Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.229
Filtrar
1.
Plant Cell Physiol ; 65(4): 660-670, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38195149

RESUMO

In response to both biotic and abiotic stresses, vascular plants transmit long-distance Ca2+ and electrical signals from localized stress sites to distant tissues through their vasculature. Various models have been proposed for the mechanisms underlying the long-distance signaling, primarily centered around the presence of vascular bundles. We here demonstrate that the non-vascular liverwort Marchantia polymorpha possesses a mechanism for propagating Ca2+ waves and electrical signals in response to wounding. The propagation velocity of these signals was approximately 1-2 mm s-1, equivalent to that observed in vascular plants. Both Ca2+ waves and electrical signals were inhibited by La3+ as well as tetraethylammonium chloride, suggesting the crucial importance of both Ca2+ channel(s) and K+ channel(s) in wound-induced membrane depolarization as well as the subsequent long-distance signal propagation. Simultaneous recordings of Ca2+ and electrical signals indicated a tight coupling between the dynamics of these two signaling modalities. Furthermore, molecular genetic studies revealed that a GLUTAMATE RECEPTOR-LIKE (GLR) channel plays a central role in the propagation of both Ca2+ waves and electrical signals. Conversely, none of the three two-pore channels were implicated in either signal propagation. These findings shed light on the evolutionary conservation of rapid long-distance Ca2+ wave and electrical signal propagation involving GLRs in land plants, even in the absence of vascular tissue.


Assuntos
Sinalização do Cálcio , Cálcio , Marchantia , Marchantia/fisiologia , Marchantia/genética , Marchantia/metabolismo , Cálcio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Lantânio/farmacologia , Receptores de Glutamato/metabolismo , Receptores de Glutamato/genética , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Tetraetilamônio/farmacologia , Canais de Potássio/metabolismo , Canais de Potássio/genética
2.
Biol Trace Elem Res ; 202(3): 1009-1019, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37335444

RESUMO

To study the species of lanthanum (III) nitrate (La[NO3]3) dispersed in cell media and the effect on the osteoblast differentiation of bone marrow stroma cells (BMSCs). Different La-containing precipitations were obtained by adding various concentrations of La(NO3)3 solutions to Dulbecco's modified Eagle medium (DMEM) or DMEM with fetal bovine serum (FBS). A series of characterisation methods, including dynamic light scattering, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and protein quantification were employed to clarify the species of the different La-containing precipitations. The primary BMSCs were isolated, and the cell viability, alkaline phosphatase activity, and the formation of a mineralised nodule of BMSCs were tested when treated with different La-containing precipitations. The La(NO3)3 solutions in DMEM could form LaPO4, which exits in the particle formation, while the La(NO3)3 solutions in DMEM with FBS could form a La-PO4-protein compound. When treated with La(NO3)3 solutions in DMEM, the cell viability of the BMSCs was inhibited at the concentrations of 1, 10, and 100 µM at 1 day and 3 days. Meanwhile, the supernatant derived from the La(NO3)3 solutions in DMEM did not affect the cell viability of the BMSCs. In addition, the precipitate derived from the La(NO3)3 solutions in DMEM added to the complete medium inhibited the cell viability of the BMSCs at concentrations of 10 µM and 100 µM. When treated with La(NO3)3 solutions in DMEM with FBS, the derived precipitate and supernatant did not affect the cell viability of the BMSCs, except for the concentration of 100 µM La(NO3)3. The La-PO4-protein formed from the La(NO3)3 solutions in DMEM with FBS inhibited the osteoblast differentiation of BMSCs at the concentration of 1 µM La(NO3)3 (P < 0.05) but had no effect on either the osteoblast differentiation at the concentrations of 0.001 and 0.1 µM or on the formation of a mineralised nodule at all tested concentrations of La(NO3)3. Overall, La(NO3)3 solutions in different cell culture media could form different La-containing compounds: La-PO4 particles (in DMEM) and a La-PO4-protein compound (in DMEM with FBS). The different La-containing compounds caused different effects on the cell viability, osteoblast differentiation, and the formation of a mineralised nodule of the BMSCs. The La-containing precipitation inhibited the osteoblast differentiation by inhibiting the expression of osteoblast-related genes and proteins, providing a theoretical basis for clinical doctors to apply phosphorus-lowering drugs such as lanthanum carbon.


Assuntos
Células-Tronco Mesenquimais , Nitratos , Camundongos , Animais , Nitratos/farmacologia , Nitratos/metabolismo , Lantânio/farmacologia , Lantânio/metabolismo , Osteogênese , Células Cultivadas , Diferenciação Celular , Células da Medula Óssea , Proliferação de Células , Células Estromais
3.
J Biol Inorg Chem ; 29(1): 101-112, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38148422

RESUMO

The aim of this study was to investigate the effect and possible underlying mechanism of La2(CO3)3 deposition on GI mucosal inflammation. Our results showed that La2(CO3)3 can dissolve in artificial gastric fluids and form lanthanum phosphate (LaPO4) precipitates with an average size of about 1 µm. To mimic the intestinal mucosa and epithelial barrier, we established a Caco-2/THP-1 macrophage coculture model and a Caco-2 monoculture model, respectively. Our findings demonstrated that the medium of THP-1 macrophages stimulated by LaPO4 particles can damage the Caco-2 monolayer integrity in the coculture model, while the particles themselves had no direct impact on the Caco-2 monolayer integrity in the monoculture model. We measured values of trans-epithelial electrical resistance and detected images using a laser scanning confocal microscope. These results indicate that continuous stimulation of LaPO4 particles on macrophages can lead to a disruption of intestinal epithelium integrity. In addition, LaPO4 particles could stimulate THP-1 macrophages to secrete both IL-1ß and IL-8. Although LaPO4 particles can also promote Caco-2 cells to secrete IL-8, the secretion was much lower than that produced by THP-1 macrophages. In summary, the deposition of La2(CO3)3 has been shown to activate macrophages and induce damage to intestinal epithelial cells, which may exacerbate inflammation in patients with chronic kidney disease. Therefore, patients taking lanthanum carbonate, especially those with gastrointestinal mucosal inflammation, should be mindful of the potential for drug deposition in the GI system.


Assuntos
Lantânio , Insuficiência Renal Crônica , Humanos , Lantânio/farmacologia , Células CACO-2 , Técnicas de Cocultura , Interleucina-8/farmacologia , Macrófagos , Inflamação/induzido quimicamente
4.
ACS Nano ; 17(16): 15821-15835, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37553292

RESUMO

In the current study, foliar spray with lanthanum (La) based nanomaterials (La10Si6O27 nanorods, La10Si6O27 nanoparticle, La(OH)3 nanorods, and La2O3 nanoparticle) suppressed the occurrence of sheath blight (Rhizoctonia solani) in rice. The beneficial effects were morphology-, composition-, and concentration-dependent. Foliar application of La10Si6O27 nanorods (100 mg/L) yielded the greatest disease suppression, significantly decreasing the disease severity by 62.4% compared with infected controls; this level of control was 2.7-fold greater than the commercially available pesticide (Thifluzamide). The order of efficacy was as follows: La10Si6O27 nanorods > La10Si6O27 nanoparticle > La(OH)3 nanorods > La2O3 nanoparticle. Mechanistically, (1) La10Si6O27 nanorods had greater bioavailability, slower dissolution, and simultaneous Si nutrient benefits; (2) transcriptomic and metabolomic analyses revealed that La10Si6O27 nanorods simultaneously strengthened rice systemic acquired resistance, physical barrier formation, and antioxidative systems. Additionally, La10Si6O27 nanorods improved rice yield by 35.4% and promoted the nutritional quality of the seeds as compared with the Thifluzamide treatment. A two-year La10Si6O27 nanorod exposure had no effect on soil health based on the evaluated chemical, physical, and biological soil properties. These findings demonstrate that La based nanomaterials can serve as an effective and sustainable strategy to safeguard crops and highlight the importance of nanomaterial composition and morphology in terms of optimizing benefit.


Assuntos
Nanoestruturas , Oryza , Solo , Lantânio/farmacologia , Oryza/química , Silicatos , Doenças das Plantas/prevenção & controle
5.
Int J Med Mushrooms ; 25(6): 41-54, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522532

RESUMO

Cordyceps militaris is a medicinal and edible mushroom. Researchers often add exogenous substances to the culture medium to increase the active substance content in C. militaris. However, the effect of earth elements on the active substance content in C. militaris and its antioxidant effects have not been reported. In this study, the active substance content in C. militaris treated with lanthanum nitrate was determined using high-performance liquid chromatography and ultraviolet spectrophotometry, and the effect on the antioxidant capacity of C. militaris after lanthanum nitrate spraying was further explored. The results showed that, in the experimental concentration range, the two concentrations of 10 mg/L and 50 mg/L had a significant influence on the active substance content of C. militaris. When the concentration of lanthanum nitrate was 10 mg/L, the synthesis of pentostatin and cordycepin was promoted. When the concentration of lanthanum nitrate was 50 mg/L, it significantly promoted the synthesis of cordycepin, and the ferric-reducing power and DPPH· scavenging rate of C. militaris treated at this concentration were significantly higher than those of the control group. However, lanthanum nitrate had no significant effect on ergosterol synthesis (P > 0.05). Finally, considering that the residual amount of lanthanum in C. militaris and the residual amount of lanthanum in 50 mg/L lanthanum nitrate-treated C. militaris is within the allowable daily intake of 4.2 mg for humans, the optimal concentration of lanthanum nitrate-treated C. militaris is 50 mg/L.


Assuntos
Agaricales , Cordyceps , Humanos , Antioxidantes/farmacologia , Lantânio/farmacologia , Cordyceps/química , Desoxiadenosinas/análise
6.
Adv Mater ; 35(35): e2302961, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37227938

RESUMO

Pyroptosis, a distinct paradigm of programmed cell death, is an efficient strategy against cancer by overcoming resistance to apoptosis. In this study, LaCoO3 (LCO) lanthanide-based nanocrystals with multienzyme characteristics are rationally designed and engineered to trigger the generation of cytotoxic reactive oxygen species (ROS) and the release of lanthanum ions, ultimately inducing lung cancer cell pyroptosis. The peroxidase- and oxidase-mimicking activities of LCO nanocrystals endow LCO with ROS production capacity in tumor tissues with an acidic pH and high hydrogen peroxide content. Concurrently, the LCO nanoenzyme exhibits catalase- and glutathione peroxidase-like activities, reversing the hypoxic microenvironment, destroying the activated antioxidant system of tumor cells, and amplifying the sensitivity of tumor cells to ROS. The use of ultrasound further accelerates the enzymatic kinetic rate. Most importantly, the La3+ ions released by LCO robustly destroy the lysosomal membrane, finally inducing canonical pyroptotic cell death, together with ROS. LCO-nanocrystal-triggered programmed cell pyroptosis amplifies the therapeutic effects both in vitro and in vivo, effectively restraining lung cancer growth and metastasis. This study paves a new avenue for the efficient treatment of lung cancer and metastasis through US-enhanced lanthanum-based nanoenzyme platforms and pyroptotic cell death.


Assuntos
Neoplasias Pulmonares , Piroptose , Humanos , Espécies Reativas de Oxigênio/metabolismo , Lantânio/farmacologia , Apoptose , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Microambiente Tumoral
7.
Artigo em Chinês | MEDLINE | ID: mdl-36725287

RESUMO

Objective: To investigate the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) in the alteration of tight junction protein expression in choroid plexus epithelial cells created by lanthanum-activated matrix metalloproteinase 9 (MMP9) . Methods: In October 2020, immortalized rat choroid plexus epithelial cell line (Z310) cells were used as the blood-cerebrospinal fluid barrier in vitro, and were divided into control group and 0.125, 0.25, 0.5 mmol/L lanthanum chloride (LaCl(3)) treatment group. After treating Z310 cells with different concentrations of LaCl(3) for 24 hours, the morphological changes of Z310 cells were observed under inverted microscope, the protein expression levels of MMP9, occludin and zonula occludens-1 (ZO-1) were observed by cellular immunofluorescence method, and the protein expression levels of MMP9, tissue inhibitors of metalloproteinase1 (TIMP1) , occludin, ZO-1 and Nrf2 were detected by Western blotting. The level of reactive oxygen species (ROS) in cells was detected by flow cytometry. Results: Compared with the control group, Z310 cells in the LaCl(3) treatment group were smaller in size, with fewer intercellular junctions, and more dead cells and cell fragments. The expression level of MMP9 protein in cells treated with 0.25 and 0.5 mmol/L LaCl(3) was significantly higher than that in the control group (P<0.05) , and the expression level of TIMP1 and tight junction proteins occudin and ZO-1 was significantly lower than that in the control group (P<0.05) . Compared with the control group, the ROS production level in the 0.25, 0.5 mmol/L LaCl(3) treatment group was significantly increased (P<0.05) , and the Nrf2 protein expression level in the 0.125, 0.25, 0.5 mmol/L LaCl(3) treatment group was significantly decreased (P<0.05) . Conclusion: Lanthanum may increase the level of ROS in cells by down regulating the expression of Nrf2, thus activating MMP9 to reduce the expression level of intercellular tight junction proteins occludin and ZO-1.


Assuntos
Metaloproteinase 9 da Matriz , Fator 2 Relacionado a NF-E2 , Ratos , Animais , Metaloproteinase 9 da Matriz/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Junções Íntimas/metabolismo , Ocludina/metabolismo , Ocludina/farmacologia , Plexo Corióideo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lantânio/farmacologia , Células Epiteliais , Proteína da Zônula de Oclusão-1/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacologia
8.
J Biol Chem ; 299(3): 102940, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702252

RESUMO

Lanthanides were recently discovered as metals required in the active site of certain methanol dehydrogenases. Since then, the characterization of the lanthanome, that is, proteins involved in sensing, uptake, and utilization of lanthanides, has become an active field of research. Initial exploration of the response to lanthanides in methylotrophs has revealed that the lanthanome is not conserved and that multiple mechanisms for lanthanide utilization must exist. Here, we investigated the lanthanome in the obligate model methylotroph Methylobacillus flagellatus. We used a proteomic approach to analyze differentially regulated proteins in the presence of lanthanum. While multiple known proteins showed induction upon growth in the presence of lanthanum (Xox proteins, TonB-dependent receptor), we also identified several novel proteins not previously associated with lanthanide utilization. Among these was Mfla_0908, a periplasmic 19 kDa protein without functional annotation. The protein comprises two characteristic PepSY domains, which is why we termed the protein lanpepsy (LanP). Based on bioinformatic analysis, we speculated that LanP could be involved in lanthanide binding. Using dye competition assays, quantification of protein-bound lanthanides by inductively coupled plasma mass spectrometry, as well as isothermal titration calorimetry, we demonstrated the presence of multiple lanthanide binding sites that showed selectivity over the chemically similar calcium ion. LanP thus represents the first member of the PepSY family that binds lanthanides. Although the physiological role of LanP is still unclear, its identification is of interest for applications toward the sustainable purification and separation of rare-earth elements.


Assuntos
Proteínas de Bactérias , Proteínas de Transporte , Lantânio , Methylobacillus , Proteínas de Transporte/metabolismo , Lantânio/metabolismo , Lantânio/farmacologia , Proteômica , Methylobacillus/efeitos dos fármacos , Methylobacillus/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
9.
Chemosphere ; 307(Pt 2): 135795, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35917980

RESUMO

The continuous expansion of the application of rare earth elements (REEs) in various fields has attracted attention to their biosafety. At present, the molecular mechanisms underlying the biological effects of REEs are unclear. In this study, the effects of lanthanum (La) and gadolinium (Gd) on cell cycle progression in the root tips of rice seedlings were investigated. Low concentrations of REEs (0.1 mg L-1) induced an increase in the number of cells in the prophase and metaphase, while high concentrations of REEs (10 mg L-1) induced an increase in the number of cells in the late and terminal stages of the cell cycle, and apoptosis or necrosis. Additionally, low concentrations of REEs induced a significant increase in the expression of the cell cycle factors WEE1, CDKA;1, and CYCB1;1, and promoted the G2/M phase and accelerated root tip growth. However, at high REEs concentrations, the DNA damage response sensitized by BRCA1, MRE11, and TP53 could that prevent root tip growth by inhibiting the transcription factor E2F, resulting in obvious G1/S phase transition block and delayed G2/M phase conversion. Furthermore, by comparing the biological effect mechanisms of La and Gd, we found that these two REEs share regulatory actions on the cell cycle of root tips in rice seedlings.


Assuntos
Metais Terras Raras , Oryza , Ciclo Celular , Divisão Celular , Fatores de Transcrição E2F/metabolismo , Gadolínio/farmacologia , Lantânio/metabolismo , Lantânio/farmacologia , Meristema/metabolismo , Metais Terras Raras/farmacologia , Oryza/metabolismo , Plântula
10.
Plant Physiol Biochem ; 185: 101-111, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35667317

RESUMO

Uranium, a heavy metal and primordial radionuclide, is present in surface waters and soils both naturally and due to industrial activities. Uranium is known to be toxic to plants and its uptake and toxicity can be influenced by multiple factors such as pH and the presence of different ions. However, the precise role of the different ions in uranium uptake is not yet known. Here we investigated whether calcium influences uranium uptake and toxicity in the terrestrial plant Arabidopsis thaliana. To this end, A. thaliana plants were exposed to different calcium and uranium concentrations and furthermore, calcium channels were blocked using the calcium channel blocker lanthanum chloride (LaCl3). Fresh weight, relative growth rate, concentration of nutrients and uranium and gene expression of oxidative stress-related genes and calcium transporters were determined in roots and shoots. Calcium affected plant growth and oxidative stress in both control (no uranium) and uranium-exposed plants. In shoots, this was influenced by the total calcium concentration, but not by the different tested uranium concentrations. Uranium in turn did influence calcium uptake and distribution. Uranium-exposed plants grown in a medium with a higher calcium concentration showed an increase in gene expression of NADPH oxidases RBOHC and RBOHE and calcium transporter CAX7 after uranium exposure. In roots, these calcium-dependent responses in gene expression were not observed. This indicates that calcium indeed affects uranium toxicity, but only in shoots. In addition, a clear influence of uranium and LaCl3 (separately and combined) on the expression of calcium transporters was observed.


Assuntos
Arabidopsis , Cálcio , Urânio , Antiporters/genética , Antiporters/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Interações Medicamentosas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lantânio/farmacologia , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Urânio/toxicidade
11.
Dent Mater ; 38(8): 1362-1375, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35752471

RESUMO

Equipped with anti-oxidative properties, cerium oxide nanoparticles (CNPs) are gradually being adopted over the years in the field of oxidative stress research. However, the effects of CNPs may be diminished when under the influence of prolonged and substantially elevated levels of oxidative stress. Therefore, it is imperative to enhance the efficacy of CNPs to resist oxidative stress. In this study, our approach involves the fabrication of titanium surface CNPs coatings doped with different concentrations of lanthanum ions (La3+) and the investigation of their local anti-oxidative stress potential. The physicochemical characterization showed that the La-CNPs groups had a substantial increase in the generation of oxygen vacancies within the CNPs structure with the increase of La doping concentration. In vitro findings proofed that the cytocompatibility of different La-CNPs coatings showed a trend of increasing first and then decreasing with the increase of La doping concentration under oxidative stress microenvironment. Among these groups, the 30 % La-CNPs group presented the best cell proliferation and osteogenic differentiation which could activate the FoxO1 pathway, then upregulated the expression of SOD1 and CAT, and finally resulted in the inhibition of ROS production. In vivo results further confirmed that the 30 % La-CNPs group showed significant osteogenic effects in two rat models (osteoporosis and diabetes models). In conclusion, we believe that the 30 % La-CNPs coating holds promising potential for its implant applications in patients with oxidative stress-related diseases.


Assuntos
Cério , Implantes Dentários , Nanopartículas , Animais , Cério/química , Cério/farmacologia , Lantânio/farmacologia , Nanopartículas/química , Osteogênese , Ratos , Espécies Reativas de Oxigênio/metabolismo , Titânio/farmacologia
12.
J Colloid Interface Sci ; 624: 691-703, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35691233

RESUMO

The ecological and environmental problem caused by harmful algal blooms (HABs) is challenging to humans. The simultaneous elimination of cyanobacteria and phosphate from eutrophic waters is of great importance. Herein, a new lanthanum peroxide-loaded sepiolite nanocomposite was fabricated via a facile in-situ co-precipitation method and demonstrated the excellent properties on removal of phosphate and inhibition of cyanobacteria growth. The optimized nanocomposite (termed as LPS30) prepared with a La-to-Sepiolite mass ratio of 0.3:1 demonstrated the best cyanobacteria removal with an effective duration of at least 3 months, due to the even dispersion of high-content LP nanoparticles in the sepiolite. LPS30 exhibited a high phosphate uptake (52.68 mg-P/g), fast uptake kinetics (∼45 min to reach 80% of ultimate uptake), and relatively higher selectivity in the presence of competing matters. The pH-dependent phosphate sorption resulted from the ligand exchange between phosphate and surface functional groups (e.g., peroxo and hydroxyls), and the electrostatic attraction. The efficient and long-lasting inhibition for cyanobacteria regrowth was attributed to the combined effect of the oxidative species (i.e., LaOO-) and the efficient removal of phosphate through the coagulation flocs. Our study demonstrated that LPS30 is a promising material to simultaneously treat phosphate and algae for HABs management.


Assuntos
Cianobactérias , Nanocompostos , Poluentes Químicos da Água , Adsorção , Cinética , Lantânio/farmacologia , Silicatos de Magnésio , Peróxidos , Fosfatos
13.
Environ Sci Pollut Res Int ; 29(40): 60084-60097, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35412185

RESUMO

Nanoparticles (NPs) have been progressively applied in the last decades, which may impact the environment. Synthesis of pigments, growing, and nutrient element uptake by plants can also be affected by NPs. The influence of lanthanum oxide nanoparticles (La2O3 NPs) on growth, pigment synthesis, and nutrient element uptake by Pfaffia glomerata (Spreng.) Pedersen, a medicinal plant native in South America, was evaluated in the present study. P. glomerata plantlets were cultivated for 28 days in the absence (control) and presence of 100, 200, and 400 mg L-1 of La2O3 NPs or bulk-La2O3 (b-La2O3) at the same cultivation conditions. Root development, aerial part growth, and pigment concentration in plants were affected by b-La2O3 and La2O3 NPs, mainly by La2O3 NPs. In spite of alteration of nutrient element concentration observed for the 100 and 200 mg L-1 of La2O3 NPs or b-La2O3 treatments, Ca, Cu, Fe, K, La, Mg, Mn, Mo, P, S, and Zn determination in stems and leaves revealed drastically and similar decrease of these elements in plants cultivated in the presence of 400 mg L-1 of La2O3 NPs or b-La2O3. Element distribution (mapping) determined by using laser ablation inductively coupled plasma mass spectrometry in leaves of plants submitted to treatment with 400 mg L-1 of b-La2O3 or La2O3 NPs showed differences in the distribution of elements, indicating distinct effects of b-La2O3 and La2O3 NPs on P. glomerata. As such, this study demonstrated that La2O3 NPs may impact plant growth. However, more investigations are necessary for better understanding of the effect of La2O3 on plants, including a broader range of concentration.


Assuntos
Amaranthaceae , Nanopartículas , Lantânio/farmacologia , Nutrientes , Óxidos
14.
J Inorg Biochem ; 231: 111792, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35303612

RESUMO

Lanthanum (La) can damage the blood brain barrier when it enters the brain tissue, causing learning and memory dysfunction. Currently, few studies have focused on La-induced oxidative stress in choroid plexus epithelial cells, which can severely impair the normal function of the blood-cerebrospinal fluid barrier (BCSFB) and ultimately cause central nervous system dysfunction. The nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element(ARE) signaling pathway is one of the major antioxidant systems and is vital in protecting cells against oxidative injury in rodents. In this study, Z310 cells were employed to construct BCSFB in vitro and treated with lanthanum chloride (LaCl3); meanwhile, 40 µmol/L tert-butylhydroquinone and the corresponding concentration of LaCl3 was used as the intervention groups. The results showed that LaCl3 treatment markedly decreased Z310 cell viability, increased the necrosis rate, and then reduced the transepithelial electrical resistance value of BCSFB in vitro; reactive oxygen species levels gradually increased, catalase and glutathione peroxidase activities decreased; furthermore, Nrf2 was significantly downregulated, and the expression of Nrf2 downstream genes such as heme oxygenase1, NADP(H): dehydrogenase quinone1, glutathione thiotransferase etc. noticeably decreased; in addition, interleukin-1ß and tumour necrosis factor-α associated with Nrf2 activation noticeably increased. However, tert-butylhydroquinone could activate the Nrf2/AER signaling pathway and attenuate the Z310 cell oxidative damage induced by LaCl3. Thus, the Nrf2/ARE signaling pathway is probably involved in weakening the BCSFB in vitro that is created by La-induced oxidative stress. Tert-butylhydroquinone can activate this pathway to reverse severe oxidative damage, which significantly strengthen the function of BCSFB.


Assuntos
Lantânio , Fator 2 Relacionado a NF-E2 , Animais , Elementos de Resposta Antioxidante , Antioxidantes/farmacologia , Plexo Corióideo/metabolismo , Células Epiteliais/metabolismo , Lantânio/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
15.
J Colloid Interface Sci ; 608(Pt 1): 973-983, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34785472

RESUMO

Bacteria is one of the main culprits that cause human diseases and pose long-term challenges to people's health. Rare earth elements have unique antibacterial advantages, but little research is available. In this paper, we reported an antibacterial composite film based on lanthanum-doped carbon quantum dot nanoparticles (La@N-P-CQDs) and polyvinyl alcohol (PVA) film for fluorescence of antibiotics and accelerating wound healing. PVA/La@N-P-CQDs composite film presented excellent hydrophilicity, biocompatibility, fluorescence intensity, and antibacterial effects. The antibacterial activity of La@N-P-CQDs was evaluated by employing antibacterial assay using Escherichia coli (E.coli)and Staphylococcus aureus (S.aureus) in vitro. La@N-P-CQDs showed enhanced antibacterial activity compared with N-P-CQDs. Moreover, the PVA/La@N-P-CQDs composite film with 0.5 mg/mL La@N-P-CQDs showed better antibacterial capability and wound healing performance than PVA and PVA/N-P-CQDs films in bacterial adhesion experiment. PVA/La@N-P-CQDs composite film could be used for wound dressing in vivo experiment and had no side effects on major organs in mice. The antibacterial composite film significantly promoted in vivo wound healing process because of its multifunctional properties. Therefore, it was an excellent candidate for wound dressing.


Assuntos
Álcool de Polivinil , Pontos Quânticos , Animais , Antibacterianos/farmacologia , Carbono , Lantânio/farmacologia , Camundongos , Cicatrização
16.
Environ Microbiol ; 24(2): 596-613, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34320271

RESUMO

The biological importance of lanthanides has only recently been identified, initially as the active site metal of the alternative methanol dehydrogenase (MDH) Xox-MDH. So far, the effect of lanthanide (Ln) has only been studied in relatively few organisms. This work investigated the effects of Ln on gene transcription and protein expression in the facultative methanotroph Methylocella silvestris BL2, a widely distributed methane-oxidizing bacterium with the unique ability to grow not just on methane but also on other typical components of natural gas, ethane and propane. Expression of calcium- or Ln-dependent MDH was controlled by Ln (the lanthanide switch) during growth on one-, two- or three-carbon substrates, and Ln imparted a considerable advantage during growth on propane, a novel result extending the importance of Ln to consumers of this component of natural gas. Two Xox-MDHs were expressed and regulated by Ln in M. silvestris, but interestingly Ln repressed rather than induced expression of the second Xox-MDH. Despite the metabolic versatility of M. silvestris, no other alcohol dehydrogenases were expressed, and in double-mutant strains lacking genes encoding both Ca- and Ln-dependent MDHs (mxaF and xoxF5 or xoxF1), growth on methanol and ethanol appeared to be enabled by expression of the soluble methane monooxygenase.


Assuntos
Oxirredutases do Álcool , Proteínas de Bactérias , Beijerinckiaceae , Lantânio , Oxirredutases do Álcool/genética , Proteínas de Bactérias/genética , Beijerinckiaceae/efeitos dos fármacos , Beijerinckiaceae/genética , Expressão Gênica , Lantânio/farmacologia , Metano/metabolismo , Metanol/metabolismo , Gás Natural/microbiologia
17.
Plant J ; 109(1): 241-260, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34748255

RESUMO

Calcium (Ca2+ ) is widely recognized as a key second messenger in mediating various plant adaptive responses. Here we show that calcineurin B-like interacting protein kinase CIPK9 along with its interacting partner VDAC3 identified in the present study are involved in mediating plant responses to methyl viologen (MV). CIPK9 physically interacts with and phosphorylates VDAC3. Co-localization, co-immunoprecipitation, and fluorescence resonance energy transfer experiments proved their physical interaction in planta. Both cipk9 and vdac3 mutants exhibited a tolerant phenotype against MV-induced oxidative stress, which coincided with the lower-level accumulation of reactive oxygen species in their roots. In addition, the analysis of cipk9vdac3 double mutant and VDAC3 overexpressing plants revealed that CIPK9 and VDAC3 were involved in the same pathway for inducing MV-dependent oxidative stress. The response to MV was suppressed by the addition of lanthanum chloride, a non-specific Ca2+ channel blocker indicating the role of Ca2+ in this pathway. Our study suggest that CIPK9-VDAC3 module may act as a key component in mediating oxidative stress responses in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Lantânio/farmacologia , Estresse Oxidativo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Canais de Ânion Dependentes de Voltagem/genética
18.
Anal Biochem ; 638: 114482, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856185

RESUMO

In this work, extract from leaves of Couroupita guianensis (C.guianensis) abul was used as a potential reducing agent for the synthesis of lanthanum oxide (La2O3) nanoparticles (NPs). In addition, the morphology and several physicochemical properties of the La2O3 NPs were improved by introducing the ionic liquid of 1-butyl 3-methyl imidazolium tetra fluoroborate (BMIM BF4) as a stabilizing agent. The structure of the La2O3 (without ionic liquid) and IL-La2O3 (with ionic liquid) NPs were analyzed by X-ray diffraction (XRD). The chemical composition of the synthesized NPs was analyzed using the energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) studies. Optical and morphological studies were also performed. The antibacterial, antioxidant, anti-inflammatory, anti-diabetic and anticancer properties of the La2O3 and IL-La2O3 NPs were evaluated.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Química Verde , Hipoglicemiantes/farmacologia , Lantânio/farmacologia , Óxidos/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/metabolismo , Lantânio/química , Lantânio/metabolismo , Lecythidaceae/química , Nanopartículas/química , Nanopartículas/metabolismo , Óxidos/química , Óxidos/metabolismo , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Propriedades de Superfície
19.
Nanomedicine (Lond) ; 17(25): 1929-1949, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36645007

RESUMO

Background: Studies on the anticancer effects of lanthanum strontium manganese oxide (LSMO) nanoparticles (NPs)-mediated hyperthermia at cellular and molecular levels are scarce. Materials & methods: LSMO NPs conjugated with folic acid (Fol-LSMO NPs) were synthesized, followed by doxorubicin-loading (DoxFol-LSMO NPs), and their effects on breast cancer cells were investigated. Results: Hyperthermia (45°C) and combination treatments exhibited the highest (∼95%) anticancer activity with increased oxidative stress. The involvement of intrinsic mitochondria-mediated apoptotic pathway and induction of autophagy was noted. Cellular and molecular evidence confirmed the crosstalk between apoptosis and autophagy, involving Beclin1, Bcl2 and Caspase-3 genes with free reactive oxygen species presence. Conclusion: The study confirmed hyperthermia and doxorubicin release by Fol-LSMO NPs induces apoptosis and autophagy in breast cancer cells.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Nanopartículas , Feminino , Humanos , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Lantânio/farmacologia , Manganês , Espécies Reativas de Oxigênio/metabolismo , Estrôncio , Ácido Fólico
20.
Biomed Mater ; 16(6)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34544058

RESUMO

For craniofacial bone regeneration, how to promote vascularized bone regeneration is still a significant problem, and the controlled release of trace elements vital to osteogenesis has attracted attention. In this study, an ion co-delivery system was developed to promote angiogenesis and osteogenesis. Magnesium ions (Mg2+) and lanthanum ions (La3+) were selected as biosignal molecules because Mg2+can promote angiogenesis and both of them can enhance bone formation. Microspheres made of poly(lactide-co-glycolide) were applied to load La2(CO3)3, which was embedded into a MgO/MgCO3-loaded cryogel made of photocrosslinkable gelatin methacryloyl to enable co-delivery of Mg2+and La3+. Evaluations of angiogenesis and osteogenesis were conducted via bothin vitrocell culture using human bone marrow mesenchymal stromal cells andin vivoimplantation using a rat model with calvarial defect (5 mm in diameter). Compared to systems releasing only Mg2+or La3+, the combination system demonstrated more significant effects on blood vessels formation, thereby promoting the regeneration of vascularized bone tissue. At 8 weeks post-implantation, the new bone volume/total bone volume ratio reached a value of 40.1 ± 0.9%. In summary, a properly designed scaffold system with the capacity to release ions of different bioactivities in a desired pattern can be a promising strategy to meet vascularized bone regeneration requirements.


Assuntos
Lantânio , Magnésio , Animais , Regeneração Óssea , Gelatina , Íons , Lantânio/farmacologia , Magnésio/farmacologia , Metacrilatos , Osteogênese , Ratos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA