Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 380(6651): 1275-1281, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37347863

RESUMO

Growth coordination between cell layers is essential for development of most multicellular organisms. Coordination may be mediated by molecular signaling and/or mechanical connectivity between cells, but how genes modify mechanical interactions between layers is unknown. Here we show that genes driving brassinosteroid synthesis promote growth of internal tissue, at least in part, by reducing mechanical epidermal constraint. We identified a brassinosteroid-deficient dwarf mutant in the aquatic plant Utricularia gibba with twisted internal tissue, likely caused by mechanical constraint from a slow-growing epidermis. We tested this hypothesis by showing that a brassinosteroid mutant in Arabidopsis enhances epidermal crack formation, indicative of increased tissue stress. We propose that by remodeling cell walls, brassinosteroids reduce epidermal constraint, showing how genes can control growth coordination between layers by means of mechanics.


Assuntos
Brassinosteroides , Lamiales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/biossíntese , Comunicação Celular , Parede Celular/metabolismo , Lamiales/citologia , Lamiales/genética , Lamiales/metabolismo , Epiderme Vegetal/metabolismo
2.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708125

RESUMO

Carnivorous plants from the Lentibulariaceae form a variety of standard and novel vegetative organs and survive unfavorable environmental conditions. Within Genlisea, only G. tuberosa, from the Brazilian Cerrado, formed tubers, while Utricularia menziesii is the only member of the genus to form seasonally dormant tubers. We aimed to examine and compare the tuber structure of two taxonomically and phylogenetically divergent terrestrial carnivorous plants: Genlisea tuberosa and Utricularia menziesii. Additionally, we analyzed tubers of U. mannii. We constructed phylogenetic trees using chloroplast genes matK/trnK and rbcL and used studied characters for ancestral state reconstruction. All examined species contained mainly starch as histologically observable reserves. The ancestral state reconstruction showed that specialized organs such as turions evolved once and tubers at least 12 times from stolons in Lentibulariaceae. Different from other clades, tubers probably evolved from thick stolons for sect. Orchidioides and both structures are primarily water storage structures. In contrast to species from section Orchidioides, G. tuberosa, U. menziesii and U. mannii form starchy tubers. In G. tuberosa and U. menziesii, underground tubers provide a perennating bud bank that protects the species in their fire-prone and seasonally desiccating environments.


Assuntos
Planta Carnívora/anatomia & histologia , Planta Carnívora/genética , Cloroplastos/genética , Lamiales/genética , Tubérculos/anatomia & histologia , Estresse Fisiológico/fisiologia , Planta Carnívora/citologia , Planta Carnívora/ultraestrutura , Lamiales/anatomia & histologia , Lamiales/citologia , Lamiales/ultraestrutura , Microscopia Eletrônica de Varredura , Filogenia , Tubérculos/citologia , Tubérculos/genética , Tubérculos/ultraestrutura , Amido/metabolismo , Estresse Fisiológico/genética , Água/metabolismo
3.
PLoS Biol ; 17(10): e3000427, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31600203

RESUMO

Leaves display a remarkable range of forms, from flat sheets with simple outlines to cup-shaped traps. Although much progress has been made in understanding the mechanisms of planar leaf development, it is unclear whether similar or distinctive mechanisms underlie shape transformations during development of more complex curved forms. Here, we use 3D imaging and cellular and clonal analysis, combined with computational modelling, to analyse the development of cup-shaped traps of the carnivorous plant Utricularia gibba. We show that the transformation from a near-spherical form at early developmental stages to an oblate spheroid with a straightened ventral midline in the mature form can be accounted for by spatial variations in rates and orientations of growth. Different hypotheses regarding spatiotemporal control predict distinct patterns of cell shape and size, which were tested experimentally by quantifying cellular and clonal anisotropy. We propose that orientations of growth are specified by a proximodistal polarity field, similar to that hypothesised to account for Arabidopsis leaf development, except that in Utricularia, the field propagates through a highly curved tissue sheet. Independent evidence for the polarity field is provided by the orientation of glandular hairs on the inner surface of the trap. Taken together, our results show that morphogenesis of complex 3D leaf shapes can be accounted for by similar mechanisms to those for planar leaves, suggesting that simple modulations of a common growth framework underlie the shaping of a diverse range of morphologies.


Assuntos
Carnivoridade/fisiologia , Lamiales/citologia , Células Vegetais/ultraestrutura , Desenvolvimento Vegetal/fisiologia , Folhas de Planta/citologia , Polaridade Celular , Proliferação de Células , Forma Celular , Tamanho Celular , Lamiales/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento
4.
Development ; 146(16)2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31391196

RESUMO

Flowers of honey plants (Torenia) face various abiotic stressors, including rain, that can damage pollens and dilute nectar. Many Torenia species are thought to have evolved a modified corolla base termed the corolla neck to prevent raindrops from contacting the nectar. Although this hypothesis was postulated long ago, direct validation is lacking. Here, we have evaluated Torenia fournieri, the corolla tube of which differentiates into distinct regions: a conical tube above that connects to an inflated base through a constriction. This constriction and inflated base are collectively referred to as the corolla neck. Using transcriptomic sequencing and genome-editing approaches, we have characterized an ALOG gene, TfALOG3, that is involved in formation of the corolla neck. TfALOG3 was found expressed in the epidermis of the corolla neck. Cells in the corolla bottom differentiated and expanded in wild-type T. fournieri, whereas such cells in TfALOG3 loss-of-function mutants failed to develop into a corolla neck. Water easily contacted the nectary in the absence of the corolla neck. Taken together, our study unveils a novel gene that controls corolla tube differentiation and demonstrates a hypothetical property of the corolla neck.


Assuntos
Flores/anatomia & histologia , Genes de Plantas , Lamiales/anatomia & histologia , Diferenciação Celular , Flores/citologia , Flores/crescimento & desenvolvimento , Lamiales/citologia , Lamiales/genética , Mutação com Perda de Função , Família Multigênica
5.
BMC Evol Biol ; 17(1): 224, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29115917

RESUMO

BACKGROUND: Primulina Hance is an emerging model for studying evolutionary divergence, adaptation and speciation of the karst flora. However, phylogenetic relationships within the genus have not been resolved due to low variation detected in the cpDNA regions. Chloroplast genomes can provide important information for phylogenetic and population genetic studies. Recent advances in next-generation sequencing (NGS) techniques greatly facilitate sequencing whole chloroplast genomes for multiple individuals. Consequently, novel strategies for development of highly polymorphic loci for population genetic and phylogenetic studies based on NGS data are needed. METHODS: For development of high polymorphic loci for population genetic and phylogenetic studies, two novel strategies are proposed here. The first protocol develops lineage-specific highly variable markers from the true high variation regions (Con_Seas) across whole cp genomes, instead of traditional noncoding regions. The pipeline has been integrated into a single perl script, and named "Con_Sea_Identification_and_PIC_Calculation". The second method assembles chloroplast fragments (poTs) and sub-super-marker (CpContigs) through our "SACRing" pipeline. This approach can fundamentally alter the strategies used in phylogenetic and population genetic studies based on cp markers, facilitating a transition from traditional Sanger sequencing to RAD-Seq. Both of these scripts are available at https://github.com/scbgfengchao/ . RESULTS: Three complete Primulina chloroplast genomes were assembled from genome survey data, and then two novel strategies were developed to yield highly polymorphic markers. For experimental evaluation of the first protocol, a set of Primulina species were used for PCR amplification. The results showed that these newly developed markers are more variable than traditional ones, and seem to be a better choice for phylogenetic and population studies in Primulin a. The second method was also successfully applied in population genetic studies of 21 individuals from three natural populations of Primulina. CONCLUSIONS: These two novel strategies may provide a pathway for similar research in other non-model species. The newly developed high polymorphic loci in this study will promote further the phylogenetic and population genetic studies in Primulina and other genera of the family Gesneriaceae.


Assuntos
Mapeamento de Sequências Contíguas , Genoma de Cloroplastos , Lamiales/genética , Cloroplastos/genética , DNA de Cloroplastos/genética , Genética Populacional , Sequenciamento de Nucleotídeos em Larga Escala , Lamiales/citologia , Filogenia , Análise de Sequência de DNA
6.
Sci Rep ; 6: 24662, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27090564

RESUMO

An efficient protocol providing a dual regeneration pathway via direct shoot organogenesis and somatic embryogenesis for an endangered species, Metabriggsia ovalifolia W. T. Wang, was established from leaf explants. When applied at 2.5 µM, the cytokinins 6-benzyladenine (BA) or thidiazuron (TDZ) and the auxins indole-3-butyric acid (IBA), α-naphthaleneacetic acid (NAA) and indole-3-acetic acid (IAA) could induce shoots when on basal Murashige and Skoog (MS) medium. BA and TDZ could induce more adventitious shoots (19.1 and 31.2/explant, respectively) than NAA (4.6/explant), IBA (5.7/explant) or IAA (6.4/explant). BA and TDZ at 5-10 µM could induce both shoots and somatic embryos. A higher concentration of TDZ (25 µM) induced only somatic embryos (39.8/explant). The same concentration of BA induced both adventitious shoots (23.6/explant) and somatic embryos (9.7/explant). Thus, somatic embryogenesis in this plant needs a high cytokinin concentration (BA; TDZ), as evidenced by histology. Somatic embryos germinated easily when left on the same media, but formed adventitious roots in two weeks on MS supplemented with 0.5 µM NAA, 0.5 µM IBA and 0.1% activated charcoal. Over 93% of plantlets survived following acclimatization and transfer to a mixture of sand and vermiculite (1:1, v/v) in trays.


Assuntos
Espécies em Perigo de Extinção , Lamiales/citologia , Brotos de Planta/crescimento & desenvolvimento , Técnicas de Embriogênese Somática de Plantas/métodos , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Lamiales/metabolismo , Lamiales/fisiologia , Brotos de Planta/citologia , Brotos de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA