Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
J Microbiol ; 61(7): 673-682, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37314676

RESUMO

Ulcerative colitis, a major form of inflammatory bowel disease (IBD) associated with chronic colonic inflammation, may be induced via overreactive innate and adaptive immune responses. Restoration of gut microbiota abundance and diversity is important to control the pathogenesis. Lactobacillus spp., well-known probiotics, ameliorate IBD symptoms via various mechanisms, including modulation of cytokine production, restoration of gut tight junction activity and normal mucosal thickness, and alterations in the gut microbiota. Here, we studied the effects of oral administration of Lactobacillus rhamnosus (L. rhamnosus) KBL2290 from the feces of a healthy Korean individual to mice with DSS-induced colitis. Compared to the dextran sulfate sodium (DSS) + phosphate-buffered saline control group, the DSS + L. rhamnosus KBL2290 group evidenced significant improvements in colitis symptoms, including restoration of body weight and colon length, and decreases in the disease activity and histological scores, particularly reduced levels of pro-inflammatory cytokines and an elevated level of anti-inflammatory interleukin-10. Lactobacillus rhamnosus KBL2290 modulated the levels of mRNAs encoding chemokines and markers of inflammation; increased regulatory T cell numbers; and restored tight junction activity in the mouse colon. The relative abundances of genera Akkermansia, Lactococcus, Bilophila, and Prevotella increased significantly, as did the levels of butyrate and propionate (the major short-chain fatty acids). Therefore, oral L. rhamnosus KBL2290 may be a useful novel probiotic.


Assuntos
Colite , Lacticaseibacillus rhamnosus , Probióticos , Animais , Camundongos , Colite/induzido quimicamente , Colite/imunologia , Colite/microbiologia , Colite/terapia , Colo/imunologia , Colo/microbiologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Inflamação/terapia , Camundongos Endogâmicos C57BL , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Biomarcadores/análise , Microbioma Gastrointestinal , Biodiversidade , Ácidos Graxos Voláteis/metabolismo , Administração Oral , Lactobacillaceae/classificação , Lactobacillaceae/fisiologia
2.
Biosci Biotechnol Biochem ; 87(8): 907-915, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37169920

RESUMO

We characterized the membrane vesicle fraction (RD-MV fraction) from bacterial strain RD055328, which is related to members of the genus Companilactobacillus and Lactiplantibacillus plantarum. RD-MVs and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were detected in the RD-MV fraction. Immunoglobulin A (IgA) was produced by Peyer's patch cells following the addition of the RD-MV fraction. In the presence of the RD-MV fraction, RAW264 cells produced the pro-inflammatory cytokine IL-6. Recombinant GAPDH probably induced the production of IL-6 by RAW264 cells via superficial toll-like receptor 2 (TLR2) recognition. A confocal laser scanning microscopy image analysis indicated that RD-MVs and GAPDH were taken up by RAW264 cells. GAPDH wrapped around RAW264 cells. We suggest that GAPDH from strain RD055328 enhanced the production of IgA by acquired immune cells via the production of IL-6 by innate immune cells through TLR2 signal transduction.


Assuntos
Proteínas de Bactérias , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora) , Lactobacillaceae , Transdução de Sinais , Receptor 2 Toll-Like , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Imunoglobulina A/imunologia , Interleucina-6/imunologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/isolamento & purificação , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/farmacologia , Adjuvantes Imunológicos/genética , Adjuvantes Imunológicos/isolamento & purificação , Adjuvantes Imunológicos/farmacologia , Animais , Camundongos , Lactobacillaceae/classificação , Lactobacillaceae/enzimologia , Lactobacillaceae/genética , Lactobacillaceae/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , NF-kappa B/imunologia , Ativação Transcricional/efeitos dos fármacos
3.
Artigo em Inglês | MEDLINE | ID: mdl-35138243

RESUMO

Five Gram-stain-positive strains (M1-10T, M1-13, M1-21T, M2-14T and S1-1T) were isolated from paper mulberry (Broussonetia papyrifera) in Taiwan. Cells were rod-shaped, non-motile, non-haemolytic, asporogenous, facultatively anaerobic, heterofermentative, and did not exhibit catalase and oxidase activities. Phylogenetic analysis of the 16S rRNA gene sequences revealed that these novel strains belonged to the genus Fructobacillus. On the basis of 16S rRNA gene sequence similarities, the type strains of Fructobacillus fructosus and Fructobacillus durionis were the closest neighbours to strains M1-10T, M1-13, M1-21T, M2-14T and S1-1T. Sequence analyses of concatenated two partial housekeeping genes, the RNA polymerase beta subunit (rpoC) and recombinase A (recA) also indicated that the novel strains belonged to the genus Fructobacillus. The 16S rRNA and concatenated rpoC and recA gene sequence similarities between strains M1-10T and M1-13 were 100 %, respectively. The average nucleotide identity values of M1-10T, M1-21T, M2-14T and S1-1T with F. fructosus and F. durionis were 75.1-78.9% and 76.5-77.5 %, respectively. The digital DNA-DNA hybridization values were 19.7-21.5% and 19.6-20.4 %, respectively. Phenotypic and genotypic test results demonstrated that these strains represent four novel species of the genus Fructobacillus, for which the names Fructobacillus papyriferae sp. nov., Fructobacillus papyrifericola sp. nov., Fructobacillus broussonetiae sp. nov. and Fructobacillus parabroussonetiae sp. nov. are proposed with the type strains M1-10T (=BCRC 81237T=NBRC 114433T), M1-21T (=BCRC 81239T=NBRC 114435T), M2-14T (=BCRC 81240T=NBRC 114436T) and S1-1T (=BCRC 81241T=NBRC 114437T), respectively.


Assuntos
Broussonetia , Lactobacillaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Broussonetia/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/química , Lactobacillaceae/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Taiwan
4.
Artigo em Inglês | MEDLINE | ID: mdl-35192450

RESUMO

Lactobacillus mishanensis was isolated from Chinese traditional pickle, and validly published in October 2019. Lactobacillus salsicarnum was isolated from salami products in Germany, and effectively described in November 2019. In the reclassification of the genus Lactobacillus by Zheng et al. in April 2020, L. mishanensis was transferred to Companilactobacillus as Companilactobacillus mishanensis comb. nov., and Companilactobacillus salsicarnum was proposed as a novel species. In the present study, the relationship between C. mishanensis and C. salsicarnum was evaluated. The type strains of C. mishanensis and C. salsicarnum shared 100 % 16S rRNA gene sequence similarity, 100 % pheS sequence similarity, 99.9 % rpoA sequence similarity, a 99.9 % average nucleotide identity value and a 99.5 % digital DNA-DNA hybridization value, indicating that they represent the same species. On the basis of the results presented here, we propose C. salsicarnum [Zheng et al. 2020] as a later heterotypic synonym of C. mishanensis (Wei and Gu 2019) [Zheng et al. 2020].


Assuntos
Lactobacillaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Genes Bacterianos , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Artigo em Inglês | MEDLINE | ID: mdl-35060849

RESUMO

Thirteen Gram-positive, catalase-positive, rod-shaped single colonies were obtained after culturing a strawberry leaf on de Man-Rogosa-Sharpe agar. Based on 16S rRNA gene and rpoA gene sequence similarities, ranging between 99.0-100% and 96.5-100%, respectively, the 13 isolates were found to be closely related to each other. Two of the independent isolates, AMBP162T and AMBP252, were whole-genome sequenced, and showed to be undistinguishable with an average nucleotide identity (ANI) value of 100 %. Compared to the reference genomes for all species in the family Lactobacillaceae, the AMBP162T genome was most similar to the reference strain of Latilactobacillus curvatus with ANI of only 89.5 %, indicating they were a different species. Based on genotypic and phenotypic data, a novel Latilactobacillus species, Latilactobacillus fragifolii sp. nov., with the type strain AMBP162T (=LMG 32285T=CECT 30357T) is proposed.


Assuntos
Fragaria , Lactobacillaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fragaria/microbiologia , Genes Bacterianos , Lactobacillaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Folhas de Planta/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34913426

RESUMO

In Japan, during a screening of lactic acid bacteria in spent mushroom substrates, an unknown bacterium was isolated and could not be assigned to any known species. Strain YK48GT is Gram-stain-positive, rod-shaped, non-motile, non-spore-forming and catalase-negative. The isolate grew in 0-4 % (w/v) NaCl, at 15-37 °C (optimum, 30 °C) and at pH 4.0-8.0 (optimum, pH 6.0). The genomic DNA G+C content of strain YK48GT was 42.5 mol%. Based on its 16S rRNA gene sequence, strain YK48GT represented a member of the genus Lentilactobacillus and showed the highest pairwise similarity to Lentilactobacillus rapi DSM 19907T (97.86 %). Phylogenetic analyses based on amino acid sequences of 466 shared protein-encoding genes also revealed that the strain was phylogenetically positioned in the genus Lentilactobacillus but did not suggest an affiliation with previously described species. The average nucleotide identity and digital DNA-DNA hybridization values between strain YK48GT and the type strains of phylogenetically related species were 72.2-76.6% and 19.0-21.2 %, respectively, indicating that strain YK48GT represents a novel species within the genus Lentilactobacillus. Phenotypic data further confirmed the differentiation of strain YK48GT from other members of the genus Lentilactobacillus. According to the results of the polyphasic characterization presented in this study, strain YK48GT represents a novel species of the genus Lentilactobacillus, for which the name Lentilactobacillus fungorum sp. nov. is proposed. The type strain is YK48GT (=JCM 32598T=DSM 107968T).


Assuntos
Agaricales , Lactobacillaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Japão , Lactobacillaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34779759

RESUMO

A novel lactic acid-producing, Gram-stain-positive, catalase-negative and rod-shaped strain, designated as strain C06_No.73T, was isolated from a traditional Japanese fermented beverage called kôso. According to the results of phylogenetic analysis based on 16S rRNA gene sequences, strain C06_No.73T belongs to the genus Lentilactobacillus. The closest type strain was Lentilactobacillus curieae CCTCC M 2011381T, with a sequence identity of 98.1 %. The identity values with other strains were all below 97 %. The isolate propagated under the conditions of 18-39 °C (optimum, 27 °C for 48 h incubation) and pH 4.0-7.0 (optimum, pH 6.5). The G+C content of its genomic DNA was determined to be 37.9 mol%. The main fatty acids were C16 : 0, C18 : 1 ω7c, C18 : 1 ω9c and C19 : 0 cyclopropane 11,12. The major polar lipid was identified as phosphatidylglycerol. No isoprenoid quinone was detected. The predominant cell-wall amino acids were lysine, alanine, glutamic acid and aspartic acid. Neither meso-diaminopimelic acid nor ornithine were detected. On the basis of this polyphasic taxonomic study, the isolate is concluded to represent a novel species, for which the name Lentilactobacillus kosonis sp. nov. is proposed. The type strain is C06_No.73T (=NBRC 111893T=BCRC 81282T).


Assuntos
Alimentos Fermentados , Lactobacillaceae/classificação , Filogenia , Verduras , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Japão , Lactobacillaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfatidilgliceróis/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
FEMS Microbiol Lett ; 368(18)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34549292

RESUMO

Strain Marseille-P3519T isolated from the fecal flora of a 25-year-old healthy French woman was a Gram-positive anaerobic bacterium, non-motile and non-spore forming. The 16S rRNA gene sequence of Marseille-P3519 showed 97.73% of sequence similarity with Limosilactobacillus reuteri DSM 20016, the closest species, phylogenetically. Furthermore, the average nucleotide identity of strain Marseille-3519 with its closest related species was 75.8% that was very below the recommended threshold (>95-96%). Its genome had 2 237 367 bp with 45.42 mol% of G + C content. Major fatty acids were C16:0 (50.8%), C18:1n9 (18.0%), C18:2n6 (9.8%) and C19:1n9 (8.9%). It was catalase negative and fermented glycerol, glucose, fructose, D-maltose, lactose and mannose. These findings support that strain Marseille-P3519 ( = CSURP3519 = CECT 30110) is a new member of the genus Limosilactobacillus for which the name Limosilactobacillus caccae sp. nov., is proposed.


Assuntos
Microbioma Gastrointestinal , Lactobacillaceae , Adulto , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos , Feminino , Humanos , Lactobacillaceae/química , Lactobacillaceae/classificação , Lactobacillaceae/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
9.
Artigo em Inglês | MEDLINE | ID: mdl-34313582

RESUMO

Thirteen Gram-stain-positive bacterial strains were isolated from Chinese traditional pickle and the gut of honeybee (Apis mellifera). These strains were characterized using a polyphasic taxonomic approach. The data demonstrated that 12 of the 13 strains represented eight novel species belonging to the genera Apilactobacillus, Secundilactobacillus, Levilactobacillus and Lacticaseibacillus; strains HN36-1T, 887-11T, F79-211-2T, 866-3T, 6-5(1)T, 13B17T, 117-1T and ZW152T were designated as the type strains. Based upon the data of polyphasic characterization obtained in the present study, eight novel species, Apilactobacillus nanyangensis sp. nov., Secundilactobacillus hailunensis sp. nov., Secundilactobacillus yichangensis sp. nov., Levilactobacillus andaensis sp. nov., Levilactobacillus wangkuiensis sp. nov., Levilactobacillus lanxiensis sp. nov., Lacticaseibacillus mingshuiensis sp. nov. and Lacticaseibacillus suilingensis sp. nov., are proposed and the type strains are HN36-1T (=JCM 33867T=CCTCC AB 2019385T), 887-11T (=NCIMB 15201T=CCM 8950T=JCM 33864T=CCTCC AB 2018396T), F79-211-2T (=NCIMB 15254T=JCM 33866T=CCTCC AB 2019384T), 866-3T (=JCM 33863T=CCTCC AB 2019383T), 6-5(1)T (=NCIMB 15229T=CCM 8977T=JCM 33564T=CCTCC AB 2019168T), 13B17T (=NCIMB 15230T=CCM 8979T=JCM 33565T=CCTCC AB 2019167T), 117-1T (=NCIMB 15232T=CCM 8980T=JCM 33567T) and ZW152T (=JCM 34363T=CCTCC AB 2020299T=LMG 32143T=CCM 9110T), respectively.


Assuntos
Abelhas/microbiologia , Alimentos Fermentados/microbiologia , Lactobacillaceae/classificação , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Microbiologia de Alimentos , Genes Bacterianos , Lactobacillaceae/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Food Microbiol ; 98: 103573, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33875193

RESUMO

Chinese Sichuan Paocai (CSP) is one of the world's best-known fermented vegetables with a large presence in the Chinese market. The dynamic microbial community is the main contributor to Paocai fermentation. However, little is known about the ecological distribution and functional importance of these community members. In this study, metatranscriptomics was used to comprehensively explore the active microbial community members and key transcripts with significant functions in the Paocai fermentation process. Enterobacter, Leuconostoc, and Lactobacillus dominated the three-fermentation stages (Pre-, Mid- and Lat-), respectively. Carbon metabolism was the most abundant pathway. GH (glycoside hydrolase) and GT (lycosyl transferase) were the two most highly expressed carbohydrate-active enzymes. The most highly differentially expressed genes were grouped in the biosynthesis of amino acids, followed by glycolysis. Meta-pathways in the Sichuan Paocai fermentation ecosystem were reconstructed, Lactobacillaceae and Enterobacteriaceae were the two most important metabolic contributors. In addition, the nrfA and nirB were two genes referred to distinct nitrite reductase enzymes and 9 specialized genes, such as eclo, ron and ent were expressed to produce autoinducer 2 (AI-2) kinase in response to population density. The present study revealed functional enzymes and meta-pathways of the active microbial communities, which provide a deeper understanding of their contribution to CSP products.


Assuntos
Brassica/microbiologia , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/metabolismo , Alimentos Fermentados/microbiologia , Lactobacillaceae/isolamento & purificação , Microbiota , Verduras/microbiologia , Brassica/metabolismo , China , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Fermentação , Microbiologia de Alimentos , Lactobacillaceae/classificação , Lactobacillaceae/genética , Lactobacillaceae/metabolismo , Metagenômica , Transcriptoma , Verduras/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-33533708

RESUMO

Ten strains, BG-AF3-AT, pH52_RY, WF-MT5-AT, BG-MG3-A, Lr3000T, RRLNB_1_1, STM3_1T, STM2_1, WF-MO7-1T and WF-MA3-C, were isolated from intestinal or faecal samples of rodents, pheasant and primate. 16S rRNA gene analysis identified them as Limosilactobacillus reuteri. However, average nucleotide identity and digital DNA-DNA hybridization values based on whole genomes were below 95 and 70 %, respectively, and thus below the threshold levels for bacterial species delineation. Based on genomic, chemotaxonomic and morphological analyses, we propose five novel species with the names Limosilactobacillus balticus sp. nov. (type strain BG-AF3-AT=DSM 110574T=LMG 31633T), Limosilactobacillus agrestis sp. nov. (type strain WF-MT5-AT=DSM 110569T=LMG 31629T), Limosilactobacillus albertensis sp. nov. (type strain Lr3000T=DSM 110573T=LMG 31632T), Limosilactobacillus rudii sp. nov. (type strain STM3_1T=DSM 110572T=LMG 31631T) and Limosilactobacillus fastidiosus sp. nov. (type strain WF-MO7-1T=DSM 110576T=LMG 31630T). Core genome phylogeny and experimental evidence of host adaptation of strains of L. reuteri further provide a strong rationale to consider a number of distinct lineages within this species as subspecies. Here we propose six subspecies of L. reuteri: L. reuteri subsp. kinnaridis subsp. nov. (type strain AP3T=DSM 110703T=LMG 31724T), L. reuteri subsp. porcinus subsp. nov. (type strain 3c6T=DSM 110571T=LMG 31635T), L. reuteri subsp. murium subsp. nov. (type strain lpuph1T=DSM 110570T=LMG 31634T), L. reuteri subsp. reuteri subsp. nov. (type strain F 275T=DSM 20016T=ATCC 23272T), L. reuteri subsp. suis subsp. nov. (type strain 1063T=ATCC 53608T=LMG 31752T) and L. reuteri subsp. rodentium subsp. nov. (type strain 100-23T=DSM 17509T=CIP 109821T).


Assuntos
Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Lactobacillaceae/classificação , Filogenia , Animais , Animais Selvagens/microbiologia , Animais de Zoológico/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Galliformes/microbiologia , Lactobacillaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Primatas/microbiologia , RNA Ribossômico 16S/genética , Roedores/microbiologia , Análise de Sequência de DNA
12.
Arch Microbiol ; 203(5): 2193-2198, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33620525

RESUMO

A novel Gram-reaction positive-, catalase and oxidase negative-, rod-shaped, facultatively anaerobic bacterial strain, DCY120T, was isolated from the gut of honeybee (Apis cerana) in Gyeonggi-do, South Korea. Strain DCY120T belongs to the genus Bombilactobacillus and is moderately related to Bombilactobacillus mellis Hon2T (94.1% similarity), Bombilactobacillus bombi BTLCH M1/2T (93.8%), and Bombilactobacillus mellifer Bin4NT (93.5%) based on 16S rRNA gene sequence analysis. The genome of strain DCY120T was sequenced and the average nucleotide identity (ANI) between strain DCY120T and the related Bombilactobacillus type strains were below the threshold value (95-96%) for species delineation. The major fatty acids were C16:0, C18:1 ω9c, Summed C19:1 ω6c/C19:0 cyclo ω10c/C19:0 ω6 and Summed C18:1 ω7c/C18:1 ω6c. The major polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), one glycolipid (GL), and one unidentified aminophospholipid (APL). The amino acids in peptidoglycan of strain DCY120T were lysine, alanine, glutamic acid, and aspartic acid. In conclusion, the description of phenotypic and genotypic properties support strain DCY120T as a novel species within the genus Bombilactobacillus, for which the name Bombilactobacillus apium sp. nov. is proposed. The type strain is DCY120T (= KCTC 43194T = JCM 34006T).


Assuntos
Abelhas/microbiologia , Lactobacillaceae , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Genoma Bacteriano/genética , Glicolipídeos , Lactobacillaceae/classificação , Lactobacillaceae/genética , Lactobacillaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA
13.
Artigo em Inglês | MEDLINE | ID: mdl-33480835

RESUMO

A Gram-stain-positive, catalase-negative, rod-shaped, non-motile, non-spore-forming, and facultatively anaerobic strain CRM56-3T, isolated from fermented tea leaves collected from Chiang Rai province, Thailand, was characterized based on a polyphasic approach. The strain produced dl-lactic acid heterofermentatively from glucose. It grew at 15-42 °C (optimum at 30 °C), pH 3.5-8.0 (optimum pH 6.0) and in 1-4 % (w/v) NaCl. Strain CRM56-3T contained C16:0, C19:0 cyclo ω8c, and C18:1 ω7c, and/or C18:1 ω6c as major cellular fatty acids. Based on 16S rRNA gene sequence analysis, strain CRM56-3T belongs to the genus Secundilactobacillus and was closely related to Secundilactobacillus odoratitofui DSM 19909T (99.2 %), S. collinoides JCM 1123T (98.9 %), and S. paracollinoides DSM 15502T (98.7 %). The draft genome of strain CRM56-3T contained 2681617 bp with 2413 coding sequences and DNA G+C content determined from genome sequence of 44.5 mol%. The digital DNA-DNA hybridization (dDDH) between strain CRM56-3T and S. odoratitofui DSM 19909T, S. collinoides JCM 1123T, and S. paracollinoides DSM 15502T were 19.5, 20.4, and 21.6 %, respectively. The average nucleotide identity (ANIm) and the average amino acid identity (AAI) between strain CRM56-3T and closely related strains were lower than 85.0 and 80.0 %, respectively. The strain CRM56-3T was clearly distinguished from related Secundilactobacillus species by its phenotypic and chemotaxonomic characteristics, 16S rRNA gene sequence similarity, and the draft genome analysis. Therefore, the strain represents a novel species of the genus Secundilactobacillus, for which the name of Secundilactobacillus folii sp. nov. is proposed. The type strain is CRM56-3T (=JCM 34223T=LMG 31663T=TISTR 2851T).


Assuntos
Alimentos Fermentados , Lactobacillaceae/classificação , Filogenia , Folhas de Planta/microbiologia , Chá/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Lactobacillaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tailândia
14.
J Sci Food Agric ; 101(3): 871-879, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32729126

RESUMO

BACKGROUND: The aim of this study was to investigate the effect of lactic fermentation on soy protein gastrointestinal digestive pattern and the influence of protein digesta on human faecal microbiota. Soymilk and soy yogurt were prepared in this study and a novel in vitro dynamic gastrointestinal model was employed to simulate gastric and duodenum digestions. Particle size, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), and peptide content were monitored at the end of duodenum tract. RESULTS: Ingestion of soy yogurt allowed a rapid drop in pH from 7.0 to 5.0 at simulated duodenal digestion (0-30 min), and resulted in a loss in soluble protein content compared to that of soymilk. The electrophoretic pattern between soymilk and soy yogurt exerted distinctive differences at early stages of duodenal digestion (0-60 min) and resulted in different peptide contents (180 min). Soy yogurt duodenal digesta collected at 180 min (D180), by co-fermentation with human intestinal flora distribution, allowed a higher population in Bifidobacterium spp., Lactobacillus/Enterococcus spp. and Streptococcus/Lactococcus spp., whereas soy yogurt D30 resulted in lower population in Clostridium and Escherichia coli compared to samples co-fermented with soymilk digesta. CONCLUSION: The results demonstrated lactic fermentation of soy protein modulated human intestinal microflora and might relate to the different protein digestive behaviours. © 2020 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Trato Gastrointestinal/metabolismo , Lactobacillaceae/metabolismo , Proteínas de Soja/metabolismo , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Digestão , Fezes/microbiologia , Feminino , Fermentação , Trato Gastrointestinal/microbiologia , Humanos , Lactobacillaceae/classificação , Lactobacillaceae/genética , Lactobacillaceae/isolamento & purificação , Masculino , Alimentos de Soja/análise
15.
Microb Genom ; 7(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33166245

RESUMO

Species belonging to the family Lactobacillaceae are found in highly diverse environments and play an important role in fermented foods and probiotic products. Many of these species have been individually reported to harbour plasmids that encode important genes. In this study, we performed comparative genomic analysis of publicly available data for 512 plasmids from 282 strains represented by 51 species of this family and correlated the genomic features of plasmids with the ecological niches in which these species are found. Two-thirds of the species had at least one plasmid-harbouring strain. Plasmid abundance and GC content were significantly lower in vertebrate-adapted species as compared to nomadic and free-living species. Hierarchical clustering highlighted the distinct nature of plasmids from the nomadic and free-living species than those from the vertebrate-adapted species. EggNOG-assisted functional annotation revealed that genes associated with transposition, conjugation, DNA repair and recombination, exopolysaccharide production, metal ion transport, toxin-antitoxin system, and stress tolerance were significantly enriched on the plasmids of the nomadic and in some cases nomadic and free-living species. On the other hand, genes related to anaerobic metabolism, ABC transporters and the major facilitator superfamily were overrepresented on the plasmids of the vertebrate-adapted species. These genomic signatures correlate with the comparatively nutrient-depleted, stressful and dynamic environments of nomadic and free-living species and nutrient-rich and anaerobic environments of vertebrate-adapted species. Thus, these results indicate the contribution of the plasmids in the adaptation of lactobacilli to their respective habitats. This study also underlines the potential application of these plasmids in improving the technological and probiotic properties of lactic acid bacteria.


Assuntos
Lactobacillaceae/genética , Plasmídeos/genética , Adaptação Fisiológica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reparo do DNA , Genômica , Lactobacillaceae/classificação , Lactobacillaceae/fisiologia , Filogenia , Plasmídeos/metabolismo , Recombinação Genética , Especificidade da Espécie
16.
Microbiol Res ; 243: 126625, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33129664

RESUMO

In this study the intraspecies diversity of Fructilactobacillus (F.) sanfranciscensis (formerly Lactobacillus sanfranciscensis) was characterized by comparative genomics supported by physiological data. Twenty-four strains of F. sanfranciscensis were analyzed and sorted into six different genomic clusters. The core genome comprised only 43,14 % of the pan genome, i.e. 0.87 Mbp of 2.04 Mbp. The main annotated genomic differences reside in maltose, fructose and sucrose as well as nucleotide metabolism, use of electron acceptors, and exopolysacchride formation. Furthermore, all strains are well equipped to cope with oxidative stress via NADH oxidase and a distinct thiol metabolism. Only ten of 24 genomes contain two maltose phosphorylase genes (mapA and mapB). In F. sanfranciscensis TMW 1.897 only mapA was found. All strains except those from genomic cluster 2 contained the mannitol dehydrogenase and should therefore be able to use fructose as external electron acceptor. Moreover, six strains were able to grow on fructose as sole carbon source, as they contained a functional fructokinase gene. No growth was observed on pentoses, i.e. xylose, arabinose or ribose, as sole carbon source. This can be referred to the absence of ribose pyranase rbsD in all genomes, and absence of or mutations in numerous other genes, which are essential for arabinose and xylose metabolism. Seven strains were able to produce exopolysaccharides (EPS) from sucrose. In addition, the strains containing levS were able to grow on sucrose as sole carbon source. Strains of one cluster exhibit auxotrophies for purine nucleotides. The physiological and genomic analyses suggest that the biodiversity of F. sanfranciscensis is larger than anticipated. Consequently, "original" habitats and lifestyles of F. sanfranciscensis may vary but can generally be referred to an adaptation to sugary (maltose/sucrose/fructose-rich) and aerobic environments as found in plants and insects. It can dominate sourdoughs as a result of reductive evolution and cooperation with fructose-delivering, acetate-tolerant yeasts.


Assuntos
Genoma Bacteriano , Lactobacillaceae/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodiversidade , Pão/análise , Pão/microbiologia , Tamanho do Genoma , Lactobacillaceae/classificação , Lactobacillaceae/isolamento & purificação , Lactobacillaceae/metabolismo , Complexos Multienzimáticos , NADH NADPH Oxirredutases , Filogenia , Sacarose/metabolismo , Triticum/microbiologia , Xilose/metabolismo
17.
Int J Syst Evol Microbiol ; 70(12): 6476-6481, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33174826

RESUMO

A Gram-stain-positive, facultative anaerobic, rod-shaped bacteria isolated from the small intestine of a mini pig was designated as strain YH-lac9T. 16S rRNA gene sequence analysis revealed that the strain belongs to the genus Lentilactobacillus and is closely related to Lentilactobacillus senioris JCM 17472T, Lentilactobacillus rapi JCM 15042T and Lentilactobacillus diolivorans JCM 13927T, with 97.6, 96.2 and 95.7 % sequence similarity, respectively. Analysis of housekeeping gene sequences (pheS and recA) revealed that the strain formed a sub-cluster with L. senioris, supporting the results of 16S rRNA gene sequences analysis. The average nucleotide identity value for YH-lac9T and the most closely related strain is 74.1 %. The main fatty acids are C18 : 1ω9c, summed feature 7, C16 : 0 and summed feature 8. The G+C content of the genomic DNA is 37.8 mol%. In view of its chemotaxonomic, phenotypic and phylogenetic properties, YH-lac9T (=KCTC 25005=JCM 33997) represents a novel taxon. The name Lentilactobacillus kribbianus sp. nov. is proposed.


Assuntos
Intestino Delgado/microbiologia , Lactobacillaceae/classificação , Filogenia , Porco Miniatura/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Lactobacillaceae/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Suínos
18.
Food Microbiol ; 91: 103513, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32539960

RESUMO

This work aimed to estimate the inactivation kinetic parameters of four potential beer spoilage bacteria (Lactobacillus brevis DSM 6235, Lactobacillus casei ATCC 334, Pediococcus damnosus DSM 20289 and Pediococcus damnosus ATCC 29358) inoculated in brewing yeast submitted to acid washing with purposes of yeast recycle. The experiments were conducted at 4 °C in solutions with pH 1.5, pH 2, and pH 3 adjusted employing 85% phosphoric acid. The acid washing treatment of brewing yeasts in the most common pH used (pH 2.0) demanded almost 50 min for the first decimal reduction (δ) of L. brevis DSM 6235. Sensible strains to acid washing such as P. damnosus DSM 20289 demanded almost 70 min for 4 log reductions to be achieved. On the other hand, pH reduction of the acid washing from 2.0 to 1.5 allowed 4 log reduction of L. brevis DSM 6235) to be obtained in less than 50 min, without ruining brewer's yeast viability. Acid washing in pH 1.5 is a viable method for the inactivation of bacterial contaminants of brewing yeasts. Recycling of brewing yeasts through this approach may contribute to a more sustainable and environmental-friendly industry.


Assuntos
Cerveja/microbiologia , Lactobacillaceae/efeitos dos fármacos , Ácidos Fosfóricos/farmacologia , Leveduras/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Fermentação , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Cinética , Lactobacillaceae/classificação , Lactobacillaceae/crescimento & desenvolvimento , Lactobacillaceae/metabolismo , Leveduras/metabolismo
19.
Int J Syst Evol Microbiol ; 70(4): 2782-2858, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32293557

RESUMO

The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and genotypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade-specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host-adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, Lactiplantibacillus, Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus and Lentilactobacillus are proposed. We also propose to emend the description of the family Lactobacillaceae to include all genera that were previously included in families Lactobacillaceae and Leuconostocaceae. The generic term 'lactobacilli' will remain useful to designate all organisms that were classified as Lactobacillaceae until 2020. This reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties, as exemplified for the emended genus Lactobacillus encompassing species adapted to vertebrates (such as Lactobacillus delbrueckii, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensensii, Lactobacillus johnsonii and Lactobacillus acidophilus) or invertebrates (such as Lactobacillus apis and Lactobacillus bombicola).


Assuntos
Lactobacillaceae/classificação , Lactobacillus/classificação , Leuconostocaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Análise de Sequência de DNA
20.
Molecules ; 24(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640295

RESUMO

Two by-products containing phenols and polysaccharides, a "pâté" (OP) from the extra virgin olive oil milling process and a decoction of pomegranate mesocarp (PM), were investigated for their effects on human microbiota using the SHIME® system. The ability of these products to modulate the microbial community was studied simulating a daily intake for nine days. Microbial functionality, investigated in terms of short chain fatty acids (SCFA) and NH4+, was stable during the treatment. A significant increase in Lactobacillaceae and Bifidobacteriaceae at nine days was induced by OP mainly in the proximal tract. Polyphenol metabolism indicated the formation of tyrosol from OP mainly in the distal tract, while urolithins C and A were produced from PM, identifying the human donor as a metabotype A. The results confirm the SHIME® system as a suitable in vitro tool to preliminarily investigate interactions between complex botanicals and human microbiota before undertaking more challenging human studies.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Olea/química , Fenóis/administração & dosagem , Polissacarídeos/administração & dosagem , Punica granatum/química , Compostos de Amônio/metabolismo , Bifidobacterium/classificação , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/isolamento & purificação , DNA Bacteriano/análise , Ácidos Graxos Voláteis/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactobacillaceae/classificação , Lactobacillaceae/efeitos dos fármacos , Lactobacillaceae/isolamento & purificação , Fenóis/química , Fenóis/farmacologia , Filogenia , Polissacarídeos/química , Polissacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA