Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
1.
J Plant Physiol ; 294: 154192, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382176

RESUMO

This study explores and compares the limits for photosynthesis in subzero temperatures of six Antarctic lichens: Sphaerophorus globosus, Caloplaca regalis, Umbilicaria antarctica, Pseudephebe minuscula, Parmelia saxatilis and Lecania brialmontii combining linear cooling and chlorophyll fluorescence methods. The results revealed triphasic S-curves in the temperature response of the maximum quantum yield (FV/FM) and effective quantum yield of photosystem II (ΦPSII) for all species. All investigated species showed a high level of cryoresistance with critical temperatures (Tc) below -20 °C. However, record low Tc temperatures have been discovered for L. brialmotii (-54 °C for FV/FM and -40 °C for ΦPSII) and C. regalis (-52 °C for FV/FM and -38 °C for ΦPSII). Additionally, the yield differentials (FV/FM - ΦPSII) in functions of temperature revealed one or two peaks, with the larger one occurring for temperatures below -20 °C for the above-mentioned species. Finally, Kautsky kinetics were measured and compared at different temperatures (20 °C, 10 °C, 0 °C and -10 °C and then -10 °C after 1 h of incubation). This research serves as a foundation for further developing investigations into the biophysical mechanisms by which photosynthesis is carried out at subzero temperatures.


Assuntos
Clorofila , Líquens , Congelamento , Temperatura , Líquens/fisiologia , Complexo de Proteína do Fotossistema II , Fluorescência , Fotossíntese
2.
Oecologia ; 204(1): 187-198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233688

RESUMO

The mat-forming fruticose lichens Cladonia stellaris and Cetraria islandica frequently co-occur on soils in sun-exposed boreal, subarctic, and alpine ecosystems. While the dominant reindeer lichen Cladonia lacks a cortex but produces the light-reflecting pale pigment usnic acid on its surface, the common but patchier Cetraria has a firm cortex sealed by the light-absorbing pigment melanin. By measuring reflectance spectra, high-light tolerance, photosynthetic responses, and chlorophyll fluorescence in sympatric populations of these lichens differing in fungal pigments, we aimed to study how they cope with high light while hydrated. Specimens of the two species tolerated high light equally well but with different protective mechanisms. The mycobiont of the melanic species efficiently absorbed excess light, consistent with a lower need for its photobiont to protect itself by non-photochemical quenching (NPQ). By contrast, usnic acid screened light at 450-700 nm by reflectance and absorbed shorter wavelengths. The ecorticate usnic species with less efficient fungal light screening exhibited a consistently lower light compensation point and higher CO2 uptake rates than the melanic lichen. In both species, steady state NPQ rapidly increased at increasing light with no signs of light saturation. To compensate for less internal shading causing light fluctuations with a larger amplitude, the usnic lichen photobiont adjusted to changing light by faster induction and faster relaxation of NPQ rapidly transforming excess excitation energy to less damaging heat. The high and flexible NPQ tracking fluctuations in solar radiation probably contributes to the strong dominance of the usnic mat-forming Cladonia in open lichen-dominated heaths.


Assuntos
Ascomicetos , Líquens , Parmeliaceae , Líquens/fisiologia , Ecossistema
3.
Mycologia ; 116(1): 31-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38039398

RESUMO

Most epiphytic lichens demonstrate high specificity to a habitat type, and sensitive hygrophilous species usually find shelter only in close-to-natural forest complexes. Some of them are considered as old-growth forest and/or long ecological continuity indicators. To evaluate general links between the narrow ecological range and physiological traits, two distinct sets of model lichens, i.e., old-growth forest (Cetrelia cetrarioides (Duby) W.L. Culb. & C.F. Culb., Lobaria pulmonaria (L.) Hoffm., Menegazzia terebrata (Hoffm.) A. Massal.), and generalist (Flavoparmelia caperata (L.) Hale, Hypogymnia physodes (L.) Nyl., Parmelia sulcata Taylor) ones, were examined in terms of sensitivity to long-term desiccation stress (1-, 2-, and 3-month) and photosynthesis activation rate upon rehydration. Desiccation tolerance and response rate to rehydration are specific to a given ecological set of lichens rather than to a particular species. Noticeable delayed and prompt recovery of high photosynthetic activity of photosystem II (PSII) characterize these sets, respectively. At the same time, although a decrease in the potential quantum yield of PSII in lichen thalli with a relative water content (RWC) at the level of 25% was observed, the efficiency remained at a very high level for all species, regardless of habitat preferences. Among the examined lichens, the fluorescence emission parameters for F. caperata were the fastest toward equilibrium upon rehydration, both after a shorter and a longer period of desiccation stress. In contrast to generalist lichens, retrieving of photosynthesis after 3-month desiccation failed in old-growth forest lichens. In the long term, prolonged rainless periods and unfavorable water balance in the environment predicted in the future may have a severely limiting effect on hygrophilous lichens during growing season (also in the sense of species associations) and, at the same time, promote the development of generalists.


Assuntos
Líquens , Líquens/fisiologia , Dessecação , Fotossíntese/fisiologia , Água/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Hidratação , Florestas
4.
Sci Total Environ ; 905: 167211, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730025

RESUMO

Biological soil crusts (biocrusts) are widely distributed in global drylands and have multiple significant roles in regulating dryland soil and ecosystem multifunctionality. However, maps of their distribution over large spatial scales are uncommon and sometimes unreliable, because our current remote sensing technology is unable to efficiently discriminate between biocrusts and vascular plants or even bare soil across different ecosystem and soil types. The lack of biocrust spatial data may limit our ability to detect risks to dryland function or key tipping points. Here, we indirectly mapped biocrust distribution in China's drylands using spatial prediction modeling, based on a set of occurrences of biocrusts (379 in total) and high-resolution soil and environmental data. The results showed that biocrusts currently cover 13.9 % of China's drylands (or 5.7 % of China's total area), with moss-, lichen-, and cyanobacterial-dominated biocrusts each occupying 5.7 % to 10.7 % of the region. Biocrust distribution is mainly determined by soil properties (soil type and contents of gravel and nitrogen), aridity stress, and altitude. Their most favorable habitat is arenosols with low contents of gravel and nitrogen, in climate with a drought index of 0.54 and an altitude of about 500 m. By 2050, climate change will lead to a 5.5 %-9.0 % reduction in biocrust cover. Lichen biocrusts exhibit a high vulnerability to climate change, with potential reductions of up to 19.0 % in coverage. Biocrust cover loss is primarily caused by the combined effects of the elevated temperature and increased precipitation. Our study provides the first high-resolution (250 × 250 m) map of biocrust distribution in China's drylands and offers a reliable approach for mapping regional or global biocrust colonization. We suggest incorporating biocrusts into Earth system models to identify their significant impact on global or regional-scale processes under climate change.


Assuntos
Briófitas , Cianobactérias , Líquens , Ecossistema , Líquens/fisiologia , Cianobactérias/fisiologia , Briófitas/fisiologia , Solo , Mudança Climática , Microbiologia do Solo , Nitrogênio , China
5.
Microb Ecol ; 86(3): 1725-1739, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37039841

RESUMO

Desiccation tolerance (DT) is relatively frequent in non-vascular plants and green algae. However, it is poorly understood how successive dehydration/rehydration (D/R) cycles shape their transcriptomes and proteomes. Here, we report a comprehensive analysis of adjustments on both transcript and protein profiles in response to successive D/R cycles in Coccomyxa simplex (Csol), isolated from the lichen Solorina saccata. A total of 1833 transcripts and 2332 proteins were differentially abundant as a consequence of D/R; however, only 315 of these transcripts/proteins showed similar trends. Variations in both transcriptomes and proteomes along D/R cycles together with functional analyses revealed an extensive decrease in transcript and protein levels during dehydration, most of them involved in gene expression, metabolism, substance transport, signalling and folding catalysis, among other cellular functions. At the same time, a series of protective transcripts/proteins, such as those related to antioxidant defence, polyol metabolism and autophagy, was upregulated during dehydration. Overall, our results show a transient decrease in most cellular functions as a result of drying and a gradual reactivation of specific cell processes to accommodate the hydration status along successive D/R cycles. This study provides new insights into key mechanisms involved in the DT of Csol and probably other dehydration-tolerant microalgae. In addition, functionally characterising the high number of genes/proteins of unknown functions found in this study may lead to the discovery of new DT mechanisms.


Assuntos
Líquens , Transcriptoma , Desidratação , Líquens/fisiologia , Proteoma/metabolismo , Proteômica , Dessecação
6.
Photosynth Res ; 157(1): 21-35, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36976446

RESUMO

Epiphytic lichens constitute an important component of biodiversity in both deforested and forest ecosystems. Widespread occurrence is the domain of generalist lichens or those that prefer open areas. While, many stenoecious lichens find shelter only in a shaded interior of forests. Light is one of the factors known to be responsible for lichen distribution. Nevertheless, the effect of light intensity on photosynthesis of lichen photobionts remain largely unknown. We investigated photosynthesis in lichens with different ecological properties in relation to light as the only parameter modified during the experiments. The aim was to find links between this parameter and habitat requirements of a given lichen. We applied the methods based on a saturating light pulse and modulated light to perform comprehensive analyses of fast and slow chlorophyll fluorescence transient (OJIP and PSMT) combined with quenching analysis. We also examined the rate of CO2 assimilation. Common or generalist lichens, i.e. Hypogymnia physodes, Flavoparmelia caperata and Parmelia sulcata, are able to adapt to a wide range of light intensity. Moreover, the latter species, which prefers open areas, dissipates the excess energy most efficiently. Conversely, Cetrelia cetrarioides considered an old-growth forest indicator, demonstrates definitely lower range of energy dissipation than other species, although it assimilates CO2 efficiently both at low and high light. We conclude that functional plasticity of the thylakoid membranes of photobionts largely determines the dispersal abilities of lichens and light intensity is one of the most important factors determining the specificity of a species to a given habitat.


Assuntos
Líquens , Líquens/fisiologia , Clorofila , Ecossistema , Dióxido de Carbono , Fotossíntese
7.
Sci Rep ; 13(1): 5083, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977766

RESUMO

Extreme climatic phenomena such as heat waves, heavy rainfall and prolonged droughts are one of the main problems associated with ongoing climate change. The global increase in extreme rainfalls associated with summer heatwaves are projected to increase in amplitude and frequency in the near future. However, the consequences of such extreme events on lichens are largely unknown. The aim was to determine the effect of heat stress on the physiology of lichen Cetraria aculeata in a metabolically active state and to verify whether strongly melanised thalli are more resistant than poorly melanised thalli. In the present study, melanin was extracted from C. aculeata for the first time. Our study showed that the critical temperature for metabolism is around 35 °C. Both symbiotic partners responded to heat stress, manifested by the decreased maximum quantum yield of PSII photochemistry, high level of cell membrane damage, increased membrane lipid peroxidation and decreased dehydrogenase activity. Highly melanised thalli were more sensitive to heat stress, which excludes the role of melanins as compounds protecting against heat stress. Therefore, mycobiont melanisation imposes a trade-off between protection against UV and avoidance of damage caused by high temperature. It can be concluded that heavy rainfall during high temperatures may significantly deteriorate the physiological condition of melanised thalli. However, the level of membrane lipid peroxidation in melanised thalli decreased over time after exposure, suggesting greater efficiency of antioxidant defence mechanisms. Given the ongoing climate changes, many lichen species may require a great deal of plasticity to maintain their physiological state at a level that ensures their survival.


Assuntos
Líquens , Líquens/fisiologia , Temperatura , Temperatura Alta , Resposta ao Choque Térmico
8.
Physiol Plant ; 175(2): e13882, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36840682

RESUMO

Arctic ecosystems are increasingly exposed to extreme climatic events throughout the year, which can affect species performance. Cryptogams (bryophytes and lichens) provide important ecosystem services in polar ecosystems but may be physiologically affected or killed by extreme events. Through field and laboratory manipulations, we compared physiological responses of seven dominant sub-Arctic cryptogams (three bryophytes, four lichens) to single events and factorial combinations of mid-winter heatwave (6°C for 7 days), re-freezing, snow removal and summer nitrogen addition. We aimed to identify which mosses and lichens are vulnerable to these abiotic extremes and if combinations would exacerbate physiological responses. Combinations of extremes resulted in stronger species responses but included idiosyncratic species-specific responses. Species that remained dormant during winter (March), irrespective of extremes, showed little physiological response during summer (August). However, winter physiological activity, and response to winter extremes, was not consistently associated with summer physiological impacts. Winter extremes affect cryptogam physiology, but summer responses appear mild, and lichens affect the photobiont more than the mycobiont. Accounting for Arctic cryptogam response to multiple climatic extremes in ecosystem functioning and modelling will require a better understanding of their winter eco-physiology and repair capabilities.


Assuntos
Briófitas , Líquens , Ecossistema , Briófitas/fisiologia , Líquens/fisiologia , Congelamento , Nitrogênio , Estações do Ano
9.
New Phytol ; 237(5): 1495-1504, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36511294

RESUMO

Nonvascular photoautotrophs (NVP), including bryophytes, lichens, terrestrial algae, and cyanobacteria, are increasingly recognized as being essential to ecosystem functioning in many regions of the world. Current research suggests that climate change may pose a substantial threat to NVP, but the extent to which this will affect the associated ecosystem functions and services is highly uncertain. Here, we propose a research agenda to address this urgent question, focusing on physiological and ecological processes that link NVP to ecosystem functions while also taking into account the substantial taxonomic diversity across multiple ecosystem types. Accordingly, we developed a new categorization scheme, based on microclimatic gradients, which simplifies the high physiological and morphological diversity of NVP and world-wide distribution with respect to several broad habitat types. We found that habitat-specific ecosystem functions of NVP will likely be substantially affected by climate change, and more quantitative process understanding is required on: (1) potential for acclimation; (2) response to elevated CO2 ; (3) role of the microbiome; and (4) feedback to (micro)climate. We suggest an integrative approach of innovative, multimethod laboratory and field experiments and ecophysiological modelling, for which sustained scientific collaboration on NVP research will be essential.


Assuntos
Briófitas , Líquens , Ecossistema , Mudança Climática , Plantas , Briófitas/fisiologia , Líquens/fisiologia
10.
Environ Sci Pollut Res Int ; 30(1): 1795-1805, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35922596

RESUMO

Forest vegetation is key for buffering microclimatic factors and regulating atmospheric deposition. Epiphytic lichens are sensitive to these factors and can indicate the overall health status of the ecosystem. Specifically, the analysis of morpho-anatomical variations allows us to understand the degree of tolerance or sensitivity of these organisms exposed to agricultural crops and how vegetation might buffer this response. We analyzed variations in vegetative and reproductive characters and injuries in thalli of Parmotrema pilosum as a response to distance to crops and forest cover. The study was conducted in forest patches of the Espinal in central Argentina, an ecosystem threatened by agricultural activity. We selected 10 sites with different forest cover areas and two collection points differing in distance to crops: sites adjacent to (0 m) and far from (150 m) crops. We collected five thalli from each collection point and analyzed variations in morpho-anatomical characters at macro- and microscopic levels. We found a lower number of algae and a higher proportion of simple cilia in individuals at points adjacent to crops. At points with low forest cover, a thinner upper cortex was observed, whereas at points with greater forest cover, an increase of necrosis and greater presence of apothecia were detected. Bleaching was the most frequent injury at sites adjacent to crops, decreasing with increasing forest cover. Conservation and reforestation of Espinal forest patches would promote the propagation of lichens affected by agricultural practices.


Assuntos
Líquens , Parmeliaceae , Humanos , Ecossistema , Argentina , Florestas , Produtos Agrícolas , Líquens/fisiologia , Conservação dos Recursos Naturais
11.
Environ Pollut ; 315: 120330, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36274289

RESUMO

To create more resilient cities, it is important that we understand the effects of the global change drivers in cities. Biodiversity-based ecological indicators (EIs) can be used for this, as biodiversity is the basis of ecosystem structure, composition, and function. In previous studies, lichens have been used as EIs to monitor the effects of global change drivers in an urban context, but only in single-city studies. Thus, we currently do not understand how lichens are affected by drivers that work on a broader scale. Therefore, our aim was to quantify the variance in lichen biodiversity-based metrics (taxonomic and trait-based) that can be explained by environmental drivers working on a broad spatial scale, in an urban context where local drivers are superimposed. To this end, we performed an unprecedented effort to sample epiphytic lichens in 219 green spaces across a continental gradient from Portugal to Estonia. Twenty-six broad-scale drivers were retrieved, including air pollution and bio-climatic variables, and their dimensionality reduced by means of a principal component analysis (PCA). Thirty-eight lichen metrics were then modelled against the scores of the first two axes of each PCA, and their variance partitioned into pollution and climate components. For the first time, we determined that 15% of the metric variance was explained by broad-scale drivers, with broad-scale air pollution showing more importance than climate across the majority of metrics. Taxonomic metrics were better explained by air pollution, as expected, while climate did not surpass air pollution in any of the trait-based metric groups. Consequently, 85% of the metric variance was shown to occur at the local scale. This suggests that further work is necessary to decipher the effects of climate change. Furthermore, although drivers working within cities are prevailing, both spatial scales must be considered simultaneously if we are to use lichens as EIs in cities at continental to global scales.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Líquens , Líquens/fisiologia , Ecossistema , Monitoramento Ambiental , Poluição do Ar/análise , Biodiversidade , Poluentes Atmosféricos/análise
12.
Sci Total Environ ; 835: 155495, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35472357

RESUMO

Poikilohydric autotrophs are the main colonizers of the permanent ice-free areas in the Antarctic tundra biome. Global climate warming and the small human footprint in this ecosystem make it especially vulnerable to abrupt changes. Elucidating the effects of climate change on the Antarctic ecosystem is challenging because it mainly comprises poikilohydric species, which are greatly influenced by microtopographic factors. In the present study, we investigated the potential effects of climate change on the metabolic activity and net primary photosynthesis (NPP) in the widespread lichen species Usnea aurantiaco-atra. Long-term monitoring of chlorophyll a fluorescence in the field was combined with photosynthetic performance measurements in laboratory experiments in order to establish the daily response patterns under biotic and abiotic factors at micro- and macro-scales. Our findings suggest that macroclimate is a poor predictor of NPP, thereby indicating that microclimate is the main driver due to the strong effects of microtopographic factors on cryptogams. Metabolic activity is also crucial for estimating the NPP, which is highly dependent on the type, distribution, and duration of the hydration sources available throughout the year. Under RCP 4.5 and RCP 8.5, metabolic activity will increase slightly compared with that at present due to the increased precipitation events predicted in MIROC5. Temperature is highlighted as the main driver for NPP projections, and thus climate warming will lead to an average increase in NPP of 167-171% at the end of the century. However, small changes in other drivers such as light and relative humidity may strongly modify the metabolic activity patterns of poikilohydric autotrophs, and thus their NPP. Species with similar physiological response ranges to the species investigated in the present study are expected to behave in a similar manner provided that liquid water is available.


Assuntos
Líquens , Unionidae , Animais , Clorofila A , Mudança Climática , Ecossistema , Humanos , Líquens/fisiologia , Fotossíntese , Tundra
13.
Sci Rep ; 11(1): 23460, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873261

RESUMO

Lecideoid lichens as dominant vegetation-forming organisms in the climatically harsh areas of the southern part of continental Antarctica show clear preferences in relation to environmental conditions (i.e. macroclimate). 306 lichen samples were included in the study, collected along the Ross Sea coast (78°S-85.5°S) at six climatically different sites. The species compositions as well as the associations of their two dominant symbiotic partners (myco- and photobiont) were set in context with environmental conditions along the latitudinal gradient. Diversity values were nonlinear with respect to latitude, with the highest alpha diversity in the milder areas of the McMurdo Dry Valleys (78°S) and the most southern areas (Durham Point, 85.5°S; Garden Spur, 84.5°S), and lowest in the especially arid and cold Darwin Area (~ 79.8°S). Furthermore, the specificity of mycobiont species towards their photobionts decreased under more severe climate conditions. The generalist lichen species Lecanora fuscobrunnea and Lecidea cancriformis were present in almost all habitats, but were dominant in climatically extreme areas. Carbonea vorticosa, Lecidella greenii and Rhizoplaca macleanii were confined to milder areas. In summary, the macroclimate is considered to be the main driver of species distribution, making certain species useful as bioindicators of climate conditions and, consequently, for assessing the consequences of climate change.


Assuntos
Ascomicetos/fisiologia , Biodiversidade , Clorófitas/fisiologia , Clima , Líquens/fisiologia , Regiões Antárticas , Mudança Climática , Ecologia , Ecossistema , Meio Ambiente , Haplótipos , Dinâmica não Linear , Filogenia , Simbiose , Temperatura
14.
Sci Rep ; 11(1): 20155, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635737

RESUMO

Understanding the species richness and ß-diversity patterns along elevation gradients can aid in formulating effective conservation strategies particularly in areas where local anthropogenic stresses and climate change are quite significant as in the Himalaya. Thus, we studied macrolichen richness and ß-diversity along elevational gradients at three sites, namely Kashmir (2200 to 3800 m a.m.s.l), Uttarakhand (2000-3700 m a.m.s.l) and Sikkim (1700 to 4000 m a.m.s.l) which cover much of the Indian Himalayan Arc. In all, 245 macrolichen species belonging to 77 genera and 26 families were collected from the three sites. Only 11 species, 20 genera and 11 families were common among the three transects. Despite the differences in species composition, the dominant functional groups in the three sites were the same: foliose, fruticose and corticolous forms. The hump-shaped elevation pattern in species richness was exhibited by most of the lichen groups, though an inverse hump-shaped pattern was also observed in certain cases. ß-diversity (ßsor) based on all pairs of comparisons along an elevation gradient varied from 0.48 to 0.58 in Kashmir, 0.03 to 0.63 in Uttarakhand and 0.46 to 0.77 in Sikkim. The contribution of turnover to ß-diversity was more than nestedness at all the three transects. Along elevation ß-diversity and its components of turnover and nestedness varied significantly with elevation. While species turnover increased significantly along the elevation in all the three transects, nestedness decreased significantly in Kashmir and Sikkim transects but increased significantly in the Uttarakhand transect. Except for the Kashmir Himalayan elevation transect, stepwise ß-diversity and its components of turnover and nestedness did not vary significantly with elevation. The present study, the first of its kind in the Himalayan region, clearly brings out that macrolichen species richness, ß-diversity, and its components of turnover and nestedness vary along the elevation gradients across the Himalayan Arc. It also highlights that contribution of turnover to ß-diversity is higher in comparison to nestedness at all the three transects. The variations in species richness and diversity along elevation gradients underpin the importance of considering elevational gradients in planning conservation strategies.


Assuntos
Altitude , Biodiversidade , Mudança Climática , Ecossistema , Líquens/fisiologia , Especificidade da Espécie
15.
PLoS One ; 16(9): e0257564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34534251

RESUMO

Greatly simplified ecosystems are often neglected for biodiversity studies. However, these simplified systems dominate in many regions of the world, and a lack of understanding of what shapes species occurrence in these systems can have consequences for biodiversity and ecosystem services at a massive scale. In Fennoscandia, ~90% of the boreal forest (~21Mha) is structurally simplified with little knowledge of how forest structural elements shape the occurrence and diversity of for example epiphytic lichens in these managed forests. One form of structural simplification is the reduction of the number and frequency of different tree species. As many lichen species have host tree preferences, it is particularly likely that this simplification has a huge effect on the lichen community in managed forests. In a 40-70 years old boreal forest in Sweden, we therefore related the occurrence and richness of all observed epiphytic lichens to the host tree species and beta and gamma lichen diversity at the forest stand level to the stand's tree species composition and stem diameter. Picea abies hosted the highest lichen richness followed by Pinus sylvestris, Quercus robur, Alnus glutinosa, Betula spp., and Populus tremula. However, P. tremula hosted twice as many uncommon species as any of the other tree species. Stand level beta and gamma diversity was twice as high on stands with four compared to one tree species, and was highest when either coniferous or deciduous trees made up 40-50% of the trees. The stem diameter was positively related to lichen richness at the tree and stand level, but negatively to beta diversity. For biodiversity, these findings imply that leaving a few trees of a different species during forest thinning is unlikely as effective as combining life-boat trees for endangered species with an even tree species mixture.


Assuntos
Florestas , Líquens/crescimento & desenvolvimento , Biodiversidade , Líquens/classificação , Líquens/fisiologia , Pinus , Suécia , Simbiose
16.
RNA ; 27(11): 1374-1389, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34429367

RESUMO

Toxin-antitoxin (TA) systems are genetic modules composed of a toxin interfering with cellular processes and its cognate antitoxin, which counteracts the activity of the toxin. TA modules are widespread in bacterial and archaeal genomes. It has been suggested that TA modules participate in the adaptation of prokaryotes to unfavorable conditions. The Bosea sp. PAMC 26642 used in this study was isolated from the Arctic lichen Stereocaulon sp. There are 12 putative type II TA loci in the genome of Bosea sp. PAMC 26642. Of these, nine functional TA systems have been shown to be toxic in Escherichia coli The toxin inhibits growth, but this inhibition is reversed when the cognate antitoxin genes are coexpressed, indicating that these putative TA loci were bona fide TA modules. Only the BoVapC1 (AXW83_01405) toxin, a homolog of VapC, showed growth inhibition specific to low temperatures, which was recovered by the coexpression of BoVapB1 (AXW83_01400). Microscopic observation and growth monitoring revealed that the BoVapC1 toxin had bacteriostatic effects on the growth of E. coli and induced morphological changes. Quantitative real time polymerase chain reaction and northern blotting analyses showed that the BoVapC1 toxin had a ribonuclease activity on the initiator tRNAfMet, implying that degradation of tRNAfMet might trigger growth arrest in E. coli Furthermore, the BoVapBC1 system was found to contribute to survival against prolonged exposure at 4°C. This is the first study to identify the function of TA systems in cold adaptation.


Assuntos
Antitoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Bradyrhizobiaceae/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , RNA de Transferência de Metionina/metabolismo , Sistemas Toxina-Antitoxina/genética , Antitoxinas/genética , Proteínas de Bactérias , Toxinas Bacterianas/genética , Bradyrhizobiaceae/genética , Bradyrhizobiaceae/isolamento & purificação , Bradyrhizobiaceae/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Líquens/fisiologia , Óperon , Regiões Promotoras Genéticas
17.
Biosystems ; 205: 104417, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33798608

RESUMO

Mutualistic symbiosis, we now know, is a ubiquitous phenomenon in the natural world. And, in every case, there was an initial "genesis" - a "how" process that may have been at once unique to each situation and perhaps also shared a common set of facilitators. However, a full explanation of symbiogenesis also requires an answer to the "why" question, for natural selection is a stringent economizer. Something as contrarian as mutualistic cooperation between "differently named" organisms must also provide functional advantages for the participants that will be favored by natural selection (differential survival and reproduction). Enter the "Synergism Hypothesis" - the thesis that synergistic functional effects of various kinds are a common cause of cooperative relationships of all kinds in nature, including symbioses. When different organisms have complementary capabilities that are mutually beneficial and cannot otherwise be attained, the benefits derived from symbiotic cooperation will outweigh the costs. Among the many documented cases of symbiogenesis over time, lichens provide perhaps the most familiar, well-studied example, while the eukaryotes are often cited as a game-changer. The answer to the "why" question was, in each case, determinative for symbiogenesis.


Assuntos
Evolução Biológica , Eucariotos/fisiologia , Líquens/fisiologia , Seleção Genética , Simbiose , Biologia de Sistemas , Modelos Biológicos
18.
Sci Rep ; 11(1): 8701, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888793

RESUMO

We studied the biodiversity of Asterochloris photobionts found in Bolivian lichens to better understand their global spatial distribution and adaptation strategies in the context of a worldwide phylogeny of the genus. Based on nuclear ITS rDNA, the chloroplast rbcL gene and the actin type I gene we reconstructed a phylogenetic tree that recovered nine new Asterochloris lineages, while 32 Bolivian photobiont samples were assigned to 12 previously recognized Asterochloris lineages. We also show that some previously discovered Asterochloris photobiont species and lineages may occur in a broader spectrum of climatic conditions, and mycobiont species and photobionts may show different preferences along an altitude gradient. To reveal general patterns of of mycobiont specificity towards the photobiont in Asterochloris, we tested the influence of climate, altitude, geographical distance and effects of symbiotic partner (mycobiont) at the species level of three genera of lichen forming fungi: Stereocaulon, Cladonia and Lepraria. Further, we compared the specificity of mycobionts towards Asterochloris photobionts in cosmopolitan, Neotropical, and Pantropical lichen forming fungi. Interestingly, cosmopolitan species showed the lowest specificity to their photobionts, but also the lowest haplotype diversity. Neotropical and Paleotropical mycobionts, however, were more specific.


Assuntos
Clorófitas/fisiologia , Ecossistema , Líquens/fisiologia , Biodiversidade , Bolívia , Clorófitas/classificação , Líquens/classificação , Filogenia , Simbiose
19.
Microb Ecol ; 81(2): 437-453, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32989484

RESUMO

Trebouxia sp. (TR9) and Coccomyxa simplex (Csol) are desiccation-tolerant lichen microalgae with different adaptive strategies in accordance with the prevailing conditions of their habitats. The remodelling of cell wall and extracellular polysaccharides depending on water availability are key elements in the tolerance to desiccation of both microalgae. Currently, there is no information about the extracellular proteins of these algae and other aero-terrestrial microalgae in response to limited water availability. To our knowledge, this is the first report on the proteins associated with the extracellular polymeric substances (EPS) of aero-terrestrial microalgae subjected to cyclic desiccation/rehydration. LC-MS/MS and bioinformatic analyses of the EPS-associated proteins in the two lichen microalgae submitted to four desiccation/rehydration cycles allowed the compilation of 111 and 121 identified proteins for TR9 and Csol, respectively. Both sets of EPS-associated proteins shared a variety of predicted biological functions but showed a constitutive expression in Csol and partially inducible in TR9. In both algae, the EPS-associated proteins included a number of proteins of unknown functions, some of which could be considered as small intrinsically disordered proteins related with desiccation-tolerant organisms. Differences in the composition and the expression pattern between the studied EPS-associated proteins would be oriented to preserve the biochemical and biophysical properties of the extracellular structures under the different conditions of water availability in which each alga thrives.


Assuntos
Aclimatação , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Microalgas/fisiologia , Proteoma/metabolismo , Proteínas de Algas/metabolismo , Parede Celular/metabolismo , Clorófitas/classificação , Clorófitas/metabolismo , Clorófitas/fisiologia , Dessecação , Líquens/classificação , Líquens/metabolismo , Líquens/fisiologia , Microalgas/classificação , Microalgas/metabolismo , Proteínas de Plantas/metabolismo , Especificidade da Espécie , Água/metabolismo
20.
Microbiol Res ; 244: 126652, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33310352

RESUMO

Actinobacteria that inhabit lichen symbionts are considered a promising yet previously underexplored source of novel compounds. Here, for the first time, we conducted a comprehensive investigation with regard to strain isolation and identification of lichen-associated actinobacteria from Tibet Plateau, antimicrobial activity screening, biosynthetic genes detection, bioactive metabolites identification and activity prediction. A large number of culturable actinomycetes were isolated from lichens around Qinghai Lake, in Qinghai-Tibet Plateau. Twenty-seven strains with distinct morphological characteristics were preliminarily studied. 16S rRNA gene identification showed that 13 strains were new species. The PCR-screening of specific biosynthetic genes indicated that these 27 isolates had abundant intrinsic biosynthetic potential. The antimicrobial activity experiment screened out some potential biological control antagonistic bacteria. The metabolites of 13 strains of Streptomyces with antibacterial activity were analyzed by LC-HRMS, and further 18 compounds were identified by NMR and / or LC-HRMS. The identified compounds were mainly pyrrolidine and indole derivatives, as well as anthracyclines. Seven compounds were identified with less biological activity, then predicted and evaluated their biological activity. The predicted results showed that compound 2 had excellent inhibitory activity on HIV-1 reverse transcriptase. Overall, the results indicate actinobacteria isolated from unexploited plateau lichen are promising sources of biological active metabolite, which could provide important bioactive compounds as potential antibiotic drugs.


Assuntos
Actinobacteria/metabolismo , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Líquens/microbiologia , Actinobacteria/química , Actinobacteria/classificação , Actinobacteria/genética , Anti-Infecciosos/química , Biodiversidade , Cromatografia Líquida de Alta Pressão , Líquens/fisiologia , Espectrometria de Massas , Filogenia , Simbiose , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA