Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 447
Filtrar
1.
Nat Commun ; 15(1): 7626, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227584

RESUMO

Lymphocyte receptors independently evolved in both jawed and jawless vertebrates with similar adaptive immune responses. However, the diversity of functional subtypes and molecular architecture in jawless vertebrate lymphocytes, comparable to jawed species, is not well defined. Here, we profile the gills, intestines, and blood of the lamprey, Lampetra morii, with single-cell RNA sequencing, using a full-length transcriptome as a reference. Our findings reveal higher tissue-specific heterogeneity among T-like cells in contrast to B-like cells. Notably, we identify a unique T-like cell subtype expressing a homolog of the nonlymphoid hematopoietic growth factor receptor, MPL-like (MPL-L). These MPL-L+ T-like cells exhibit features distinct from T cells of jawed vertebrates, particularly in their elevated expression of hematopoietic genes. We further discovered that MPL-L+ VLRA+ T-like cells are widely present in the typhlosole, gill, liver, kidney, and skin of lamprey and they proliferate in response to both a T cell mitogen and recombinant human thrombopoietin. These findings provide new insights into the adaptive immune response in jawless vertebrates, shedding new light on the evolution of adaptive immunity.


Assuntos
Imunidade Adaptativa , Linhagem da Célula , Lampreias , Animais , Lampreias/imunologia , Lampreias/genética , Imunidade Adaptativa/genética , Linhagem da Célula/genética , Evolução Biológica , Transcriptoma , Linfócitos T/imunologia , Brânquias/imunologia , Brânquias/metabolismo , Linfócitos/imunologia , Análise de Célula Única , Humanos
2.
Fish Physiol Biochem ; 50(4): 1861-1877, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38951427

RESUMO

The metabotropic glutamate receptor (mGluR, GRM) family is involved in multiple signaling pathways and regulates neurotransmitter release. However, the evolutionary history, distribution, and function of the mGluRs family in lampreys have not been determined. Therefore, we identified the mGluRs gene family in the genome of Lethenteron reissneri, which has been conserved throughout vertebrate evolution. We confirmed that Lr-GRM3, Lr-GRM5, and Lr-GRM7 encode three types of mGluRs in lamprey. Additionally, we investigated the distribution of Lr-GRM3 within this species by qPCR and Western blotting. Furthermore, we conducted RNA sequencing to investigate the molecular function of Lr-GRM3 in lamprey. Our gene expression profile revealed that, similar to that in jawed vertebrates, Lr-GRM3 participates in multiple signal transduction pathways and influences synaptic excitability in lampreys. Moreover, it also affects intestinal motility and the inflammatory response in lampreys. This study not only enhances the understanding of mGluRs' gene evolution but also highlights the conservation of GRM3's role in signal transduction while expanding our knowledge of its functions specifically within lampreys. In summary, our experimental findings provide valuable insights for studying both the evolution and functionality of the mGluRs family.


Assuntos
Evolução Molecular , Lampreias , Receptores de Glutamato Metabotrópico , Animais , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Lampreias/genética , Lampreias/metabolismo , Filogenia , Transdução de Sinais
3.
Nat Ecol Evol ; 8(9): 1680-1692, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39060477

RESUMO

The neural crest is a vertebrate-specific stem cell population that helped drive the origin and evolution of vertebrates. A distinguishing feature of these cells is their multi-germ layer potential, which has parallels to another stem cell population-pluripotent stem cells of the vertebrate blastula. Here, we investigate the evolutionary origins of neural crest potential by comparing neural crest and pluripotency gene regulatory networks of a jawed vertebrate, Xenopus, and a jawless vertebrate, lamprey. We reveal an ancient evolutionary origin of shared regulatory factors in these gene regulatory networks that dates to the last common ancestor of extant vertebrates. Focusing on the key pluripotency factor pou5, we show that a lamprey pou5 orthologue is expressed in animal pole cells but is absent from neural crest. Both lamprey and Xenopus pou5 promote neural crest formation, suggesting that pou5 activity was lost from the neural crest of jawless vertebrates or acquired along the jawed vertebrate stem. Finally, we provide evidence that pou5 acquired novel, neural crest-enhancing activity after evolving from an ancestral pou3-like clade. This work provides evidence that both the neural crest and blastula pluripotency networks arose at the base of the vertebrates and that this may be linked to functional evolution of pou5.


Assuntos
Evolução Biológica , Blástula , Lampreias , Crista Neural , Xenopus , Animais , Crista Neural/citologia , Lampreias/genética , Blástula/citologia , Vertebrados , Redes Reguladoras de Genes
4.
Mol Immunol ; 172: 47-55, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38875755

RESUMO

3-phosphoinositide-dependent protein kinase-1 (PDK-1) is a key kinase regulating the activity of the PI3K/AKT pathway and a major regulator of the AGC protein kinase family. It is essential in the physiological activities of cells, embryonic development, individual development and immune response. In this study, we have identified for the first time an analogue of PDK-1 in the most primitive vertebrate, lamprey, and named it PDK-1-like. The protein sequence similarity of lamprey PDK-1-like to human, mouse, chicken, African xenopus and zebrafish PDK-1 were 64.4 %, 64.5 %, 65.0 %, 61.3 % and 63.2 %, respectively. The phylogenetic tree showed that PDK-1-like of lamprey were located at the base of the vertebrate branch, in line with the trend of biological evolution. Meanwhile, homology analysis showed that PDK-1 proteins across species shared a conserved kinase structural domain and a Pleckstrin Homology (PH) domain. Genomic synteny analysis revealed that the large-scale duplication blocks were not found in lamprey genome and neighbor genes of lamprey PDK-1-like presented dramatic differences compared with jawed vertebrates. More importantly, qPCR analysis showed that PDK-1-like was widely expressed in lamprey. Its mRNA expression levels varied in response to different pathogenic stimuli, and its expression was generally up-regulated under Polyinosinic-Polycytidylic acid (Poly(I:C)) stimulation. Pearson's correlation analysis showed that PDK-1-like was involved in co-expressed with MyD88-independent TLR-3 pathway during the immune response of lamprey, instead of MyD88-dependent TLR-3 pathway. In summary, our composite results offer valuable clues to the origin and evolution of PDK-1, and imply that PDK-1 s are among the most ancestral immune regulators in vertebrates.


Assuntos
Evolução Molecular , Imunidade Inata , Lampreias , Filogenia , Animais , Lampreias/imunologia , Lampreias/genética , Imunidade Inata/genética , Imunidade Inata/imunologia , Humanos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Sequência de Aminoácidos , Poli I-C/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia
5.
Fish Shellfish Immunol ; 150: 109622, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740227

RESUMO

The voltage-dependent anion channel 2 (VDAC2) is the abundant protein in the outer mitochondrial membrane. Opening VDAC2 pores leads to the induction of mitochondrial energy and material transport, facilitating interaction with various mitochondrial proteins implicated in essential processes such as cell apoptosis and proliferation. To investigate the VDAC2 in lower vertebrates, we identified Lr-VDAC2, a homologue of VDAC2 found in lamprey (Lethenteron reissneri), sharing a sequence identity of greater than 50 % with its counterparts. Phylogenetic analysis revealed that the position of Lr-VDAC2 aligns with the lamprey phylogeny, indicating its evolutionary relationship within the species. The Lr-VDAC2 protein was primarily located in the mitochondria of lamprey cells. The expression of the Lr-VDAC2 protein was elevated in high energy-demanding tissues, such as the gills, muscles, and myocardial tissue in normal lampreys. Lr-VDAC2 suppressed H2O2 (hydrogen peroxide)-induced 293 T cell apoptosis by reducing the expression levels of Caspase 3, Caspase 9, and Cyt C (cytochrome c). Further research into the mechanism indicated that the Lr-VDAC2 protein inhibited the pro-apoptotic activity of BAK (Bcl-2 antagonist/killer) protein by downregulating its expression at the protein translational level, thus exerting an anti-apoptotic function similar to the role of VDAC2 in humans.


Assuntos
Apoptose , Proteínas de Peixes , Lampreias , Canal de Ânion 2 Dependente de Voltagem , Animais , Humanos , Sequência de Aminoácidos , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Regulação para Baixo/efeitos dos fármacos , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica , Células HEK293 , Peróxido de Hidrogênio , Lampreias/genética , Lampreias/imunologia , Filogenia , Alinhamento de Sequência/veterinária , Canal de Ânion 2 Dependente de Voltagem/metabolismo
6.
Dev Genes Evol ; 234(1): 45-53, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733410

RESUMO

AF4/FMR2 family member (AFF) proteins are a group of transcriptional regulators that can regulate gene transcription and play an important role in cellular physiological processes such as proliferation and differentiation. The transcriptome data of the lamprey spinal cord injury were analyzed in previous research. We then identified a hub gene, Lr-AFF3, from this dataset. Phylogenetic tree analysis determined the evolutionary relationships of the AFF gene family across different species. In addition, analysis of motifs, domains, and 3D structures further confirmed the conservatism of the AFF gene family. In particular, the gene structure of the AFF3 gene was not conserved, possibly because of intron insertion. It was also found that the neighboring genes of the Lr-AFF3 gene had a higher diversity than that in jawed vertebrates through synteny analysis. The results of the MTT and EdU experiments showed that the C-terminal homology domain (CHD) and N-terminal homology domain (NHD) of Lr-AFF3 promoted cell proliferation. In summary, our research will not only provide new insights into the origin and evolution of the AFF gene family in different species, but also provide new clues for the functions of Lr_AFF3.


Assuntos
Proliferação de Células , Evolução Molecular , Lampreias , Fatores de Transcrição , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/química , Lampreias/genética , Lampreias/metabolismo , Família Multigênica , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química
7.
Fish Physiol Biochem ; 50(3): 1109-1122, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38429619

RESUMO

The Na ( +)-taurocholate cotransporting polypeptide (NTCP) is a member of the solute carrier family 10 (SLC10), which consists of 7 members (SLC10a1-SLC10a7). NTCP is a transporter localized to the basolateral membrane of hepatocytes and is primarily responsible for the absorption of bile acids. Although mammalian NTCP has been extensively studied, little is known about the lamprey NTCP (L-NTCP). Here we show that L-NTCP follows the biological evolutionary history of vertebrates, with conserved domain, motif, and similar tertiary structure to higher vertebrates. L-NTCP is localized to the cell surface of lamprey primary hepatocytes by immunofluorescence analysis. HepG2 cells overexpressing L-NTCP also showed the distribution of L-NTCP on the cell surface. The expression profile of L-NTCP showed that the expression of NTCP is highest in lamprey liver tissue. L-NTCP also has the ability to transport bile acids, consistent with its higher vertebrate orthologs. Finally, using a farnesoid X receptor (FXR) antagonist, RT-qPCR and flow cytometry results showed that L-NTCP is negatively regulated by the nuclear receptor FXR. This study is important for understanding the adaptive mechanisms of bile acid metabolism after lamprey biliary atresia based on understanding the origin, evolution, expression profile, biological function, and expression regulation of L-NTCP.


Assuntos
Lampreias , Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Animais , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/genética , Simportadores/metabolismo , Lampreias/genética , Lampreias/metabolismo , Humanos , Regulação da Expressão Gênica , Células Hep G2 , Filogenia , Hepatócitos/metabolismo , Ácidos e Sais Biliares/metabolismo , Evolução Molecular , Sequência de Aminoácidos , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
9.
Fish Shellfish Immunol ; 146: 109413, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311092

RESUMO

Liver-expressed antimicrobial peptide 2 (LEAP2) is a member of the antimicrobial peptides family and plays a key role in the innate immune system of organisms. LEAP2 orthologs have been identified from a variety of fish species, however, its function in primitive vertebrates has not been clarified. In this study, we cloned and identified Lc-LEAP2 from the primitive jawless vertebrate lamprey (Lethenteron camtschaticum) which includes a 25 amino acids signal peptide and a mature peptide of 47 amino acids. Although sequence similarity was low compared to other species, the mature Lc-LEAP2 possesses four conserved cysteine residues, forming a core structure with two disulfide bonds between the cysteine residues in the relative 1-3 (Cys 58 and Cys 69) and 2-4 (Cys 64 and Cys 74) positions. Lc-LEAP2 was most abundantly expressed in the muscle, supraneural body and buccal gland of lamprey, and was significantly upregulated during LPS and Poly I:C stimulations. The mature peptide was synthesized and characterized for its antibacterial activity against different bacteria. Lc-LEAP2 possessed inhibition of a wide range of bacteria with a dose-dependence, disrupting the integrity of bacterial cell membranes and binding to bacterial genomic DNA, although its inhibitory function is weak compared to that of higher vertebrates. These data suggest that Lc-LEAP2 plays an important role in the innate immunity of lamprey and is of great value in improving resistance to pathogens. In addition, the antimicrobial mechanism of LEAP2 has been highly conserved since its emergence in primitive vertebrates.


Assuntos
Hepcidinas , Lampreias , Animais , Lampreias/genética , Lampreias/metabolismo , Hepcidinas/genética , Sequência de Aminoácidos , Cisteína , Proteínas de Peixes/química , Vertebrados/metabolismo , Peptídeos/genética , Antibacterianos/farmacologia , Filogenia
10.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397089

RESUMO

Lamprey homologues of the classic embryonic inducer Noggin are similar in expression pattern and functional properties to Noggin homologues of jawed vertebrates. All noggin genes of vertebrates apparently originated from a single ancestral gene as a result of genome duplications. nogginA, nogginB and nogginC of lampreys, like noggin1 and noggin2 of gnathostomes, demonstrate the ability to induce complete secondary axes with forebrain and eye structures when overexpressed in Xenopus laevis embryos. According to current views, this finding indicates the ability of lamprey Noggin proteins to suppress the activity of the BMP, Nodal/Activin and Wnt/beta-catenin signaling pathways, as shown for Noggin proteins of gnathostomes. In this work, by analogy with experiments in Xenopus embryos, we attempted to induce secondary axes in the European river lamprey Lampetra fluviatilis by injecting noggin mRNAs into lamprey eggs in vivo. Surprisingly, unlike what occurs in amphibians, secondary axis induction in the lampreys either by noggin mRNAs or by chordin and cerberus mRNAs, the inductive properties of which have been described, was not observed. Only wnt8a mRNA demonstrated the ability to induce secondary axes in the lampreys. Such results may indicate that the mechanism of axial specification in lampreys, which represent jawless vertebrates, may differ in detail from that in the jawed clade.


Assuntos
Lampreias , Prosencéfalo , Animais , Lampreias/genética , Xenopus laevis/genética , Via de Sinalização Wnt , Genoma , Filogenia
11.
Nature ; 627(8005): 811-820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262590

RESUMO

As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a crucial window into early vertebrate evolution1-3. Here we investigate the complex history, timing and functional role of genome-wide duplications4-7 and programmed DNA elimination8,9 in vertebrates in the light of a chromosome-scale genome sequence for the brown hagfish Eptatretus atami. Combining evidence from syntenic and phylogenetic analyses, we establish a comprehensive picture of vertebrate genome evolution, including an auto-tetraploidization (1RV) that predates the early Cambrian cyclostome-gnathostome split, followed by a mid-late Cambrian allo-tetraploidization (2RJV) in gnathostomes and a prolonged Cambrian-Ordovician hexaploidization (2RCY) in cyclostomes. Subsequently, hagfishes underwent extensive genomic changes, with chromosomal fusions accompanied by the loss of genes that are essential for organ systems (for example, genes involved in the development of eyes and in the proliferation of osteoclasts); these changes account, in part, for the simplification of the hagfish body plan1,2. Finally, we characterize programmed DNA elimination in hagfish, identifying protein-coding genes and repetitive elements that are deleted from somatic cell lineages during early development. The elimination of these germline-specific genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline and pluripotency functions, paralleling findings in lampreys10,11. Reconstruction of the early genomic history of vertebrates provides a framework for further investigations of the evolution of cyclostomes and jawed vertebrates.


Assuntos
Evolução Molecular , Feiticeiras (Peixe) , Vertebrados , Animais , Feiticeiras (Peixe)/anatomia & histologia , Feiticeiras (Peixe)/citologia , Feiticeiras (Peixe)/embriologia , Feiticeiras (Peixe)/genética , Lampreias/genética , Filogenia , Vertebrados/genética , Sintenia , Poliploidia , Linhagem da Célula
12.
Nat Ecol Evol ; 8(3): 519-535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216617

RESUMO

Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish, Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian-earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.


Assuntos
Feiticeiras (Peixe) , Animais , Filogenia , Feiticeiras (Peixe)/genética , Duplicação Gênica , Vertebrados/genética , Genoma , Lampreias/genética
13.
Immunol Invest ; 53(2): 241-260, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38078455

RESUMO

The mammalian testis and ovary possess special immunocompetence, which is central to provide protection against pathogens. However, the innate immune responses to immune challenges in lamprey gonads are poorly understood. In this study, we extracted RNA from testis and ovary tissues of lampreys at 0 hour, 8 hours and 17 days after lipopolysaccharides (LPS) stimulation and performed transcriptome sequencing. While the transcriptome profiles of the two tissues were different for the most part, genes LIP, LECT2, LAL2, GRN, ITLN, and C1q were found to be the most significantly up-regulated genes in both. Quantitative Real-time PCR (qRT-PCR) analysis confirmed that these genes were upregulated after stimulation. Furthermore, immunohistochemical staining showed that these genes in lamprey gonads are expressed in high quantities and have a specific distribution. Taken together, our results suggest that these genes could play an essential role in response of the gonads to LPS induction. This research establishes a basis for investigating the immune mechanism of vertebrate gonads and presents a fresh concept for gaining insight into the evolutionary development of jawless vertebrates.


Assuntos
Lampreias , Transcriptoma , Animais , Feminino , Masculino , Lampreias/genética , Lipopolissacarídeos , Perfilação da Expressão Gênica , Gônadas , Imunidade Inata/genética , Mamíferos/genética
14.
Fish Shellfish Immunol ; 145: 109323, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147915

RESUMO

Heat shock proteins (HSPs) are molecular chaperones that ubiquitously exist in various organisms and play essential roles in protein folding, transport, and expression. While most HSPs are highly conserved across species, a few HSPs are evolutionarily distinct in some species and may have unique functions. To explore the evolutionary history of the vertebrate HSP family, we identify members of the HSP family at the genome-wide level in lampreys (Lethenteron reissneri), a living representative of jawless vertebrates diverged from jawed vertebrates over 500 million years ago. The phylogenetic analysis reveals that the lamprey HSP family contains HSP90a1, HSP90a2, HSC70, HSP60, HSP30, HSP27, HSP17, and HSP10, which have a primitive status in the molecular evolution of vertebrate HSPs. Transcriptome analysis reveals the expression distribution of members of the HSP family in various tissues of lampreys. It is shown that HSP30, normally found in birds, amphibians, and fish, is also present in lampreys, with remarkable expansion of HSP30 gene copies in the lamprey genome. The transcription of HSP30 is significantly induced in leukocytes and heart of lampreys during various pathogens or poly(I:C) stimulation, indicating that HSP30 may be involved in the immune defense of lampreys in response to bacterial or viral infection. Immunohistochemistry demonstrates significantly increased HSP30 expression in subcutaneous muscle tissue after skin injury in lamprey models of wound repair. Furthermore, transcriptome analysis shows that ectopic expression of HSP30 in 3T3-L1 fibroblasts affect the expression of genes related to the PI3K-AKT signaling pathway, suggesting that HSP30 could serves as a negative regulator of fibrosis. These results indicate that HSP30 may play a critical role in facilitating the process of lamprey skin repair following injury. This study provides new insights into the origin and evolution of the HSP gene family in vertebrates and offers valuable clues to reveal the important role of HSP30 in immune defense and wound healing of lampreys.


Assuntos
Lampreias , Fosfatidilinositol 3-Quinases , Animais , Lampreias/genética , Filogenia , Fosfatidilinositol 3-Quinases/genética , Proteínas de Choque Térmico/genética , Evolução Molecular , Imunidade , Cicatrização
15.
Mol Phylogenet Evol ; 189: 107942, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37804959

RESUMO

The history of lamprey evolution has been contentious due to limited morphological differentiation and limited genetic data. Available data has produced inconsistent results, including in the relationship among northern and southern species and the monophyly of putative clades. Here we use whole genome sequence data sourced from a public database to identify orthologs for 11 lamprey species from across the globe and build phylogenies. The phylogeny showed a clear separation between northern and southern lamprey species, which contrasts with some prior work. We also find that the phylogenetic relationships of our samples of two genera, Lethenteron and Eudontomyzon, deviate from the taxonomic classification of these species, suggesting that they require reclassification.


Assuntos
Genoma , Lampreias , Animais , Filogenia , Lampreias/genética , Genoma/genética
16.
Dev Biol ; 504: 12-24, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37696353

RESUMO

The Estrogen Related Receptor (ERR) nuclear hormone receptor genes have a wide diversity of roles in vertebrate development. In embryos, ERR genes are expressed in several tissues, including the central and peripheral nervous systems. Here we seek to establish the evolutionary history of chordate ERR genes, their expression and their regulation. We examine ERR expression in mollusc, amphioxus and sea squirt embryos, finding the single ERR orthologue is expressed in the nervous system in all three, with muscle expression also found in the two chordates. We show that most jawed vertebrates and lampreys have four ERR paralogues, and that vertebrate ERR genes were ancestrally linked to Estrogen Receptor genes. One of the lamprey paralogues shares conserved expression domains with jawed vertebrate ERRγ in the embryonic vestibuloacoustic ganglion, eye, brain and spinal cord. Hypothesising that conserved expression derives from conserved regulation, we identify a suite of pan-vertebrate conserved non-coding sequences in ERR introns. We use transgenesis in lamprey and chicken embryos to show that these sequences are regulatory and drive reporter gene expression in the nervous system. Our data suggest an ancient association between ERR and the nervous system, including expression in cells associated with photosensation and mechanosensation. This includes the origin in the vertebrate common ancestor of a suite of regulatory elements in the 3' introns that drove nervous system expression and have been conserved from this point onwards.


Assuntos
Cordados , Embrião de Galinha , Animais , Cordados/genética , Evolução Molecular , Vertebrados , Sequência Conservada , Lampreias/genética , Lampreias/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Filogenia
17.
Dev Comp Immunol ; 148: 104903, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37541459

RESUMO

Information on the prostaglandin pathway in lampreys is limited. Here, five genes related to the prostaglandin pathway from synthesis to inactivation, namely, phospholipase A2, cyclooxygenase-2, prostaglandin E synthase 3, prostaglandin D synthase, and 15-hydroxyprostaglandin dehydrogenase [NAD(+)], were screened and cloned from the lamprey, Lethenteron camtschaticum. Bioinformatic analysis showed that these lamprey genes are relatively conserved with teleost genes in domains, motifs, gene structure and 3D structure. Analysis of expression distribution of the genes in lamprey tissues revealed that a complete prostaglandin pathway from synthesis to inactivation exists in the oral gland of lamprey, especially the key gene of prostaglandin synthesis cyclooxygenase-2, which was highly expressed in the oral gland. Furthermore, cyclooxygenase-2 expression increased after LPS and Poly I:C stimulations. Using our established spatial metabolite database LampreyDB, six prostaglandin-related metabolites were screened from the oral gland of lamprey, four of which were highly expressed in the oral gland. This study provides new insights into prostaglandin synthesis and inactivation pathways in lamprey, thereby improving our understanding of the origin and evolution of the prostaglandin pathway and contributing to the recognition of lamprey regulatory mechanisms in development and immunity.


Assuntos
Lampreias , Vertebrados , Animais , Lampreias/genética , Ciclo-Oxigenase 2/metabolismo , Filogenia
18.
Protein Pept Lett ; 30(8): 679-689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496246

RESUMO

INTRODUCTION: The first vertebrates were jawless fish, or Agnatha, whose evolution diverged into jawed fish, or Gnathostomes, around 550 million years ago. METHODS: In this study, we investigated ß PFT proteins' evolutionary divergence of lamprey immune protein from Agnatha, reportedly possessing anti-cancer activity, into Dln1 protein from Gnathostomes. Both proteins showed structural and functional divergence, and shared evolutionary origin. Primary, secondary and tertiary sequences were compared to discover functional domains and conserved motifs in order to study the evolution of these two proteins. The structural and functional information relevant to evolutionary divergence was revealed using hydrophobic cluster analysis. RESULTS: The findings demonstrate that two membrane proteins with only a small degree of sequence identity can have remarkably similar hydropathy profiles, pointing towards conserved and similar global structures. When facing the lipid bilayer or lining the pore lumen, the two proteins' aerolysin domains' corresponding residues displayed a similar and largely conserved pattern. Aerolysin-like proteins from different species can be identified using a fingerprint created by PIPSA analysis of the pore-forming protein. CONCLUSION: We were able to fully understand the mechanism of action during pore formation through structural studies of these proteins.


Assuntos
Gnathostoma , Animais , Vertebrados , Peixes , Lampreias/genética , Porinas , Evolução Molecular , Filogenia
19.
Fish Shellfish Immunol ; 140: 108967, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37488041

RESUMO

The tryptophan-kynurenine (TRP-KYN) pathway is involved in several biological functions, including immunosuppression, inflammatory response, and tumor suppression. Six TRP-KYN pathway-related genes, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 2 (IDO2), aminoadipate aminotransferase (AADAT), glutamate oxaloacetate transaminase 2 (GOT2), kynurenine monooxygenase (KMO), and kynureninase (KYNU) have been identified and cloned from the jawless vertebrate lamprey (Lampetra japonica) to gain insights into their evolution and characterization. Expression distribution showed that the key gene Lj-TDO was highly expressed in the oral gland. Real-time quantitative PCR showed that TRP-KYN pathway-related genes were significantly overexpressed after multi-stimulation. RNA interference showed that Lj-IDO2 knockdown regulated the expression of inflammatory factors. In conclusion, our study successfully clarified the ancestral features and functions of the TRP-KYN pathway, while providing valuable insights into the involvement of this pathway in the immune responses of a jawless vertebrate.


Assuntos
Cinurenina , Triptofano , Animais , Triptofano/metabolismo , Cinurenina/análise , Cinurenina/metabolismo , Lampreias/genética , Lampreias/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Imunidade Inata/genética
20.
Front Immunol ; 14: 1153628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143659

RESUMO

Toll-like receptors (TLRs) play an important role in innate immunity of defense against bacterial or viral pathogens. To study the biological characteristics and functions of the TLR genes, TLR14d was identified from Northeast Chinese lamprey (Lethenteron morii) and named LmTLR14d. LmTLR14d coding sequence (cds) is 3285 bp in length and encodes 1094 amino acids (aa). The results showed that LmTLR14d has the typical structure of TLR molecule, which contains the extracellular domain of leucine-rich repeats (LRR), transmembrane domain, and intracellular domain of Toll/interleukin-1 receptor (TIR). The phylogenetic tree showed that LmTLR14d is a homologous gene of TLR14/18 in bony fish. Quantitative real-time PCR (qPCR) revealed that LmTLR14d was expressed in various healthy tissues, including immune and non-immune tissues. Pseudomonas aeruginosa infection up-regulated LmTLR14d in the supraneural body (SB), gill, and kidney tissues of infected Northeast Chinese lamprey. Immunofluorescence results showed that LmTLR14d was located in the cytoplasm of HEK 293T cells in clusters, and its subcellular localization was determined by the TIR domain. The immunoprecipitation results showed that LmTLR14d could recruit L.morii MyD88 (LmMyD88) but not L.morii TRIF (LmTRIF). Dual luciferase reporter results showed that LmTLR14d significantly enhanced the activity of L.morii NF-κß (LmNF-κß) promoter. Furthermore, co-transfection of LmTLR14d with MyD88 significantly enhanced the L.morii NF-κß (LmNF-κß) promoter activity. LmTLR14d can induce the expression of inflammatory cytokine genes il-6 and tnf-α downstream of NF-κB signal. This study suggested that LmTLR14d might play an important role in the innate immune signal transduction process of lamprey and revealed the origin and function of teleost-specific TLR14.


Assuntos
Lampreias , Fator 88 de Diferenciação Mieloide , Animais , Fator 88 de Diferenciação Mieloide/genética , Lampreias/genética , Filogenia , Regulação da Expressão Gênica , Sequência de Aminoácidos , Receptores Toll-Like , Proteínas Adaptadoras de Transdução de Sinal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA