Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731923

RESUMO

Ionic liquids (ILs) have gained considerable attention due to their versatile and designable properties. ILs show great potential as antibacterial agents, but understanding the mechanism of attack on bacterial cells is essential to ensure the optimal design of IL-based biocides. The final aim is to achieve maximum efficacy while minimising toxicity and preventing resistance development in target organisms. In this study, we examined a dose-response analysis of ILs' antimicrobial activity against two pathogenic bacteria with different Gram types in terms of molecular responses on a cellular level using Fourier-transform infrared (FTIR) spectroscopy. In total, 18 ILs with different antimicrobial active motifs were evaluated on the Gram-negative enteropathogenic Escherichia coli (EPEC) and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA). The results showed that most ILs impact bacterial proteins with increasing concentration but have a minimal effect on cellular membranes. Dose-response spectral analysis revealed a distinct ante-mortem response against certain ILs for MRSA but not for EPEC. We found that at sub-lethal concentrations, MRSA actively changed their membrane composition to counteract the damaging effect induced by the ILs. This suggests a new adaptive mechanism of Gram-positive bacteria against ILs and demonstrates the need for a better understanding before using such substances as novel antimicrobials.


Assuntos
Escherichia coli Enteropatogênica , Líquidos Iônicos , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Escherichia coli Enteropatogênica/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
2.
J Am Chem Soc ; 146(19): 13588-13597, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695646

RESUMO

Membrane channel proteins (MCPs) play key roles in matter transport through cell membranes and act as major targets for vaccines and drugs. For emerging ionic liquid (IL) drugs, a rational understanding of how ILs affect the structure and transport function of MCP is crucial to their design. In this work, GPU-accelerated microsecond-long molecular dynamics simulations were employed to investigate the modulating mechanism of ILs on MCP. Interestingly, ILs prefer to insert into the lipid bilayer and channel of aquaporin-2 (AQP2) but adsorb on the entrance of voltage-gated sodium channels (Nav). Molecular trajectory and free energy analysis reflect that ILs have a minimal impact on the structure of MCPs but significantly influence MCP functions. It demonstrates that ILs can decrease the overall energy barrier for water through AQP2 by 1.88 kcal/mol, whereas that for Na+ through Nav is increased by 1.70 kcal/mol. Consequently, the permeation rates of water and Na+ can be enhanced and reduced by at least 1 order of magnitude, respectively. Furthermore, an abnormal IL gating mechanism was proposed by combining the hydrophobic nature of MCP and confined water/ion coordination effects. More importantly, we performed experiments to confirm the influence of ILs on AQP2 in human cells and found that treatment with ILs significantly accelerated the changes in cell volume in response to altered external osmotic pressure. Overall, these quantitative results will not only deepen the understanding of IL-cell interactions but may also shed light on the rational design of drugs and disease diagnosis.


Assuntos
Líquidos Iônicos , Simulação de Dinâmica Molecular , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Humanos , Aquaporina 2/metabolismo , Aquaporina 2/química , Água/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Sódio/química , Sódio/metabolismo
3.
Chem Rev ; 124(8): 4679-4733, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38621413

RESUMO

The review presents a detailed discussion of the evolving field studying interactions between ionic liquids (ILs) and biological systems. Originating from molten salt electrolytes to present multiapplication substances, ILs have found usage across various fields due to their exceptional physicochemical properties, including excellent tunability. However, their interactions with biological systems and potential influence on living organisms remain largely unexplored. This review examines the cytotoxic effects of ILs on cell cultures, biomolecules, and vertebrate and invertebrate organisms. Our understanding of IL toxicity, while growing in recent years, is yet nascent. The established findings include correlations between harmful effects of ILs and their ability to disturb cellular membranes, their potential to trigger oxidative stress in cells, and their ability to cause cell death via apoptosis. Future research directions proposed in the review include studying the distribution of various ILs within cellular compartments and organelles, investigating metabolic transformations of ILs in cells and organisms, detailed analysis of IL effects on proteins involved in oxidative stress and apoptosis, correlation studies between IL doses, exposure times and resulting adverse effects, and examination of effects of subtoxic concentrations of ILs on various biological objects. This review aims to serve as a critical analysis of the current body of knowledge on IL-related toxicity mechanisms. Furthermore, it can guide researchers toward the design of less toxic ILs and the informed use of ILs in drug development and medicine.


Assuntos
Líquidos Iônicos , Animais , Humanos , Apoptose/efeitos dos fármacos , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos
4.
ACS Appl Bio Mater ; 7(5): 2899-2910, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38607995

RESUMO

Acne vulgaris is one of the most prevalent skin disorders; it affects up to 85% of adolescents and often persists into adulthood. Topical 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT) provides an alternative treatment for acne; however, its efficacy is greatly undermined by the limited skin permeability of ALA. Herein, biocompatible ionic liquids (ILs) based on aliphatic acid/choline were employed to enhance the dermal delivery of ALA, thereby improving the efficacy of PDT. In addition to the one-step delivery of ALA by utilizing ILs as carriers, a two-step strategy of pretreating the skin with blank ILs, followed by the administration of free ALA, was employed to test the IL-facilitated dermal delivery of ALA in vitro. The cumulative permeation of ALA through the excised rat skin after IL pretreatment was significantly greater than that in the untreated group, the 20% dimethyl sulfoxide (DMSO) penetration enhancer group, and the one-step group. The penetration efficiency was influenced by formulation and treatment factors, including the type of IL, pretreatment duration, water content in the ILs, and concentration of ALA. In rats, IL pretreatment facilitated faster, greater, and deeper ALA-induced protoporphyrin IX (PpIX) accumulation. Moreover, the IL pretreatment regimen significantly improved the efficacy of ALA-based PDT against acne vulgaris in a rat ear model. The model IL choline citrate ([Ch]3[Cit]1) had a moderate effect on the skin barrier. Trans-epidermal water loss could be recovered 1 h after IL treatment, but no irritation to the rat skin was detected after 7 days of consecutive treatment. It was concluded that biocompatible IL pretreatment enhances the penetration of ALA and thus facilitates the transformation of PpIX and improves the efficacy of PDT against acne vulgaris.


Assuntos
Acne Vulgar , Ácido Aminolevulínico , Líquidos Iônicos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Pele , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/química , Animais , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Ratos , Acne Vulgar/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Pele/metabolismo , Pele/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Tamanho da Partícula , Ratos Sprague-Dawley , Absorção Cutânea/efeitos dos fármacos , Masculino
5.
J Chem Inf Model ; 64(6): 1996-2007, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38452014

RESUMO

Viruses are a group of widespread organisms that are often responsible for very dangerous diseases, as most of them follow a mechanism to multiply and infect their hosts as quickly as possible. Pathogen viruses also mutate regularly, with the result that measures to prevent virus transmission and recover from the disease caused are often limited. The development of new substances is very time-consuming and highly budgeted and requires the sacrifice of many living organisms. Computational chemistry methods allow faster analysis at a much lower cost and, most importantly, reduce the number of living organisms sacrificed experimentally to a minimum. Ionic liquids (ILs) are a group of chemical compounds that could potentially find a wide range of applications due to their potential virucidal activity. In our study, we conducted a complex computational analysis to predict the antiviral activity of ionic liquids against three surrogate viruses: two nonenveloped viruses, Listeria monocytogenes phage P100 and Escherichia coli phage MS2, and one enveloped virus, Pseudomonas syringae phage Phi6. Based on experimental data of toxic activity (logEC90), we assigned activity classes to 154 ILs. Prediction models were created and validated according to the Organization for Economic Co-operation and Development (OECD) recommendations using the Classification Tree method. Further, we performed an external validation of our models through virtual screening on a set of 1277 theoretically generated ionic liquids and then selected 10 active ionic liquids, which were synthesized to verify their activity against the analyzed viruses. Our study proved the effectiveness and efficiency of computational methods to predict the antiviral activity of ionic liquids. Thus, computational models are a cost-effective alternative approach compared with time-consuming experimental studies where live animals are involved.


Assuntos
Líquidos Iônicos , Animais , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Aprendizado de Máquina , Antivirais/farmacologia
6.
Nanotechnology ; 35(26)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38527365

RESUMO

The fruit extract ofBuchanania obovataand the eutectic-based ionic liquid were utilized, in an eco-friendly, inexpensive, simple method, for synthesizing zinc oxide nanoparticles (ZnO NPs). The influence of the reducing, capping and stabilizing agents, in both mediums, on the structure, optical, and morphological properties of ZnO NPs was extensively investigated. The surface plasmon resonance peaks were observed at 340 nm and 320 nm for the fruit-based and the eutectic-based ionic liquid mediums, respectively, indicating the formation of ZnO NPs. XRD results confirmed the wurtzite structure of the ZnO NPs, exhibiting hexagonal phases in the diffraction patterns. The SEM and TEM images display that the biosynthesized ZnO NPs exhibit crystalline and hexagonal shape, with an average size of 40 nm for the fruit-based and 25 nm for the eutectic-based ionic liquid. The Brunauer-Emmett-Teller (BET) surface area analysis, revealed a value ∼13 m2g-1for ZnO NPs synthesized using the fruit extract and ∼29 m2g-1for those synthesized using the eutectic-based ionic liquid. The antibacterial activity of the biosynthesized ZnO NPs was assessed against clinically isolated Gram-negative (E. coli) and Gram-positive (S. aureus) bacterial strains using the inhibition zone method. The ZnO NPs produced from the eutectic-based ionic liquids confirmed superior antibacterial activity against bothS. aureusandE. colicompared to those mediated by the utilized fruit extract. At a concentration of 1000, the eutectic-based ionic liquid mediated ZnO NPs displayed a maximum inhibition zone of 16 mm againstS. aureus, while againstE. coli, a maximum inhibition zone of 15 mm was observed using the fruit extract mediated ZnO NPs. The results of this study showed that the biosynthesized ZnO NPs can be utilized as an efficient substitute to the frequently used chemical drugs and covering drug resistance matters resulted from continual usage of chemical drugs by users.


Assuntos
Líquidos Iônicos , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Líquidos Iônicos/farmacologia , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química
7.
ACS Appl Mater Interfaces ; 16(14): 18063-18074, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38537174

RESUMO

Bacterial infections have become a serious threat to public health. The utilization of antibacterial textiles offers an effective way to combat bacterial infections at the source, instead of relying solely on antibiotic consumption. Herein, efficient and durable antibacterial fibers based on quercetin and cellulose were prepared by a triaxial microfluidic spinning technology using ionic liquids (ILs) as the solvents. It was indicated that the structure and properties of the antibacterial fibers were affected by the type of IL and the flow rates during the triaxial microfluidic spinning process. Quercetin regenerated from [Emim]Ac underwent structural transformation and obtained an increased water solubility, while quercetin regenerated from [Emim]DEP remained unchanged, which was proven by FI-IR, XRD, and UV analyses. Furthermore, antibacterial fibers regenerated from [Emim]Ac exhibited the highest antibacterial activity of 96.9% against S. aureus, achieved by reducing the inner-to-outer flow rate ratio to 0 and concentrating quercetin at the center of fibers. On the other hand, when [Emim]DEP was used as the solvent, balancing the inner-to-outer flow rate ratio to concentrate quercetin in the middle layer of the fiber was optimal for achieving the best antibacterial activity of 93.3% because it promised both the higher encapsulation efficiency and release rate. Computational fluid dynamics (CFD) mathematically predicted the solvent exchange process during triaxial spinning, explaining the influence of IL types and flow rates on quercetin distribution and encapsulation efficiency. It was indicated that optimizing the distribution of antibacterial agents within the fibers can fully unleash its antibacterial potential while preserving the mechanical properties of the fiber. Therefore, the proposed simple triaxial spinning strategy provides valuable insights into the design of biomedical materials.


Assuntos
Infecções Bacterianas , Líquidos Iônicos , Humanos , Solventes/química , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Microfluídica , Staphylococcus aureus , Quercetina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
8.
Colloids Surf B Biointerfaces ; 235: 113773, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350204

RESUMO

The maintenance of protein conformation under stressful conditions is one of the prevailing challenges. This has led to a rapid growth in the ingenious protein therapies, in the past few decades, prioritizing the investigation of the structure and function of proteins in novel environments. Ionic Liquids (ILs) are currently dominating the biomedical industry, by endowing great solubility and stability to bio-molecules, especially proteins. Recently, researchers have devoted their attention towards the artificial chaperone activity of several classes of ILs. Thus, comprehending the long-term as well as momentary stability of protein conformation in IL formulations is an absolute necessity. In this context, we present the activity of quinoline-based ionic liquids (ILs) as artificial cheperones against time-dependent, self induced fibril formation in Bovine Serum Albumin (BSA). Herein, a series of quinoline-based ILs were synthesized and characterized. The structural and morphological changes induced in BSA in the presence and absence of these ILs are corroborated using several spectroscopic measurements and in-silico studies. The anti-microbial and antibiofilm activity of these compounds demonstrating their medicinal properties is substantiated in this study. Furthermore, the present research also gives an account of the toxicity of these compounds under in vivo conditions, using C. elegans as the model organism.


Assuntos
Líquidos Iônicos , Quinolinas , Animais , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Caenorhabditis elegans/metabolismo , Soroalbumina Bovina/química , Biofilmes , Quinolinas/farmacologia
9.
ACS Appl Bio Mater ; 7(3): 1536-1546, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38346264

RESUMO

Functionally active aligned fibers are a promising approach to enhance neuro adhesion and guide the extension of neurons for peripheral nerve regeneration. Therefore, the present study developed poly(lactic-co-glycolic acid) (PLGA)-aligned electrospun mats and investigated the synergic effect with carbon nanotubes (CNTs) and Choline Bitartrate ionic liquid (Bio-IL) on PLGA fibers. Morphology, thermal, and mechanical performances were determined as well as the hydrolytic degradation and the cytotoxicity. Results revealed that electrospun mats are composed of highly aligned fibers, and CNTs were aligned and homogeneously distributed into the fibers. Bio-IL changed thermal transition behavior, reduced glass transition temperature (Tg), and favored crystal phase formation. The mechanical properties increased in the presence of CNTs and slightly decreased in the presence of the Bio-IL. The results demonstrated a decrease in the degradation rate in the presence of CNTs, whereas the use of Bio-IL led to an increase in the degradation rate. Cytotoxicity results showed that all the electrospun mats display metabolic activity above 70%, which demonstrates that they are biocompatible. Moreover, superior biocompatibility was observed for the electrospun containing Bio-IL combined with higher amounts of CNTs, showing a high potential to be used in nerve tissue engineering.


Assuntos
Líquidos Iônicos , Nanotubos de Carbono , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Líquidos Iônicos/farmacologia , Ácido Poliglicólico/química , Ácido Láctico/farmacologia , Ácido Láctico/química , Glicóis , Alicerces Teciduais
10.
ACS Appl Bio Mater ; 7(3): 1558-1568, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38373341

RESUMO

Ionic liquid (IL) cationic species have recently captivated the attention of pharmacists, biochemists, and biomedical scientists as promising antibacterial agents to deal with the multidrug resistance bacteria crisis. The structure and functional groups of ILs influence their physiochemical properties and biological activities. However, a comprehensive study is required to fully understand the details of the antibacterial activity of ILs carrying various functional groups. Herein, dicationic ILs (DCILs) are reported based on imidazolium rings as efficient antibacterial agents. The DCILs carried various functionalities such as 2-hydroxybutyl (DCIL-1), 2-hydroxy-3-isopropoxypropyl (DCIL-2), 2-hydroxy-3-(methacryloyloxy)propyl (DCIL-3), 2-hydroxy-2-phenylethyl (DCIL-4), and 2-hydroxy-3-phenoxypropyl (DCIL-5). The structure-antibacterial activity relationships of the DCILs against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) were comprehensively studied through antibacterial tests, morphology analysis, and adhesion tests. The experimental assays revealed an antibacterial efficacy order of DCIL-5 > DCIL-1 > DCIL-4 > DCIL-2 > DCIL-3. The all-atom molecular dynamics (MD) simulation showed a deep permeation of the hydrophobic -OPh functional group of DCIL-5 through the E. coli membrane model in agreement with the experimental observations. Current findings assist scientists in designing new task-specific DCILs for effective interactions with biological membranes for different applications.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Relação Estrutura-Atividade , Cátions/química
11.
Pest Manag Sci ; 80(6): 3047-3055, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38319125

RESUMO

BACKGROUND: An urgent need to find new methods for crop protection remains open due to the withdrawal from the market of the most toxic pesticides and increasing consumer awareness. One of the alternatives that can be used in modern agriculture is the use of bifunctional compounds whose actions towards plant protection are wider than those of conventional pesticides. RESULTS: In this study, we present the investigation of the biological efficacy of nine dual-functional salts containing a systemic acquired resistance (SAR)-inducing anion and the benzethonium cation. A significant result of the presented study is the discovery of the SAR induction activity of benzethonium chloride, which was previously reported only as an antimicrobial agent. Moreover, the concept of dual functionality was proven, as the application of presented compounds in a given concentrations resulted both in the control of human and plant bacteria species and induction of SAR. CONCLUSION: The strategy presented in this article shows the capabilities of derivatization of common biologically active compounds into their ionic derivatives to obtain bifunctional salts. This approach may be an example of the design of potential new compounds for modern agriculture. It provides plants with two complementary actions allowing to provide efficient protection to plants, if one mode of action is ineffective. © 2024 Society of Chemical Industry.


Assuntos
Benzetônio , Líquidos Iônicos , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Benzetônio/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Cátions/farmacologia , Cátions/química , Proteção de Cultivos/métodos , Bactérias/efeitos dos fármacos
12.
Molecules ; 29(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257354

RESUMO

The present work provides new evidence of the ongoing potential of surface-active ionic liquids (SAILs) and surface-active quaternary ammonium salts (surface-active QASs). To achieve this, a series of compounds were synthesized with a yield of ≥85%, and their thermal analyses were studied. Additionally, antimicrobial activity against both human pathogenic and soil microorganisms was investigated. Subsequently, their surface properties were explored with the aim of utilizing SAILs and surface-active QASs as alternatives to commercial amphiphilic compounds. Finally, we analyzed the wettability of the leaves' surface of plants occurring in agricultural fields at different temperatures (from 5 to 25 °C) and the model plant membrane of leaves. Our results show that the synthesized compounds exhibit higher activity than their commercial analogues such as, i.e., didecyldimethylammonium chloride (DDAC) and dodecyltrimethylammonium bromide (C12TAB), for which the CMC values are 2 mM and 15 mM. The effectiveness of the antimicrobial properties of synthesized compounds relies on their hydrophobic nature accompanied by a cut-off effect. Moreover, the best wettability of the leaves' surface was observed at 25 °C. Our research has yielded valuable insights into the potential effectiveness of SAILs and surface-active QASs as versatile compounds, offering a promising alternative to established antimicrobials and crop protection agents, all the while preserving substantial surface activity.


Assuntos
Anti-Infecciosos , Líquidos Iônicos , Humanos , Líquidos Iônicos/farmacologia , Sais , Anti-Infecciosos/farmacologia , Proteção de Cultivos , Folhas de Planta
13.
J Colloid Interface Sci ; 659: 449-462, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183811

RESUMO

Ionic liquids (ILs) have great potential to facilitate transdermal and topical drug delivery. Here, we investigated the mechanism of action of amphiphilic ILs 1-methyl-3-octylimidazolium bromide (C8MIM) and 3-dodecyl-1-methylimidazolium bromide (C12MIM) in skin barrier lipid models in comparison to their complex effects in human skin. C8MIM incorporated in a skin lipid model was a better permeation enhancer than C12MIM for water and model drugs, theophylline and diclofenac. Solid state 2H NMR and X-ray diffraction indicated that both ILs prefer the cholesterol-rich regions in skin lipids without significantly perturbing their lamellar arrangement and that C8MIM induces the formation of an isotropic lipid phase to a greater extent compared to C12MIM. C12MIM applied topically to the lipid model or human skin as a pretreatment was more potent than C8MIM. When co-applied with the drugs to human skin, aqueous C12MIM was more potent than C8MIM in enhancing theophylline permeation, but neither IL affected (even decreased) diclofenac permeation. Thus, the IL's ability to permeabilize skin lipid barrier is strongly modulated by its ability to reach the site of action and its interactions with drug and solvent. Such an interplay is far from trivial and requires detailed investigation to realize the full potential of ILs.


Assuntos
Líquidos Iônicos , Humanos , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Diclofenaco/farmacologia , Teofilina/farmacologia , Administração Cutânea , Lipídeos
14.
Biochim Biophys Acta Biomembr ; 1866(3): 184291, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296218

RESUMO

Ionic liquids (ILs) are salts composed of a combination of organic or inorganic cations and anions characterized by a low melting point, often below 100 °C. This property, together with an extremely low vapor pressure, low flammability and high thermal stability, makes them suitable for replacing canonical organic solvents, with a reduction of industrial activities impact on the environment. Although in the last decades the eco-compatibility of ILs has been extensively verified through toxicological tests performed on model organisms, a detailed understanding of the interaction of these compounds with biological membranes is far from being exhaustive. In this context, we have chosen to evaluate the effect of some ILs on native membranes by using chromatophores, photosynthetic vesicles that can be isolated from Rhodobacter capsulatus, a member of the purple non­sulfur bacteria. Here, carotenoids associated with the light-harvesting complex II, act as endogenous spectral probes of the transmembrane electrical potential (ΔΨ). By measuring through time-resolved absorption spectroscopy the evolution of the carotenoid band shift induced by a single excitation of the photosynthetic reaction center, information on the ΔΨ dissipation due to ionic currents across the membrane can be obtained. We found that some ILs cause a rather fast dissipation of the transmembrane ΔΨ even at low concentrations, and that this behavior is dose-dependent. By using two different models to analyze the decay of the carotenoid signals, we attempted to interpret at a mechanistic level the marked increase of ionic permeability caused by specific ILs.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Solventes/química , Análise Espectral , Permeabilidade , Carotenoides
15.
Macromol Rapid Commun ; 45(9): e2300689, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38288905

RESUMO

Polyionic liquid hydrogels attract increasing attention due to their unique properties and potential applications. However, research on amino acid-based polyionic liquid hydrogels is still in its infancy stage. Moreover, the effect of amino acid types on the properties of hydrogels is rarely studied to date. In this work, amino acid-based polyionic liquid hydrogels (D/L-PCAA hydrogels) are synthesized by copolymerizing vinyl choline-amino acid ionic liquids and acrylic acids using Al3+ as a crosslinking agent and bacterial cellulose (BC) as a reinforcing agent. The effects of amino acid types on mechanical and antimicrobial properties are systematically investigated. D-arginine-based hydrogel (D-PCArg) shows the highest tensile strength (220.7 KPa), D-phenylalanine-based hydrogel (D-PCPhe) exhibits the highest elongation at break (1346%), and L-aspartic acid-based hydrogel (L-PCAsp) has the highest elastic modulus (206.9 KPa) and toughness (1.74 MJ m-3). D/L-PCAsp hydrogels demonstrate stronger antibacterial capacity against Escherichia coli and Staphylococcus aureus, and D/L-PCPhe hydrogels possess higher antifungal activity against Cryptococcus neoformans. Moreover, the resultant hydrogels exhibit prominent hemocompatibility and low toxicity, as well as excellent self-healing capabilities (86%) and conductivity (2.8 S m-1). These results indicate that D/L-PCAA hydrogel provides a promise for applications in wound dressings.


Assuntos
Aminoácidos , Antibacterianos , Escherichia coli , Hidrogéis , Líquidos Iônicos , Staphylococcus aureus , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Escherichia coli/efeitos dos fármacos , Aminoácidos/química , Aminoácidos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/síntese química , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/síntese química
16.
Acta Biomater ; 173: 298-313, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979636

RESUMO

3D bioprinting enables the fabrication of biomimetic cell-laden constructs for cartilage regeneration, offering exclusive strategies for precise pharmacological screenings in osteoarthritis (OA). Synovial inflammation plays a crucial role in OA's early stage and progression, characterized by the increased of the synovial pro-inflammatory mediators and cytokines and chondrocyte apoptosis. Therefore, there is an urgent need to develop solutions for effectively managing the primary events associated with OA. To address these issues, a phenolic-based biocompatible ionic liquid approach, combining alginate (ALG), acemannan (ACE), and cholinium caffeate (Ch[Caffeate]), was used to produce easily printable bioinks. Through the use of this strategy 3D constructs with good printing resolution and high structural integrity were obtained. The encapsulation of chondrocytes like ATDC5 cells provided structures with good cell distribution, viability, and growth, for up to 14 days. The co-culture of the constructs with THP-1 macrophages proved their ability to block pro-inflammatory cytokines (TNF-α and IL-6) and mediators (GM-CSF), released by the cultured cells. Moreover, incorporating the biocompatible ionic liquid into the system significantly improved its bioactive performance without compromising its physicochemical features. These findings demonstrate that ALG/ACE/Ch[Caffeate] bioinks have great potential for bioengineering cartilage tissue analogs. Besides, the developed ALG/ACE/Ch[Caffeate] bioinks protected encapsulated chondrocyte-like cells from the effect of the inflammation, assessed by a co-culture system with THP-1 macrophages. These results support the increasing use of Bio-ILs in the biomedical field, particularly for developing 3D bioprinting-based constructs to manage inflammatory-based changes in OA. STATEMENT OF SIGNIFICANCE: Combining natural resources with active biocompatible ionic liquids (Bio-IL) for 3D printing is herein presented as an approach for the development of tools to manage inflammatory osteoarthritis (OA). We propose combining alginate (ALG), acemannan (ACE), and cholinium caffeate (Ch[Caffeate]), a phenolic-based Bio-IL with anti-inflammatory and antioxidant features, to produce bioinks that allow to obtain 3D constructs with good printing resolution, structural integrity, and that provide encapsulated chondrocyte-like cells good viability. The establishment of a co-culture system using the printed constructs and THP-1-activated macrophages allowed us to study the encapsulated chondrocyte-like cells behaviour within an inflammatory scenario, a typical event in early-stage OA. The obtained outcomes support the beneficial use of Bio-ILs in the biomedical field, particularly for the development of 3D bioprinting-based models that allow the monitoring of inflammatory-based events in OA.


Assuntos
Bioimpressão , Líquidos Iônicos , Osteoartrite , Humanos , Líquidos Iônicos/farmacologia , Citocinas , Osteoartrite/tratamento farmacológico , Inflamação , Anti-Inflamatórios/farmacologia , Alginatos/farmacologia , Alginatos/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Bioimpressão/métodos , Alicerces Teciduais/química
17.
ACS Biomater Sci Eng ; 9(8): 4709-4719, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37418317

RESUMO

High Mobility Group Box 1 (HMGB1) is a redox-sensitive molecule that plays dual roles in tissue healing and inflammation. We previously demonstrated that HMGB1 is stable when anchored by a well-characterized imidazolium-based ionic liquid (IonL), which serves as a delivery vehicle for exogenous HMGB1 to the site of injury and prevents denaturation from surface adherence. However, HMGB1 exists in different isoforms [fully reduced HMGB1 (FR), a recombinant version of FR resistant to oxidation (3S), disulfide HMGB1 (DS), and inactive sulfonyl HMGB1(SO)] that have distinct biological functions in health and disease. Thus, the goal of this study was to evaluate the effects of different recombinant HMGB1 isoforms on the host response using a rat subcutaneous implantation model. A total of 12 male Lewis rats (12-15 weeks) were implanted with titanium discs containing different treatments (n = 3/time point; Ti, Ti-IonL, Ti-IonL-DS, Ti-IonL-FR, and Ti-IonL-3S) and assessed at 2 and 14 days. Histological (H&E and Goldner trichrome staining), immunohistochemistry, and molecular analyses (qPCR) of surrounding implant tissues were employed for analysis of inflammatory cells, HMGB1 receptors, and healing markers. Ti-IonL-DS samples resulted in the thickest capsule formation, increased pro-inflammatory, and decreased anti-inflammatory cells, while Ti-IonL-3S samples demonstrated suitable tissue healing similar to uncoated Ti discs, as well as an upregulation of anti-inflammatory cells at 14 days compared to all other treatments. Thus, results from this study demonstrated that Ti-IonL-3S are safe alternatives for Ti biomaterials. Future studies are necessary to investigate the healing potential of Ti-IonL-3S in osseointegration scenarios.


Assuntos
Proteína HMGB1 , Líquidos Iônicos , Ratos , Masculino , Animais , Proteína HMGB1/genética , Proteína HMGB1/farmacologia , Titânio/farmacologia , Titânio/química , Líquidos Iônicos/farmacologia , Ratos Endogâmicos Lew , Anti-Inflamatórios
18.
ACS Appl Mater Interfaces ; 15(28): 33382-33396, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37421359

RESUMO

A strategy was developed to prepare antibacterial surfaces by electropolymerization of a pyrrole-functionalized imidazolium ionic liquid bearing an halometallate anion. The objective was to combine the antibacterial efficiency of polypyrrole (PPy) with those of the ionic liquid's components (cation and anion). For this, N-(1-methyl-3-octylimidazolium)pyrrole bromide monomer [PyC8MIm]Br was synthesized and coordinated to ZnCl2 affording [PyC8MIm]Br-ZnCl2. The antibacterial properties of [PyC8MIm]Br-ZnCl2 monomer were evaluated against Escherichia coli and Staphylococcus aureus by measurement of the minimum inhibitory concentration (MIC) values. This monomer presents higher activity against S. aureus (MIC = 0.098 µmol·mL-1) than against E. coli (MIC = 2.10 µmol·mL-1). Mixtures of pyrrole and the pyrrole-functionalized ionic liquid [PyC8MIm]Br-ZnCl2 were then used for the electrodeposition of PPy films on Fluorine-doped tin oxide (FTO) substrates. The concentration of pyrrole was fixed to 50 mM, while the concentration of [PyC8MIm]Br-ZnCl2 was varied from 5 to 100 mM. The efficient incorporation of the imidazolium cation and zinc halometallate anion into the films was confirmed by X-ray photoelectron spectroscopy (XPS) measurements. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements confirmed the homogeneity of the different films with structures that depend on the [PyC8MIm]Br-ZnCl2 concentration. The films' thickness determined by profilometry varies only slightly with the [PyC8MIm]Br-ZnCl2 concentration from 7.4 µm at 5 mM to 8.9 µM at 100 mM. The films become more hydrophilic with an increase of [PyC8MIm]Br-ZnCl2 concentration with water contact angles varying from 47° at the lowest concentration to 32° at the highest concentration. The antibacterial activities of the different PPy films were determined both by the halo inhibition method and by the colony forming units (CFUs) counting method over time against Gram-positive S. aureus and Gram-negative E. coli bacteria. Films obtained by incorporation of [PyC8MIm]Br-ZnCl2 showed excellent antibacterial properties, at least two times higher than those of neat PPy, validating our strategy. Furthermore, a comparison of the antibacterial properties of the films obtained using the same [PyC8MIm]Br-ZnCl2 concentration (50 mM) evidenced much better activity against Gram-positive (no bacterial survival within 5 min) than against Gram-negative bacteria (no bacterial survival within 3 h). Finally, the antibacterial performances over time could be tuned by the concentration of the employed pyrrole-functionalized ionic liquid monomer. Against E. coli, using 100 mM of [PyC8MIm]Br-ZnCl2, the bacteria were totally killed within a few minutes, using 50 mM, they were killed after 2 h while using 10 mM, about 20% of bacteria survived even after 6 h.


Assuntos
Líquidos Iônicos , Polímeros , Polímeros/farmacologia , Polímeros/química , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Escherichia coli , Staphylococcus aureus , Pirróis/farmacologia , Pirróis/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Cátions
19.
Front Cell Infect Microbiol ; 13: 1186117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265495

RESUMO

Airborne transmission is one of the most unpredictable routes of infection. Nowadays, airborne diseases increase ever than before because of the complex living air environment. Apart from the inorganic particles, active microorganisms including bacteria, viruses, and fungi are incorporated in the pathogens acting as threaten to public health, which can hardly be treated by the traditional air purification methods based on adsorption. Therefore, effective filtration material with antimicrobial activity is demanded to solve the problem. Ionic liquids (ILs) are a category of salts that remain liquid at room temperature. The stable physico-chemical properties and extremely low vapor pressure make them suitable for a wide range of applications. Thanks to the numerous combinations of cations and anions, as well as the ability of inheriting properties from the parent ions, Ils are believed to be a promising industrial material. In recent decades, several Ils, such as imidazolium, pyridinium, pyrrolidinium, phosphonium, and choline, have been found to have antimicrobial activity in their monomeric or polymeric forms. This work focuses on the antimicrobial activity and safety of the latest types of ionic liquids, discussing the synthesis or manufacturing methods of Ils for air purification and filtration. Furthermore, possible applications of Ils antimicrobial materials in medical instruments and indoor environments are mentioned to encourage the scientific community to further explore the potential applications of Ils.


Assuntos
Anti-Infecciosos , Líquidos Iônicos , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Desinfecção , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Bactérias , Ânions/química , Ânions/farmacologia
20.
Langmuir ; 39(27): 9396-9405, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37387122

RESUMO

While ionic liquids (ILs) are considered as prospective ingredients of new antimicrobial agents, it is important to understand the adverse effects of these molecules on human cells. Since cholesterol is the essential component of a human cell membrane, in the present study, the effect of an imidazolium-based IL has been investigated on the model membrane in the presence of cholesterol. The area per sphingomyelin lipid is found to reduce in the presence of the IL, which is quantified by the area-surface pressure isotherm of the lipid monolayer formed at the air-water interface. The effect is considerably diminished in the cholesterol-containing monolayer. Further, the IL is observed to decrease the rigidity of the cholesterol-free monolayer. Interestingly, the presence of cholesterol does not allow any change in this property of the layer at lower surface pressure. However, at a higher surface pressure, the IL increases the elasticity in the cholesterol-induced condensed phase of the lipid layer. The X-ray reflectivity measurement on a stack of cholesterol-free lipid bilayers proved the formation of IL-induced phase-separated domains in the matrix of a pure lipid phase. These domains are found to be formed by interdigitating the chains of the lipids, producing a thinner membrane. Such a phase is less intense in the cholesterol-containing membrane. All of these results indicate that the IL molecules may deform the cholesterol-free membrane of a bacterial cell, but the same may not be harmful to human beings as cholesterol could restrict the insertion in the cellular membrane of a human cell.


Assuntos
Líquidos Iônicos , Humanos , Líquidos Iônicos/farmacologia , Estudos Prospectivos , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Colesterol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA