Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 932
Filtrar
1.
Chemosphere ; 357: 141981, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626813

RESUMO

Metal-Organic Frameworks (MOFs) are extensively used as electrode material in various sensing applications due to their efficacious porous nature and tunable properties. However, pristine MOFs lack conductive attributes that hinder their wide usage in electrochemical applications. Electropolymerization of several aromatic monomers has been a widely used strategy for preparing conducting electrode materials for various sensing applications in the past decades. Herein, we report a similar approach by employing the electropolymerization method to create a functional polymer layer to enhance the sensitivity of an Aluminium Organic Framework (DUT-4) for the selective detection of Chloramphenicol (CAP) antibiotic in aqueous environment. The combined strategy using the conducting polymer layer with the porous Al MOF provides surpassing electrochemical performance for sensing CAP with regard to the very low detection limit (LOD = 39 nM) and exceptionally high sensitivity (11943 µA mM-1 cm-2). In addition, the fabricated sensor exhibited good selectivity, reproducibility and stability. The developed method was successfully evaluated in various real samples including lake water and river water for CAP detection with good recovery percentages even at lower concentrations.


Assuntos
Alumínio , Cloranfenicol , Técnicas Eletroquímicas , Limite de Detecção , Estruturas Metalorgânicas , Polímeros , Poluentes Químicos da Água , Cloranfenicol/análise , Estruturas Metalorgânicas/química , Poluentes Químicos da Água/análise , Alumínio/análise , Alumínio/química , Polímeros/química , Técnicas Eletroquímicas/métodos , Reprodutibilidade dos Testes , Antibacterianos/análise , Eletrodos , Rios/química , Lagos/química , Lagos/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-38619977

RESUMO

A Gram-stain-negative, non-motile, and slightly halophilic alphaproteobacterium, designated strain EGI FJ00035T, was isolated from enrichment sediment samples of a saline lake in Xinjiang Uygur Autonomous Region, PR China. The taxonomic position of the isolate was determined using the polyphasic taxonomic and phylogenomic analyses. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain EGI FJ00035T formed a distinct clade with 'Chelativorans alearense' UJN715 and 'Chelativorans xinjiangense' lm93 with sequence similarities of 98.44 and 98.22 %, respectively, while sharing less than 96.7 % with other valid type strains. The novel isolate could be distinguished from other species of the genus Chelativorans by its distinct phenotypic, physiological, and genotypic characteristics. Optimal growth of strain EGI FJ00035T occurred on marine agar 2216 at pH 7.0 and 30 °C. The major respiratory quinone was Q-10, while the major fatty acids (>5 %) were C19 : 0 cyclo ω8c, summed feature 8 (C17 : 1 ω6c and/or C17 : 1 ω7c), C16 : 0, C18 : 0, and iso-C17 : 0. The detected polar lipids included diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, unidentified aminophospholipids, unidentified glycolipids, and an unidentified lipid. Based on its genome sequence, the G+C content of strain EGI FJ00035T was 63.2 mol%. The average nucleotide identity, average amino acid identity, and digital DNA-DNA hybridization values of strain EGI FJ00035T against related members of the genus Chelativorans were below the thresholds for delineation of a novel species. According our polyphasic taxonomic data, strain EGI FJ00035T represents a new species of the genus Chelativorans, for which the name Chelativorans salis sp. nov. is proposed. The type strain of the proposed novel isolate is EGI FJ00035T (=KCTC 92251T=CGMCC 1.19480T).


Assuntos
Ácidos Graxos , Phyllobacteriaceae , Ácidos Graxos/química , Fosfolipídeos/química , Ubiquinona/química , Filogenia , RNA Ribossômico 16S/genética , Lagos/análise , Composição de Bases , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Análise de Sequência de DNA , China , Phyllobacteriaceae/genética
3.
PLoS One ; 19(4): e0300050, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574045

RESUMO

The quantification of aerosol size distributions is crucial for understanding the climate and health impacts of aerosols, validating models, and identifying aerosol sources. This work provides one of the first continuous measurements of aerosol size distribution from 1.02 to 8671 nm near the shore of Lake Michigan. The data were collected during the Lake Michigan Ozone Study (LMOS 2017), a comprehensive air quality measurement campaign in May and June 2017. The time-resolved (2-min) size distribution are reported herein alongside meteorology, remotely sensed data, gravimetric filters, and gas-phase variables. Mean concentrations of key aerosol parameters include PM2.5 (6.4 µg m-3), number from 1 to 3 nm (1.80x104 cm-3) and number greater than 3 nm (8x103 cm-3). During the field campaign, approximately half of days showed daytime ultrafine burst events, characterized by particle growth from sub 10 nm to 25-100 nm. A specific investigation of ultrafine lake spray aerosol was conducted due to enhanced ultrafine particles in onshore flows coupled with sustained wave breaking conditions during the campaign. Upon closer examination, the relationships between the size distribution, wind direction, wind speed, and wave height did not qualitatively support ultrafine particle production from lake spray aerosol; statistical analysis of particle number and wind speed also failed to show a relationship. The alternative hypothesis of enhanced ultrafine particles in onshore flow originating mainly from new particle formation activity is supported by multiple lines of evidence.


Assuntos
Poluentes Atmosféricos , Lagos , Lagos/análise , Tamanho da Partícula , Partículas e Gotas Aerossolizadas , Material Particulado/análise , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental
4.
Analyst ; 149(9): 2762-2768, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38567533

RESUMO

The abuse of illicit drugs poses serious threats to the physical and mental health of users, as well as to the overall safety and welfare of society. In this work, we present a newly developed technique for drug detection based on mass spectrometry. This technique combines Leidenfrost desorption with low-temperature arc plasma ionization mass spectrometry. This method is applicable for detecting furanyl fentanyl in complex matrices. Key advantages of this technique include minimal sample fragmentation and high sensitivity for detection. The Leidenfrost desorption plays a pivotal role in this methodology, as it spontaneously concentrates analyte molecules during the gradual evaporation of the solvent. Eventually, these concentrated molecules are redistributed at their highest concentrations, resulting in exceptionally high sensitivity. In the course of our investigation, we achieved a remarkable detection limit of 10 pg mL-1 for furanyl fentanyl in pure water. Moreover, the characteristic ion peaks of furanyl fentanyl can be distinctly identified within complex matrices such as wine, beverages, urine, and lake water. This innovative drug detection technology offers several advantages, including a simple setup, cost-effectiveness, rapid detection, high sensitivity, and minimal sample pretreatment.


Assuntos
Fentanila , Fentanila/análogos & derivados , Furanos , Limite de Detecção , Fentanila/análise , Fentanila/urina , Humanos , Espectrometria de Massas/métodos , Drogas Ilícitas/análise , Detecção do Abuso de Substâncias/métodos , Lagos/análise , Lagos/química
5.
Chemosphere ; 354: 141598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432464

RESUMO

Steroid hormones (SHs) have attracted mounting attention due to their endocrine-disrupting effects on humans and aquatic organisms. However, the lack of analytical methods and toxicity data for a large number of SHs has limited the effective management of SH contamination in the water-sediment systems. In this study, we developed a highly sensitive analytical method for the simultaneous quantification of 144 SHs to investigate their occurrence, spatial distribution and partitioning in the water and sediment in Taihu Lake. The results showed that the total concentrations of SHs in water and sediment were 366.88-998.23 ng/L (mean: 612.84 ng/L) and 17.46-150.20 ng/g (mean: 63.41 ng/g), respectively. The spatial distribution of SHs in Taihu Lake might be simultaneously influenced by the pollution sources, lake hydrodynamics, and sediment properties. The sediment-water partitioning result implied that 28 SHs were in dynamic equilibrium at the water-water interface. In addition, 22 and 12 SHs tended to spread to water and settle into sediment, respectively. To assess the ecological risk of all SHs, a robust random forest model (R2 = 0.801) was developed to predict the acute toxicity of SHs for which toxicity data were not available from publications. Risk assessment showed that SHs posed a high ecological risk throughout Taihu Lake, with the highest risk in the northwestern areas. Estrone, 17ß-estradiol and 17α-ethynylestradiol were the dominant risk contributors and were therefore recommended as the priority SHs in Taihu Lake. This work provided a valuable dataset for Taihu Lake, which would help to provide guidance and suggestions for future studies and be useful for the government to develop the mitigation and management measures.


Assuntos
Lagos , Poluentes Químicos da Água , Humanos , Lagos/análise , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Espectrometria de Massas em Tandem , Água , Medição de Risco , Estradiol , Estrona , China , Sedimentos Geológicos
6.
Huan Jing Ke Xue ; 45(3): 1428-1438, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471858

RESUMO

To understand the water pollution status and environmental risks of Changshou Lake, the concentrations of heavy metals (Cr, Cu, Zn, As, Cd, and Pb) in the water were collected and analyzed during different seasons. The study investigated temporal and spatial variations, distribution characteristics, pollution levels, and health risks associated with heavy metals in Changshou Lake. The results showed that all six heavy metals were below than the Class Ⅰ standard of the Surface Water Environmental Quality Standard (GB 3838-2002), but recent years have witnessed an increasing trend, with Cu, As, and Pb showing a significant increase (P<0.05). The temporal and spatial distributions of these heavy metals were different. Temporally, Cr and Cd concentrations in surface water were higher in summer, As and Zn were higher in spring, and Pb and Cu were higher in autumn and winter. Spatially, the concentrations of Cr, As, Cu, Zn, and Pb showed higher concentrations in the southern outlet of the reservoir, the northwestern Longxi River inlet, and the central part of the reservoir, whereas Cd was higher in the northern stagnant area. The overall levels of heavy metals in the water body of Changshou Lake were low, with Cr and Cu slightly polluted, while other heavy metals were identified as having an insignificant pollution level. Drinking water was the primary exposure pathway to carcinogenic and non-carcinogenic heavy metals in surface water bodies. The health risk values of Cr and As in water bodies were high, ranging from 6.2×10-10 to 3.0×10-4 and 5.1×10-8 to 3.9×10-5, respectively. The corresponding contribution rates for children and adults to the total health risk were high, with Cr accounting for 87.18% and 87.20%, respectively, while As accounted for 12.73% and 12.71%, respectively. Therefore, it is crucial to prioritize environmental risks associated with Cr and Cu, as well as the health risks associated with Cr and As in Changshou Lake These findings provide a scientific foundation for water pollution control and environmental quality improvement in Changshou Lake, and rational development and utilization of water resources.


Assuntos
Água Potável , Metais Pesados , Poluentes Químicos da Água , Cádmio , China , Monitoramento Ambiental , Sedimentos Geológicos , Lagos/análise , Chumbo , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise , Humanos , Criança , Adulto
7.
Sci Total Environ ; 926: 171800, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508255

RESUMO

Lake Fuxian, the largest deep freshwater lake in China, has been suffering from increasing ecological and environmental issues along with the rapid urbanization and industrialization in the past 40 years. To better understand the historical pollution of persistent organic pollutants (POPs) in Lake Fuxian, comprehensive analyses of 209 polychlorinated biphenyl (PCB) congeners and 20 organochlorine pesticides (OCPs) were conducted in two intact sediment cores (Core V1 and Core V2). The total mass concentrations of PCBs ranged from 7.60 to 31.47 ng/g (dry weight basis) and 5.55 to 28.90 ng/g during the period of 1908-2019 in Core V1 and 1924-2019 in Core V2, respectively. PCBs exhibited a consecutive increasing trend from 1940s to 2019 in Core V1. The temporal trend of PCBs in Core V2 basically matched to the history of PCB usage and prohibition in China (increasing from 1940s to mid-1960s, a remarkable drop in mid-1970s, and then increasing until 2019). Moreover, low-chlorinated PCBs were dominant among PCB homologues. Mono-CBs, di-CBs, tri-CBs and tetra-CBs accounted for 86.71 %-98.57 % in sediment segments. The PCB sources included unintentional emission and atmospheric deposition, as well as biological transformation. The total mass concentrations of OCPs ranged from 0.74 to 3.82 ng/g in Core V1 and 0.35 to 2.23 ng/g in Core V2, respectively. Similar trend was observed in the two sediment cores with peaks in the early 1990s. The predominant OCPs were γ-hexachlorohexane (γ-HCHs), dieldrin and p,p'-DDD. The ecological risks posed by PCBs and p-p'-DDD in Lake Fuxian were relatively low. In contrast, dieldrin might pose a potential threat to exposed organisms and apparently adverse ecological effects were caused by γ-HCH. This study will provide important baseline information on historical POPs contamination of Lake Fuxian.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Poluentes Químicos da Água , Bifenilos Policlorados/análise , Lagos/análise , Água/análise , Dieldrin/análise , Efeitos Antropogênicos , Poluentes Químicos da Água/análise , Hidrocarbonetos Clorados/análise , Praguicidas/análise , China , Monitoramento Ambiental , Sedimentos Geológicos
8.
Environ Sci Pollut Res Int ; 31(16): 24648-24661, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448773

RESUMO

Cyanobacteria are known to produce diverse secondary metabolites that are toxic to aquatic ecosystems and human health. However, data about the cyanotoxins occurrence and cyanobacterial diversity in Pakistan's drinking water reservoirs is scarce. In this study, we first investigated the presence of microcystin, saxitoxin, and anatoxin in 12 water bodies using an enzyme-linked immunosorbent assay (ELISA). The observed cyanotoxin values for the risk quotient (RQ) determined by ELISA indicated a potential risk for aquatic life and human health. Based on this result, we made a more in-depth investigation with a subset of water bodies (served as major public water sources) to analyze the cyanotoxins dynamics and identify potential producers. We therefore quantified the distribution of 17 cyanotoxins, including 12 microcystin congeners using a high-performance liquid chromatography-high-resolution tandem mass spectrometry/mass spectrometry (HPLC-HRMS/MS). Our results revealed for the first time the co-occurrence of multiple cyanotoxins and the presence of cylindrospermopsin in an artificial reservoir (Rawal Lake) and a semi-saline lake (Kallar Kahar). We also quantified several microcystin congeners in a river (Panjnad) with MC-LR and MC-RR being the most prevalent and abundant. To identify potential cyanotoxin producers, the composition of the cyanobacterial community was characterized by shotgun metagenomics sequencing. Despite the noticeable presence of cyanotoxins, Cyanobacteria were not abundant. Synechococcus was the most abundant cyanobacterial genus found followed by a small amount of Anabaena, Cyanobium, Microcystis, and Dolichospermum. Moreover, when we looked at the cyanotoxins genes coverage, we never found a complete microcystin mcy operon. To our knowledge, this is the first snapshot sampling of water bodies in Pakistan. Our results would not only help to understand the geographical spread of cyanotoxin in Pakistan but would also help to improve cyanotoxin risk assessment strategies by screening a variety of cyanobacterial toxins and confirming that cyanotoxin quantification is not necessarily related to producer abundance.


Assuntos
Toxinas Bacterianas , Cianobactérias , Água Potável , Humanos , Microcistinas/metabolismo , Paquistão , Ecossistema , Toxinas Bacterianas/análise , Toxinas de Cianobactérias , Cianobactérias/metabolismo , Água Potável/análise , Lagos/análise
9.
Sci Total Environ ; 923: 171487, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447717

RESUMO

The nitrogen (N) removal characteristics in water columns and sediments of shallow lakes, influenced by various factors, may exhibit spatial variations in lakes with algal-macrophyte dominance. The N removal rates in water columns and sediments of Lake Taihu were investigated. Our findings indicated that the total N removal rates in Lake Taihu followed the order of algae-dominance > macrophyte-dominance > pelagic lake (without the presence of algae and macrophytes). Correlation analysis revealed that the key environmental factors affecting denitrification and anammox in sediments of algae/macrophyte-type lakes were nitrate nitrogen (NO3--N), nitrite nitrogen (NO2--N), ammonia nitrogen (NH4+-N), and chlorophyll a (Chl-a). The linear regression demonstrated that a significant correlation between the denitrification and the anammox in sediments, with a correlation coefficient of 0.81 (p < 0.01). The contributions to N removal from the water columns and sediments in Lake Taihu were 53 % and 47 %, respectively. Denitrification predominantly drove N removal from sediments, whereas anammox dominated the N removal in water columns. Thus, N removal from the water columns is nonnegligible in shallow eutrophic lakes. This study enhances our understanding of N biogeochemical cycling dynamics in sediment-water and algae/macrophyte ecosystems across various shallow eutrophic lake regions.


Assuntos
Desnitrificação , Lagos , Lagos/análise , Clorofila A , Água/análise , Nitrogênio/análise , Ecossistema , Sedimentos Geológicos , China , Eutrofização
10.
Environ Res ; 250: 118543, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417661

RESUMO

While global attention has been primarily focused on the occurrence and persistence of microplastics (MP) in urban lakes, relatively little attention has been paid to the problem of MP pollution in rural recreational lakes. This pioneering study aims to shed light on MP size, composition, abundance, spatial distribution, and contributing factors in a rural recreational lake, 'Nikli Lake' in Kishoreganj, Bangladesh. Using density separation, MPs were extracted from 30 water and 30 sediment samples taken from ten different locations in the lake. Subsequent characterization was carried out using a combination of techniques, including a stereomicroscope, Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FE-SEM). The results showed a significant prevalence of MPs in all samples, with an average amount of 109.667 ± 10.892 pieces/kg3 (dw) in the sediment and 98.167 ± 12.849 pieces/m3 in the water. Small MPs (<0.5 mm), fragments and transparent colored particles formed the majority, accounting for 80.2%, 64.5% and 55.3% in water and 78.9%, 66.4% and 64.3% in sediment, respectively. In line with global trends, polypropylene (PP) (53%) and polyethylene (PE) (43%) emerged as the predominant polymers within the MPs. MP contents in water and sediment showed positive correlations with outflow, while they correlated negatively with inflow and lake depth (p > 0.05). Local activities such as the discharge of domestic sewage, fishing waste and agricultural runoff significantly influence the distribution of polypropylene. Assessment of pollution factor, pollution risk index and pollution load index values at the sampling sites confirmed the presence of MPs, with values above 1. This study is a baseline database that provides a comprehensive understanding of MP pollution in the freshwater ecosystem of Bangladesh, particularly in a rural recreational lake. A crucial next step is to explore ecotoxicological mechanisms, legislative measures and future research challenges triggered by MP pollution.


Assuntos
Monitoramento Ambiental , Lagos , Microplásticos , Poluentes Químicos da Água , Lagos/química , Lagos/análise , Microplásticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Bangladesh , Sedimentos Geológicos/análise , Sedimentos Geológicos/química
11.
Environ Pollut ; 347: 123501, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38346640

RESUMO

Four different methods were used to identify the important factors influencing chlorophyll-a (Chl-a) content: correlation analysis (CC-NMI), principal component analysis (PCA), decision tree (DT), and random forest recursive feature elimination (RF-RFE). Considering the relationship between Chl-a and its active and passive factors, we established machine learning combination models based on multiple linear regression (MLR), multi-layer perceptron (MLP), and support vector regression (SVR) to predict Chl-a content for Poyang Lake, China. Then, the predictive effects of different combination models were compared and evaluated from multiple perspectives. Considering the actual needs for eutrophication prevention and control, the concept of risk probability was then introduced to assess the risk degree of risk associated with water blooms in Poyang Lake. The results indicated that the mean R2 for the Chl-a predictions using the MLR, MLP, and SVR models was 0.21, 0.61, and 0.75, respectively. Consequently, the SVR model demonstrated higher precision and more accurate predictions. Compared to other methods, integrating the SVR model with the RF-RFE method significantly improved the prediction accuracy, with the R2 increasing to 0.94. For Poyang Lake, 8.8% of random samples indicated a low risk level with a water bloom probability of 21.1%-36.5%; one sample indicated a medium risk level with a risk probability of 45.5%. The research results offer valuable insights for predicting eutrophication and conducting risk assessments for Poyang Lake. They also provide reliable scientific support for making decisions about eutrophication in lakes and reservoirs. Therefore, the results hold significant theoretical importance, practical value, and potential for widespread application.


Assuntos
Monitoramento Ambiental , Lagos , Clorofila A/análise , Lagos/análise , Monitoramento Ambiental/métodos , Água/análise , China , Eutrofização , Aprendizado de Máquina , Medição de Risco , Clorofila/análise
12.
Mar Pollut Bull ; 201: 116188, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402697

RESUMO

In this study, the ecological risk assessment of PAHs pollution, the existing S-T model was improved and applied to this PAHs pollution assessment in surface sediment in Lake Chaohu. The potential sources and contributions of PAHs in the surface sediment were estimated by molecular diagnostic ratio (MDR) and positive matrix factorization (PMF). The results showed that the average concentration of 16 priority PAHs in the surface sediment was 718.16 ng/g in 2009 and 334.67 ng/g in 2020. In 2020, PAHs concentration has decreased compared to 2009 and the dominant composition has changed from high- to low-molecular-weight PAHs. The estimated PAHs mass inventory of the top 2 cm surface sediment was 2712 tons in 2009 and 1263 tons in 2020. Ecosystem risk assessment by improved S-T models suggested that the overall ecosystem risk of the studied regions was acceptable.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Ecossistema , Monitoramento Ambiental , Lagos/análise , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Medição de Risco , China
13.
Toxins (Basel) ; 16(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38393148

RESUMO

Harmful cyanobacterial blooms (HCBs) are of growing global concern due to their production of toxic compounds, which threaten ecosystems and human health. Saxitoxins (STXs), commonly known as paralytic shellfish poison, are a neurotoxic alkaloid produced by some cyanobacteria. Although many field studies indicate a widespread distribution of STX, it is understudied relative to other cyanotoxins such as microcystins (MCs). In this study, we assessed eleven U.S. urban lakes using qPCR, sxtA gene-targeting sequencing, and 16S rRNA gene sequencing to understand the spatio-temporal variations in cyanobacteria and their potential role in STX production. During the blooms, qPCR analysis confirmed the presence of the STX-encoding gene sxtA at all lakes. In particular, the abundance of the sxtA gene had a strong positive correlation with STX concentrations in Big 11 Lake in Kansas City, which was also the site with the highest quantified STX concentration. Sequencing analysis revealed that potential STX producers, such as Aphanizomenon, Dolichospermum, and Raphidiopsis, were present. Further analysis targeting amplicons of the sxtA gene identified that Aphanizomenon and/or Dolichospermum are the primary STX producer, showing a significant correlation with sxtA gene abundances and STX concentrations. In addition, Aphanizomenon was associated with environmental factors, such as conductivity, sulfate, and orthophosphate, whereas Dolichospermum was correlated with temperature and pH. Overall, the results herein enhance our understanding of the STX-producing cyanobacteria and aid in developing strategies to control HCBs.


Assuntos
Aphanizomenon , Cianobactérias , Humanos , Saxitoxina/análise , Lagos/análise , RNA Ribossômico 16S/genética , Ecossistema , Cianobactérias/genética , Aphanizomenon/genética
14.
J Air Waste Manag Assoc ; 74(3): 163-180, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38198293

RESUMO

The Northern Wasatch Front area is one of ~ 50 metropolitan regions in the U.S. that do not meet the 2015 O3 standard. To better understand the causes of high O3 days in this region we conducted the Salt Lake regional Smoke, Ozone and Aerosol Study (SAMOZA) in the summer of 2022. The primary goals of SAMOZA were: Measure a suite of VOCs, by Proton Transfer Reaction Mass Spectrometry (PTR-MS) and the 2,4-dinitrophenylhydrazine (DNPH) cartridge method.Evaluate whether the standard UV O3 measurements made in SLC show a positive bias during smoke events, as has been suggested in some recent studies.Use the observations to conduct photochemical modeling and statistical/machine learning analyses to understand photochemistry on both smoke-influenced and non-smoke days.Implications: The Northern Wasatch Front area is one of ~50 metropolitan regions in the U.S. that do not meet the 2015 O3 standard. To better understand the causes of high O3 days in this region we conducted the Salt Lake regional Smoke, Ozone and Aerosol Study (SAMOZA) in the summer of 2022. A number of policy relevant findings are identified in the manuscript including role of smoke and NOx vs VOC sensitivity.


We found no significant difference in the O3 measurements using a "scrubber-less" UV instrument compared to the standard O3 measurements at PM2.5 concentrations up to 60 µg m−3.On days with smoke, we found that PM2.5, CO, O3 and nearly all VOCs were significantly enhanced. On average, NOx was also enhanced on days with smoke, but this was complicated by day of week effects.Photochemical modeling of O3 production rates at the Utah Tech Center demonstrates a strong sensitivity to VOC concentrations and less sensitivity to NOx. For non-smoke days, achieving the current O3 standard would require regional reductions in VOCs of ~40% or reductions in NOx ~ 60%.The photochemical modeling shows that formaldehyde and other OVOCs, along with alkenes, were the most important O3 precursors.Generalized Additive Modeling (GAM) gave similar MDA8 O3 enhancements on smoky days as the photochemical modeling. Analysis of the GAM results show that 23% of the smoke days have GAM residuals that exceed the U.S. EPA's criteria for inclusion as exceptional event documentation.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Ozônio/análise , Fumaça/análise , Poluentes Atmosféricos/análise , Lagos/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos Voláteis/análise , Aerossóis/análise , China
15.
J Contam Hydrol ; 261: 104304, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38244425

RESUMO

Remote sensing monitoring of seasonal changes in phytoplankton density and analyses of the driving factors of phytoplankton densities are necessary for assessing the health of aquatic ecosystems, controlling lake eutrophication, and formulating ecological restoration policies. Building upon the satellite-ground synchronization experiment that involves the in situ aquatic ecological monitoring conducted in Nansi Lake, which is the largest storage lake situated along the eastern route of the South-to-North Water Diversion Project, we developed a phytoplankton density retrieval model utilizing the random forest (RF) method and Landsat-8 OLI data. On this basis, we mapped the seasonal fluctuations and spatial disparities in the phytoplankton densities from 2013 to 2023. Subsequently, we conducted a detailed analysis of the driving factors and considered both the natural and anthropogenic aspects. The results indicate that (1) the RF model, when utilizing three band combinations, yielded favorable results with R2, RMSE and MAE values of 0.67, 1.31 × 106 cells/L and 1.18 × 106 cells/L, respectively. (2) The phytoplankton densities exhibited both seasonal and spatial variations, with higher concentrations in summer and autumn than in spring and winter. Significantly, the northwestern region of Zhaoyang Lake and the southeastern region of Weishan Lake had substantially greater phytoplankton densities than did the other areas. Furthermore, overarching upward trends were observed from 2013 to 2023, reflecting an annual rate of increase of 3.32%. (3) An analysis of the causal factors indicated that temperatures and gross agricultural production levels are the primary drivers influencing the seasonal variations and distributions of phytoplankton densities. In the future, we will delve into the potential of deep learning and utilize various satellite sensors to explore the intricacies of phytoplankton monitoring, as well as the complex mechanisms that influence aquatic ecological health.


Assuntos
Lagos , Fitoplâncton , Lagos/análise , Ecossistema , Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto , Algoritmo Florestas Aleatórias , China
16.
Water Res ; 251: 121099, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184914

RESUMO

The escalation of global eutrophication has significantly increased due to the impact of climate change, particularly the increased frequency of extreme rainfall events. Predicting and managing eutrophication requires understanding the consequences of precipitation events on algal dynamics. Here, we assessed the influence of precipitation events throughout the year on nutrient and phytoplankton dynamics in a drinking water reservoir from January 2020 to January 2022. Four distinct precipitation patterns, namely early spring flood rain (THX), Plum rain (MY), Typhoon rain (TF), and Dry season (DS), were identified based on rainfall intensity, duration time, and cumulative rainfall. The study findings indicate that rainfall is the primary driver of algal dynamics by altering nutrient levels and TN:TP ratios during wet seasons, while water temperature becomes more critical during the Dry season. Combining precipitation characteristics with the lag periods between algal proliferation and rainfall occurrence is essential for accurately assessing the impact of rainfall on algal blooms. The highest algae proliferation occurred approximately 20 and 30 days after the peak rainfall during the MY and DS periods, respectively. This was influenced by the intensity and cumulative precipitation. The reservoir exhibited two distinct TN/TP ratio stages, with average values of 52 and 19, respectively. These stages were determined by various forms of nitrogen and phosphorus in rainfall-driven inflows and were associated with shifts from Bacillariophyta-dominated to Cyanophyta-dominated blooms during the MY and DS seasons. Our findings underscore the interconnected effects of nutrients, temperature, and hydrological conditions driven by diverse rainfall patterns in shaping algal dynamics. This study provides valuable insights into forecasting algal bloom risks in the context of climate change and developing sustainable strategies for lake or reservoir restoration.


Assuntos
Cianobactérias , Água Potável , Fitoplâncton , Água Potável/análise , Eutrofização , Lagos/análise , Fósforo/análise , Nutrientes/análise , China , Monitoramento Ambiental , Estações do Ano , Nitrogênio/análise
17.
Sci Total Environ ; 912: 169152, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38061660

RESUMO

Remote estimation of Chlorophyll-a (Chl-a) has long been used to investigate the responses of aquatic ecosystems to global climate change. High-spatiotemporal-resolution Sentinel-2 satellite images make it possible to routinely monitor and trace the spatial distributions of lake Chl-a if reliable retrieval algorithms are available. In this study, Sentinel-2 images and in-situ measured data were used to develop a Chl-a retrieval algorithm based on 13 optical water types (OWTs) with a satisfying performance (R2 = 0.74, RMSE = 0.42 mg/m3, MAE = 0.33 mg/m3, and MAPE = 55.56 %). After removing the disturbance of algal blooms and other factors, the distribution of Chl-a in 3067 of the largest global lakes (≥50 km2) was mapped using the Google Earth Engine (GEE). From 2019 to 2021, the average Chl-a concentration was 16.95 ± 5.95 mg/m3 for the largest global lakes. During the COVID-19 pandemic, global lake-averaged Chl-a concentration reached its lowest value in 2020. From the perspective of spatial distribution, lakes with low Chl-a concentrations were mainly distributed in high-latitude, high-elevation, or economically underdeveloped areas. Among all the potential influencing factors, lake surface temperature had the largest contribution to Chl-a and showed a positive correlation with Chl-a in approximately 92.39 % of the lakes. Conversely, factors such as precipitation and tree cover area around the lake were negatively correlated with Chl-a concentration in nearly 61.44 % of the lakes.


Assuntos
Ecossistema , Lagos , Humanos , Clorofila A/análise , Lagos/análise , Pandemias , Ferramenta de Busca , Monitoramento Ambiental/métodos , Clorofila/análise , Eutrofização
18.
Sci Total Environ ; 912: 169249, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38081424

RESUMO

Harmful algal blooms (HABs) are a threat to freshwater systems over the world due to the production of hepatotoxins like microcystin (MC), and nuisance taste and odour (T&O) compounds like 2-methylisoborneol (MIB). While MCs are known to cause detrimental effects to both water quality and human health, MIB is only reported to cause aesthetical problems. In this study, we investigated a tropical, urban lake that was experiencing persistent MC and MIB events. Although it was dominated by Microcystis blooms, analysis revealed that the toxigenic Microcystis were not the only species driving the MC concentrations. Additionally, there was also a lack of causative species for the MIB events. Through isolation, we have identified three toxigenic Microcystis found to produce four different variants of MCs, and two novel non-toxigenic Microcystis that were capable of producing MIB. The ability to produce MIB had never been previously reported for this species. Compared to other major producers such as Planktothricoides sp. and Streptomyces sp., the MIB synthase genes of our Microcystis sp. strains were partial, illustrating the possibility of unique synthesis pathways. The Microcystis sp. strains were found to produce about 2.77-5.22 fg MIB cell-1, with a majority of the contents (70-80 %) existing in the extracellular phase. Correlation analysis of field study indicated that phosphorus limitation may have an indirect effect on non-toxigenic Microcystis abundance and proportion by influencing the toxigenic genotype, suggesting that current measures to control HABs may favour the proliferation of the non-toxigenic Microcystis. The potential for Microcystis sp. to produce MIB through unique synthesis pathway, coupled with the potential dominance of non-toxigenic genotypes in Microcystis blooms, signals the possibility that non-toxigenic Microcystis should be monitored as well.


Assuntos
Cianobactérias , Microcystis , Humanos , Microcystis/genética , Microcystis/metabolismo , Lagos/análise , Cianobactérias/genética , Microcistinas/análise , Proliferação Nociva de Algas , Genótipo
19.
J Environ Manage ; 350: 119697, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38035504

RESUMO

Lakes serve as vital reservoirs of dissolved organic matter (DOM) and play pivotal roles in biogeochemical carbon cycles. However, the sources and compositions of DOM in freshwater lakes and their potential effects on lake sediment carbon pools remain unclear. In this study, seven inflowing rivers in the Lake Taihu basin were selected to explore the potential effects of multi-source DOM inputs on the stability of the lake sediment carbon pool. The results showed the high concentrations of dissolved organic carbon in the Lake Taihu basin, accompanied by a high complexity level. Lignins constituted the majority of DOM compounds, surpassing 40% of the total, while the organic carbon content was predominantly composed of humic acids (1.02-3.01 g kg-1). The high amounts of lignin oxidative cleavage led to CHO being the main molecular structure in the DOM of the seven rivers. The carbon constituents within the sediment carbon reservoir exhibited a positive correlation with dissolved CH4 and CO2, with a notable emphasis on humic acid and dissolved CH4 (R2 = 0.86). The elevated concentration of DOM, coupled with its intricate composition, contributed to the increases in dissolved greenhouse gases (GHGs). Experiments showed that the mixing of multi-source DOM can accelerate the organic carbon mineralization processes. The unit carbon emission efficiency was highest in the mixed group, reaching reached 160.9 µmol∙Cg-1, which also exhibited a significantly different carbon pool. The mixed decomposition of DOM from different sources influenced the roles of the lake carbon pool as source and sink, indicating that the multi-source DOM of this lake basin was a potential driving factor for increased carbon emissions. These findings have improved our understanding of the sources and compositions of DOM in lake basins and revealed their impacts on carbon emissions, thereby providing a theoretical basis for improving assessments of lake carbon emissions.


Assuntos
Matéria Orgânica Dissolvida , Gases de Efeito Estufa , Lagos/análise , Lagos/química , Carbono , Rios , Substâncias Húmicas/análise , China
20.
Water Res ; 249: 121019, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113601

RESUMO

The source composition of chromophoric dissolved organic matter (CDOM) in lakes is closely related to regional environmental changes, human activities, and the carbon cycle. The spectral slope ratio (SR) is an important parameter of CDOM optical components, and combined with remote sensing technology, the source composition of CDOM can be tracked comprehensively and efficiently in large regions. Here, we proposed a CDOM source tracking remote sensing model (CDOM-SR) based on the hue angle (α) to assess the spatial pattern and long-term trend of the CDOM source composition in Chinese lakes (surface area ≥ 1 km2) from 1986 to 2021. Validation results show that the CDOM-SR model has a good SR estimation performance with a median absolute percentage difference, root mean square deviation, median ratio, and median deviation of 17.91 %, 0.23, 1.02, and 0.03, respectively. We found that the average SR of Chinese lakes presents an obvious spatial pattern of high in the west and low in the east due to the difference in human activity intensity and the natural geographical environment. Additionally, we found that the average SR of Chinese lakes from 1986 to 2021 decreased at a rate of - 0.06/10 years, of which 64.37 % of lakes decreased significantly, 15.42 % of lakes had no significant change, and only 20.20 % of lakes increased. The widespread decrease in the average SR indicates that the increasing human activity discharge of terrestrial organic matter has had an important impact on the source composition of the CDOM in Chinese lakes. Our results provide a new resource for remote sensing monitoring of CDOM sources and important insights into lake carbon cycling under the influence of ongoing human activities.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Humanos , Lagos/análise , Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto , Carbono , China , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA