complex. Our analysis demonstrates the potential for WGS data to advance our understanding of evolution and biodiversity beyond amplicon sequencing, and that hybridization is potentially an important mechanism contributing to novel lineages within Alaria. We also emphasize the importance of surveying phylogenetic signals across organellar and nuclear genomes, such that models of mixed ancestry become integrated into our evolutionary and taxonomic understanding.


Assuntos
Genoma de Cloroplastos , Genoma Mitocondrial , Kelp , Sequência de Bases , Hibridização Genética , Kelp/classificação , Kelp/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA