Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.817
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731878

RESUMO

ß-lactoglobulin (BLG) forms amyloid-like aggregates at high temperatures, low pH, and low ionic strengths. At a pH below 2, BLG undergoes hydrolysis into peptides, with N-terminal peptides 1-33 and 1-52 being prone to fibrillization, forming amyloid-like fibrils. Due to their good mechanical properties, BLG amyloids demonstrate great potential for diverse applications, including biosensors, nanocomposites, and catalysts. Consequently, further studies are essential to comprehensively understand the factors governing the formation of BLG amyloid-like morphologies. In this study, all-atom molecular dynamics simulations were employed to explore the aggregation of N-terminal 1-33 and 1-52 BLG peptides under conditions of pH 2 and at 10 mM NaCl concentration. The simulations revealed that the peptides spontaneously assembled into aggregates of varying sizes. The aggregation process was enabled by the low charge of peptides and the presence of hydrophobic residues within them. As the peptides associated into aggregates, there was a concurrent increase in ß-sheet structures and the establishment of hydrogen bonds, enhancing the stability of the aggregates. Notably, on average, 1-33 peptides formed larger aggregates compared to their 1-52 counterparts, while the latter exhibited a slightly higher content of ß-sheets and higher cluster orderliness. The applied approach facilitated insights into the early stages of amyloid-like aggregation and molecular-level insight into the formation of ß-sheets, which serve as nucleation points for further fibril growth.


Assuntos
Lactoglobulinas , Simulação de Dinâmica Molecular , Agregados Proteicos , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Ligação de Hidrogênio , Amiloide/química , Peptídeos/química , Concentração de Íons de Hidrogênio , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo
2.
Int J Biol Macromol ; 267(Pt 1): 131304, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569999

RESUMO

The study aimed to fabricate ß-Lactoglobulin-catechin (ß-La-Ca) conjugates as a natural designed antioxidant emulsifier to improve the physicochemical stability of resveratrol emulsion delivery system. Fourier transform infrared (FT-IR) and fluorescence spectroscopy analysis confirmed the formation of conjugates using free radical grafting. The antioxidant ability of emulsion was evaluated by DPPH scavenging activities and ORAC experiments. The emulsion stabilized by ß-La-Ca conjugates exhibited strong antioxidant activity with ORAC value of 2541.39 ± 29.58 µmol TE/g, which was significantly higher than that by ß-Lactoglobulin alone with 387.96 ± 23.45 µmol TE/g or their mixture with 948.23 ± 32.77 µmol TE/g. During the whole simulated gastrointestinal digestion, emulsion stabilized by ß-La-Ca conjugates exhibited excellent oxidative stability that the lipid was mainly digested in the small intestine. This behavior attributed to the greater stability of resveratrol to chemical transformation leading to a higher overall bioavailability in vivo. These results suggested that the ß-La-Ca conjugates could be used to fabricate the emulsion-based delivery system to improve the oxidative stability and bioavailability of chemically labile hydrophobic bioactive compounds.


Assuntos
Antioxidantes , Disponibilidade Biológica , Catequina , Emulsões , Lactoglobulinas , Resveratrol , Resveratrol/química , Resveratrol/farmacocinética , Resveratrol/farmacologia , Lactoglobulinas/química , Emulsões/química , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Catequina/química , Catequina/farmacocinética , Espectroscopia de Infravermelho com Transformada de Fourier , Oxirredução
3.
J Agric Food Chem ; 72(15): 8285-8303, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588092

RESUMO

The gut barrier plays an important role in health maintenance by preventing the invasion of dietary pathogens and toxins. Disruption of the gut barrier can cause severe intestinal inflammation. As a natural source, milk is enriched with many active constituents that contribute to numerous beneficial functions, including immune regulation. These components collectively serve as a shield for the gut barrier, protecting against various threats such as biological, chemical, mechanical, and immunological threats. This comprehensive review delves into the active ingredients in milk, encompassing casein, α-lactalbumin, ß-lactoglobulin, lactoferrin, the milk fat globular membrane, lactose, transforming growth factor, and glycopeptides. The primary focus is to elucidate their impact on the integrity and function of the gut barrier. Furthermore, the implications of different processing methods of dairy products on the gut barrier protection are discussed. In conclusion, this study aimed to underscore the vital role of milk and dairy products in sustaining gut barrier health, potentially contributing to broader perspectives in nutritional sciences and public health.


Assuntos
Caseínas , Leite , Animais , Leite/metabolismo , Caseínas/metabolismo , Lactalbumina/metabolismo , Lactoglobulinas/metabolismo , Dieta
4.
J Am Chem Soc ; 146(18): 12766-12777, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656109

RESUMO

Per- and polyfluoroalkyl substances (PFAS) pose significant health risks due to their widespread presence in various environmental and biological matrices. However, the molecular-level mechanisms underlying the interactions between PFAS and biological constituents, including proteins, carbohydrates, lipids, and DNA, remain poorly understood. Here, we investigate the interactions between a legacy PFAS, viz. perfluorooctanoic acid (PFOA), and the milk protein ß-lactoglobulin (BLG) obtained using a combination of experimental and computational techniques. Circular dichroism studies reveal that PFOA perturbs the secondary structure of BLG, by driving a dose-dependent loss of α-helicity and alterations in its ß-sheet content. Furthermore, exposure of the protein to PFOA attenuates the on-rate constant for the binding of the hydrophobic probe 8-anilino-1-naphthalene sulfonic acid (ANS), suggesting potential functional impairment of BLG by PFOA. Steered molecular dynamics and umbrella sampling calculations reveal that PFOA binding leads to the formation of an energetically favorable novel binding pocket within the protein, when residues 129-142 are steered to unfold from their initial α-helical structure, wherein a host of intermolecular interactions between PFOA and BLG's residues serve to insert the PFOA into the region between the unfolded helix and beta-sheets. Together, the data provide a novel understanding of the atomic and molecular mechanism(s) by which PFAS modulates structure and function in a globular protein, leading to a beginning of our understanding of altered biological outcomes.


Assuntos
Caprilatos , Fluorocarbonos , Lactoglobulinas , Fluorocarbonos/química , Caprilatos/química , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Sítios de Ligação , Ligação Proteica , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Modelos Moleculares , Dicroísmo Circular
5.
J Agric Food Chem ; 72(18): 10579-10583, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683941

RESUMO

A 14C-based method was developed to study the rate and extent of covalent bond formation between ß-lactoglobulin and three model flavor compounds: a ketone (2-undecanone UDO), an aldehyde (decanal DAL), an isothiocyanate (2-phenylethyl isothiocyanate PEITC), and an unreactive "methods blank" (decane DEC). Aqueous protein solutions with one of the 14C-labeled model flavor compounds were placed in water baths at 25, 45, and 65 °C for 4 weeks measuring the amount of flavor: protein reaction at 1, 3, 7, 14, 21, and 28 days. UDO showed lowest reactivity (max of 0.9% of added compound reacted), DAL (max of 16.4% reacted), and PEITC (max of 71.8% reacted). All compounds showed a rapid initial reaction rate which slowed after ca. 7 days. It appears that only PEITC (at 65 °C) saturated all potential protein-reactive sites over the storage period.


Assuntos
Aromatizantes , Isotiocianatos , Cetonas , Lactoglobulinas , Lactoglobulinas/química , Aromatizantes/química , Isotiocianatos/química , Cetonas/química , Radioisótopos de Carbono/análise , Radioisótopos de Carbono/química , Aldeídos/química , Cinética
6.
Colloids Surf B Biointerfaces ; 238: 113924, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669751

RESUMO

ß-lactoglobulin (BLG) is the major whey protein with negative charges at neutral pH in aqueous media. Thus, the interaction with mucins, the major polyanionic component of mucus, is very weak due to the electrostatic repulsion between them. The present study postulates that cationization of BLG molecules may reverse the interaction characteristics between BLG and mucin from repulsive to associative. To this end, cationic-modified BLGs were prepared by grafting positively charged ethylenediamine (EDA) moieties into the negatively charged carboxyl groups on the aspartic and glutamic acid residues and compared with non-modified BLG upon mixing with porcine gastric mucin (PGM). To characterize the structural and conformational features of PGM, non/cationized BLGs, and their mixtures, various spectroscopic approaches, including zeta potential, dynamic light scattering (DLS), and circular dichroism (CD) spectroscopy were employed. Importantly, we have taken surface adsorption with optical waveguide lightmode spectroscopy (OWLS), and tribological properties with pin-on-disk tribometry at the sliding interface as the key approaches to determine the interaction nature between them as mixing PGM with polycations can lead to synergistic lubrication at the nonpolar substrate in neutral aqueous media as a result of an electrostatic association. All the spectroscopic studies and a substantial improvement in lubricity collectively supported a tenacious and associative interaction between PGM and cationized BLGs, but not between PGM and non-modified BLG. This study demonstrates a unique and successful approach to intensify the interaction between BLG and mucins, which is meaningful for a broad range of disciplines, including food science, macromolecular interactions, and biolubrication etc.


Assuntos
Cátions , Mucinas Gástricas , Lactoglobulinas , Animais , Suínos , Mucinas Gástricas/química , Mucinas Gástricas/metabolismo , Cátions/química , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Dicroísmo Circular , Etilenodiaminas/química , Eletricidade Estática , Adsorção
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124090, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428163

RESUMO

(-)-Epicatechin gallate (ECG) and piceatannol (PIC) are commonly polyphenols with excellent biological activities. ß-Lactoglobulin (BLG) is a food-grade globule protein and its morphologies are sensitive to pH. This study used experimental and computational methods to determine the interaction of single or combined ECG and PIC with BLG at different pHs. The static quenching process was determined through fluorescence and ultraviolet-visible spectroscopy. Compared with ECG, PIC could significantly bind to BLG with higher affinity. Their binding affinity for BLG with different morphologies followed the tendency of monomer > dimer > tetramer. The negative contribution of van der Waals forces, electrostatic interactions, and hydrogen bonds to ΔHo exceeded the positive contribution of hydrophobic interactions in the spontaneous and exothermic process. The reduced binding affinity in the ternary systems demonstrated the competitive binding between ECG and PIC on BLG, and the hinder effect of ECG or PIC was enhanced with increasing pH. Molecular docking studies revealed the same binding sites of ECG and PIC on various conformations of BLG and identical driven forces as thermodynamic results. Tryptophan and tyrosine were the main participators in the BLG + ECG and BLG + PIC systems, respectively. The conformational changes in the binary and ternary systems could be ascertained through synchronous fluorescence, circular dichroism, and dynamic light scattering. Furthermore, the effects of pH and BLG encapsulation on the antioxidant capacity and stability of ECG or PIC were also implemented. ECG or PIC was the most stable in the (BLG + PIC) + ECG system at pH 6.0. This study could clarify the interaction mechanism between ECG/PIC and BLG and elucidate the pH effect on their binding information. The results will provide basic support for their usage in food processing and applications.


Assuntos
Antioxidantes , Catequina/análogos & derivados , Lactoglobulinas , Estilbenos , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Lactoglobulinas/química , Dicroísmo Circular , Ligação Proteica
8.
Molecules ; 29(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474468

RESUMO

Piceatannol (PIC) and epigallocatechin gallate (EGCG) are polyphenolic compounds with applications in the treatment of various diseases such as cancer, but their stability is poor. ß-lactoglobulin (ß-LG) is a natural carrier that provides a protective effect to small molecule compounds and thus improves their stability. To elucidate the mechanism of action of EGCG, PIC, and palmitate (PLM) in binding to ß-LG individually and jointly, this study applied molecular docking and molecular dynamics simulations combined with in-depth analyses including noncovalent interaction (NCI) and binding free energy to investigate the binding characteristics between ß-LG and compounds of PIC, EGCG, and PLM. Simulations on the binary complexes of ß-LG + PIC, ß-LG + EGCG, and ß-LG + PLM and ternary complexes of (ß-LG + PLM) + PIC, (ß-LG + PLM) + EGCG, ß-LG + PIC) + EGCG, and (ß-LG + EGCG) + PIC were performed for comparison and characterizing the interactions between binding compounds. The results demonstrated that the co-bound PIC and EGCG showed non-beneficial effects on each other. However, the centrally located PLM was revealed to be able to adjust the binding conformation of PIC, which led to the increase in binding affinity with ß-LG, thus showing a synergistic effect on the co-bound PIC. The current study of ß-LG co-encapsulated PLM and PIC provides a theoretical basis and research suggestions for improving the stability of polyphenols.


Assuntos
Lactoglobulinas , Polifenóis , Lactoglobulinas/química , Simulação de Acoplamento Molecular , Ligação Proteica
9.
Langmuir ; 40(14): 7733-7746, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38538620

RESUMO

The mechanism of ethanol-induced fibrillation of ß-lactoglobulin (ß-lg) in the acidic aqueous solution upon heating was investigated using various techniques, mainly thioflavin T fluorescence, atomic force microscopy, nonreducing electrophoresis, mass spectrometry, Fourier transform infrared spectroscopy, and circular dichroism spectroscopy. The results showed that fibrillation occurred with a heating time increase, but high ethanol content slowed down the process. At a low ethanol volume fraction, peptides existed after heating for 2 h, with long and straight fibrils formed after 4-6 h, while at a high ethanol volume fraction, the proteins aggregated with very few peptides appeared at the early stage of heating, and short and curved fibrils formed after heating for 8 h. Ethanol weakened the hydrophobic interactions between proteins in the aqueous solution; therefore the latter could not completely balance the electrostatic repulsion, and thus suppressing the fibrillation process. It is believed that the fibrillation of ß-lg in the acidic solution upon heating is mainly dominated by the polypeptide model; however, ethanol inhibited the hydrolysis of proteins, and the self-assembly mechanism changed to the monomer model.


Assuntos
Lactoglobulinas , Água , Solventes/química , Lactoglobulinas/química , Peptídeos , Etanol , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia de Força Atômica , Dicroísmo Circular
10.
Int J Biol Macromol ; 263(Pt 1): 130300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395276

RESUMO

This work employed the model protein ß-lactoglobulin (BLG) to investigate the contribution of microstructural changes to regulating the interaction patterns between protein and flavor compounds through employing computer simulation and multi-spectroscopic techniques. The formation of molten globule (MG) state-like protein during the conformational evolution of BLG, in response to ultrasonic (UC) and heat (HT) treatments, was revealed through multi-spectroscopic characterization. Differential MG structures were distinguished by variations in surface hydrophobicity and the microenvironment of tryptophan residues. Fluorescence quenching measurements indicated that the formation of MG enhanced the binding affinity of heptanal to protein. LC-MS/MS and NMR revealed the covalent bonding between heptanal and BLG formed by Michael addition and Schiff-base reactions, and MG-like BLG exhibited fewer chemical shift residues. Molecular docking and molecular dynamics simulation confirmed the synergistic involvement of hydrophobic interactions and hydrogen bonds in shaping BLG-heptanal complexes thus promoting the stability of BLG structures. These findings indicated that the production of BLG-heptanal complexes was driven synergistically by non-covalent and covalent bonds, and their interaction processes were influenced by processes-induced formation of MG potentially tuning the release and retention behaviors of flavor compounds.


Assuntos
Aldeídos , Lactoglobulinas , Espectrometria de Massas em Tandem , Simulação de Acoplamento Molecular , Lactoglobulinas/química , Cromatografia Líquida , Simulação de Dinâmica Molecular
11.
Colloids Surf B Biointerfaces ; 236: 113796, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368756

RESUMO

Kidney disease is currently prevalent worldwide but only shows insidious symptoms in the early stages. The second near-infrared window (NIR-II) fluorescence imaging has become a widely used preclinical technology for evaluating renal dysfunction due to its high resolution and sensitivity. However, bright renal clearable NIR-II fluorescence nanoprobes with a simple synthesis process are still lacking. Herein, we develop a lactoglobulin (LG)@dye nanoprobe for NIR-II fluorescence imaging of kidney dysfunction in vivo based on a purification-free method. The nanoprobe was synthesized by simply mixing LG and IR820 in aqueous solutions at 70 °C for 2 h based on the covalent interaction between the meso-Cl in IR820 and LG. The synthesized LG@IR820 nanoprobe has bright and stable NIR-II fluorescence, ultra-small size (<5 nm), low toxicity, and renal-clearable ability. The high reaction efficiency and pure aqueous reaction media make the synthesis method purification-free. In a unilateral ureteral obstruction mouse model, incipient renal dysfunction assessment was achieved by LG@IR820 nanoprobe, which couldn't be diagnosed with conventional kidney function indicators. This study provides a bright and purification-free NIR-II LG@IR820 nanoprobe to visualize kidney dysfunction at the early stage.


Assuntos
Nefropatias , Lactoglobulinas , Animais , Camundongos , Rim/diagnóstico por imagem , Nefropatias/diagnóstico por imagem , Água , Imagem Óptica/métodos , Corantes Fluorescentes
12.
Food Chem ; 446: 138844, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422642

RESUMO

This study prepared a novel, portable and cost-effective microfluidic paper-based electrochemical analysis device (µ-PAD) using black phosphorus nanosheets@carboxylated multi-walled carbon nanotubes (BPNSs@MWCNTs-COOH) nanocomposites for ß-lactoglobulin (ß-LG) detection. At the appreciate ratio, the synthesized BPNSs@MWCNTs-COOH was demonstrated to not only serve as a high-quality substrate for the specific aptamer immobilization, but also improve the electron transfer capability of the sensing interface. The µ-PADs, utilizing BPNSs@MWCNTs-COOH and aptamer recognition, exhibited a wider detection range (10-1000 ng mL-1) and lower detection limit (LOD: 0.12 ng mL-1) for ß-LG, and demonstrated enhanced specificity, satisfactory anti-interference ability and stability. When applied to the ß-LG determination in dairy samples, the µ-PAD yielded ß-LG concentrations highly correlated with those obtained using the HPLC method (R2: 0.9982). These results emphasized the reliable performance of the developed µ-PADs in ß-LG allergen quantification, highlighting their potential as an efficient platform for the rapid screening of ß-LG allergens.


Assuntos
Lactoglobulinas , Nanotubos de Carbono , Limite de Detecção , Lactoglobulinas/análise , Microfluídica , Técnicas Eletroquímicas/métodos , Laticínios/análise , Alérgenos , Oligonucleotídeos
13.
Int J Biol Macromol ; 262(Pt 2): 129844, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316325

RESUMO

Milk samples were collected from 3625 Chinese Holstein cows to assess the effects of κ-casein (κ-CN) and ß-lactoglobulin (ß-LG) genetic variants on its milk coagulation properties. The results show that Chinese Holstein cows have a higher frequency of the κ-CN AA and AB variants, and ß-LG of the AB and AA variants. Of these, κ-CN B variants, the ß-LG AA and BB variants were more frequent in milk showing good coagulation. The effects of the genetic variants on milk composition, milk proteome, and protein phosphorylation sites were studied. The results showed that higher concentrations of protein and dry matter were found in κ-CN BE variant. Moreover, large variations in milk proteome among different κ-CN and ß-LG variants were observed. Highly phosphorylated for κ-CN, especially Ser97, was observed in cows with the κ-CN BE variant, but no effect of ß-LG variants on phosphorylation site was found. Of the various factors examined, variation of κ-CN phosphorylation sites Ser97 may be the most important in affecting casein structure and milk coagulation ability. Some milk protein contents were found to be negative factors for milk coagulation. In summary, this study showed that κ-CN genetic variants contained different milk compositions and phosphorylation site Ser97 influenced milk coagulation.


Assuntos
Leite , Proteoma , Animais , Feminino , Bovinos , Proteoma/metabolismo , Fosforilação , Leite/química , Proteínas do Leite/química , Caseínas/química , Lactoglobulinas/genética , Lactoglobulinas/metabolismo , Genótipo
14.
Allergy ; 79(4): 949-963, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38193259

RESUMO

BACKGROUND: IgE-mediated cow's milk allergy (IgE-CMA) is one of the first allergies to arise in early childhood and may result from exposure to various milk allergens, of which ß-lactoglobulin (BLG) and casein are the most important. Understanding the underlying mechanisms behind IgE-CMA is imperative for the discovery of novel biomarkers and the design of innovative treatment and prevention strategies. METHODS: We report a longitudinal in vivo murine model, in which two mice strains (BALB/c and C57Bl/6) were sensitized to BLG using either cholera toxin or an oil emulsion (n = 6 per group). After sensitization, mice were challenged orally, their clinical signs monitored, antibody (IgE and IgG1) and cytokine levels (IL-4 and IFN-γ) measured, and fecal samples subjected to metabolomics. The results of the murine models were further extrapolated to fecal microbiome-metabolome data from our population of IgE-CMA (n = 22) and healthy (n = 23) children (Trial: NCT04249973), on which polar metabolomics, lipidomics and 16S rRNA metasequencing were performed. In vitro gastrointestinal digestions and multi-omics corroborated the microbial origin of proposed metabolic changes. RESULTS: During mice sensitization, we observed multiple microbially derived metabolic alterations, most importantly bile acid, energy and tryptophan metabolites, that preceded allergic inflammation. We confirmed microbial dysbiosis, and its associated effect on metabolic alterations in our patient cohort, through in vitro digestions and multi-omics, which was accompanied by metabolic signatures of low-grade inflammation. CONCLUSION: Our results indicate that gut dysbiosis precedes allergic inflammation and nurtures a chronic low-grade inflammation in children on elimination diets, opening important new opportunities for future prevention and treatment strategies.


Assuntos
Microbiota , Hipersensibilidade a Leite , Humanos , Criança , Pré-Escolar , Bovinos , Feminino , Camundongos , Animais , Disbiose , RNA Ribossômico 16S , Inflamação , Alérgenos , Lactoglobulinas , Imunoglobulina E , Metaboloma
15.
Talanta ; 271: 125664, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237281

RESUMO

We presented a label-free fluorescent biosensor based on magnetic dual-aptamer allosteric regulation of ß-lactoglobulin (ß-LG) detection. The bovine serum albumin (BSA) acted as the bridge to connect amino-modified magnetic beads and aptamer, which synthesized pyramid-type probes (MBAP) with high capture and reduced nonspecific adsorption. Moreover, the original aptamer was tailored and then designed as a bivalent aptamer to fabricate allosteric signal probes (ASP). The ASP can both specifically capture ß-LG and output the fluorescence signal. The detection mechanism is as follows. The combination of the dual-aptamer and ß-LG triggered the allosteric change, resulting in the release of SYBR Green (SG I) from the allosteric signal probe and change signals. This method exhibits a broad linear detection range from 10 ng/mL to 1 mg/mL and the limit of detection reaches as low as 8.06 ng/mL. This study provides a highly generalizable strategy for protein biomolecular detection via replacing different target aptamers.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Lactoglobulinas , Regulação Alostérica , Corantes , Técnicas Biossensoriais/métodos
16.
Br J Nutr ; 131(10): 1730-1739, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38287700

RESUMO

The aim of this study was to assess whether adding Ca2+ to aggregate or native forms of ß-lactoglobulin alters gut hormone secretion, gastric emptying rates and energy intake in healthy men and women. Fifteen healthy adults (mean ± sd: 9M/6F, age: 24 ± 5 years) completed four trials in a randomised, double-blind, crossover design. Participants consumed test drinks consisting of 30 g of ß-lactoglobulin in a native form with (NATIVE + MINERALS) and without (NATIVE) a Ca2+-rich mineral supplement and in an aggregated form both with (AGGREG + MINERALS) and without the mineral supplement (AGGREG). Arterialised blood was sampled for 120 min postprandially to determine gut hormone concentrations. Gastric emptying was determined using 13C-acetate and 13C-octanoate, and energy intake was assessed with an ad libitum meal at 120 min. A protein × mineral interaction effect was observed for total glucagon-like peptide-1 (GLP-1TOTAL) incremental AUC (iAUC; P < 0·01), whereby MINERALS + AGGREG increased GLP-1TOTAL iAUC to a greater extent than AGGREG (1882 ± 603 v. 1550 ± 456 pmol·l-1·120 min, P < 0·01), but MINERALS + NATIVE did not meaningfully alter the GLP-1 iAUC compared with NATIVE (1669 ± 547 v. 1844 ± 550 pmol·l-1·120 min, P = 0·09). A protein × minerals interaction effect was also observed for gastric emptying half-life (P < 0·01) whereby MINERALS + NATIVE increased gastric emptying half-life compared with NATIVE (83 ± 14 v. 71 ± 8 min, P < 0·01), whereas no meaningful differences were observed between MINERALS + AGGREG v. AGGREG (P = 0·70). These did not result in any meaningful changes in energy intake (protein × minerals interaction, P = 0·06). These data suggest that the potential for Ca2+ to stimulate GLP-1 secretion at moderate protein doses may depend on protein form. This study was registered at clinicaltrials.gov (NCT04659902).


Assuntos
Cálcio da Dieta , Estudos Cross-Over , Ingestão de Energia , Esvaziamento Gástrico , Peptídeo 1 Semelhante ao Glucagon , Lactoglobulinas , Humanos , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Masculino , Feminino , Adulto , Método Duplo-Cego , Adulto Jovem , Lactoglobulinas/metabolismo , Cálcio da Dieta/administração & dosagem , Suplementos Nutricionais , Período Pós-Prandial , Cálcio/metabolismo
17.
Compr Rev Food Sci Food Saf ; 23(1): e13288, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284584

RESUMO

Whey protein derived bioactives, including α-lactalbumin, ß-lactoglobulin, bovine serum albumin, lactoferrin, transferrin, and proteose-peptones, have exhibited wide ranges of functional, biological and therapeutic properties varying from anticancer, antihypertensive, and antimicrobial effects. In addition, their functional properties involve gelling, emulsifying, and foaming abilities. For these reasons, this review article is framed to understand the relationship existed in between those compound levels and structures with their main functional, biological, and therapeutic properties exhibited either in vitro or in vivo. The impacts of hydrolysis mechanism and separation techniques in enhancing those properties are likewise discussed. Furthermore, special emphasize is given to multifunctional effects of whey derived bioactives and their future trends in ameliorating further food, pharmaceutical, and nutraceutical products. The underlying mechanism effects of those properties are still remained unclear in terms of activity levels, efficacy, and targeted effectiveness. For these reasons, some important models linking to functional properties, thermal properties and cell circumstances are established. Moreover, the coexistence of radical trapping groups, chelating groups, sulfhydryl groups, inhibitory groups, and peptide bonds seemed to be the key elements in triggering those functions and properties. Practical Application: Whey proteins are the byproducts of cheese processing and usually the exploitation of these food waste products has increasingly getting acceptance in many countries, especially European countries. Whey proteins share comparable nutritive values to milk products, particularly on their richness on important proteins that can serve immune protection, structural, and energetic roles. The nutritive profile of whey proteins shows diverse type of bioactive molecules like α-lactalbumin, ß-lactoglobulin, lactoferrin, transferrin, immunoglobulin, and proteose peptones with wide biological importance to the living system, such as in maintaining immunological, neuronal, and signaling roles. The diversification of proteins of whey products prompted scientists to exploit the real mechanisms behind of their biological and therapeutic effects, especially in declining the risk of cancer, tumor, and further complications like diabetes type 2 and hypertension risk effects. For these reasons, profiling these types of proteins using different proteomic and peptidomic approaches helps in determining their biological and therapeutic targets along with their release into gastrointestinal tract conditions and their bioavailabilities into portal circulation, tissue, and organs. The wide applicability of those protein fractions and their derivative bioactive products showed significant impacts in the field of emulsion and double emulsion stabilization by playing roles as emulsifying, surfactant, stabilizing, and foaming agents. Their amphoteric properties helped them to act as excellent encapsulating agents, particularly as vehicle for delivering important vitamins and bioactive compounds. The presence of ferric elements increased their transportation to several metal-ions in the same time increased their scavenging effects to metal-transition and peroxidation of lipids. Their richness with almost essential and nonessential amino acids makes them as selective microbial starters, in addition their richness in sulfhydryl amino acids allowed them to act a cross-linker in conjugating further biomolecules. For instance, conjugating gold-nanoparticles and fluorescent materials in targeting diseases like cancer and tumors in vivo is considered the cutting-edges strategies for these versatile molecules due to their active diffusion across-cell membrane and the presence of specific transporters to these therapeutic molecules.


Assuntos
Neoplasias , Peptidomiméticos , Eliminação de Resíduos , Humanos , Proteínas do Soro do Leite/metabolismo , Lactalbumina/metabolismo , Proteínas do Leite/química , Proteínas do Leite/metabolismo , Proteínas do Leite/farmacologia , Lactoferrina/metabolismo , Peptonas/metabolismo , Hidrólise , Emulsões , Proteômica , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Aminoácidos
18.
Food Res Int ; 177: 113855, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225130

RESUMO

Interaction of bovine ß-lactoglobulin (BLG) with several flavor compounds (FC) (2-methylpyrazine, vanillin, 2-acetylpyridine, 2- and 3-acetylthiophene, methyl isoamyl ketone, heptanone, octanone, and nonanone) was studied by high-sensitivity differential scanning calorimetry. The denaturation temperature, enthalpy, and heat capacity increment were determined at different FC concentrations. It was found that the denaturation temperature and heat capacity increment do not depend on the FC concentration, while the denaturation enthalpy decreases linearly with the FC concentration. These thermodynamic effects disclose the preferential FC binding to the unfolded form of BLG. By the obtained calorimetric data, the free energies of FC binding vs. the FC concentrations were calculated. These dependences were shown to be linear. Their slope relates closely to the overall FC affinity for the unfolded BLG in terms of the Langmuir binding model. The overall BLG affinity for FC varies from 20 M-1 (2-methylpyrazine) up to 360 M-1(nonanone). The maximal stoichiometry of the BLG-FC complexes was roughly estimated as a ratio of the length of the unfolded BLG to the molecular length of FC. Using these estimates, the apparent BLG-FC binding constants were determined. They are in the range of 0.3-8.0 M-1 and correlated strictly with the FC lipophilicity descriptor (logP).


Assuntos
Temperatura Alta , Lactoglobulinas , Animais , Bovinos , Lactoglobulinas/química , Calorimetria , Termodinâmica , Entropia , Cetonas
19.
Food Chem ; 441: 138400, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38199107

RESUMO

The low bioavailability and poor gastrointestinal instability of curcumin hampers its application in pharmaceutical and food industries. Thus, it is essential to explore efficient carrier (e.g. a combination of polyphenols and proteins) for food systems. In this study, covalent ß-lactoglobulin (LG)-dicaffeoylquinic acids (DCQAs) complexes were prepared by combining ultrasound and free radical induction methods. Covalent interactions between LG and DCQAs were confirmed by analyzing reactive groups. Variations in secondary or tertiary structure and potential binding sites of covalent complexes were explored using Fourier transform infrared spectroscopy and circular dichroism. Results showed that the ß-sheet content decreased and the unordered content increased significantly (P < 0.05). The embedding rate of curcumin in prepared LG-DCQAs complexes using ultrasound could reach 49 % - 62 %, proving that complexes could embed curcumin effectively. This study highlights the benefit of ultrasound application in fabrication of protein-polyphenol complexes for delivering curcumin.


Assuntos
Curcumina , Lactoglobulinas , Ácido Quínico/análogos & derivados , Lactoglobulinas/química , Curcumina/química , Sítios de Ligação , Polifenóis/química , Dicroísmo Circular , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Food Chem ; 442: 138414, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237299

RESUMO

Based on the findings of our previous studies, a comprehensive comparative investigation of the quality and formation mechanism of gels obtained from protein self-assemblies induced by different methods is necessary. Self-assembled heat-induced gels had higher gel mechanical strength, and hydrophobic interactions played a greater role. Whether or not heat treatment was used to induce gel formation may play a more important role than the effect of divalent cations on gel formation. Hydrogen bonds played an important role in all gels formed using different gelation methods. Furthermore, Self-assembled cold-induced gels were considered to can load bioactive substances with different hydrophilicity properties due to the high water-holding capacity and the smooth, dense microstructure. Therefore, ß-lactoglobulin fibrous and worm-like self-assembled cold-induced gels as a delivery material for hydrophilic bioactive substances (epigallocatechin gallate, vitamin B2) and amphiphilic bioactive substance (naringenin), with good encapsulation efficiency (91.92 %, 97.08 %, 96.72 %, 96.52 %, 98.94 %, 97.41 %, respectively) and slow-release performance.


Assuntos
Lactoglobulinas , Água , Lactoglobulinas/química , Água/química , Géis/química , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA