Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Biophys Chem ; 311: 107269, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815545

RESUMO

Reverse micelles (RMs) are spontaneously organizing nanobubbles composed of an organic solvent, surfactants, and an aqueous phase that can encapsulate biological macromolecules for various biophysical studies. Unlike other RM systems, the 1-decanoyl-rac-glycerol (10MAG) and lauryldimethylamine-N-oxide (LDAO) surfactant system has proven to house proteins with higher stability than other RM mixtures with little sensitivity to the water loading (W0, defined by the ratio of water to surfactant). We investigated this unique property by encapsulating three model proteins - cytochrome c, myoglobin, and flavodoxin - in 10MAG/LDAO RMs and applying a variety of experimental methods to characterize this system's behavior. We found that this surfactant system differs greatly from the traditional, spherical, monodisperse RM population model. 10MAG/LDAO RMs were discovered to be oblate ellipsoids at all conditions, and as W0 was increased, surfactants redistributed to form a greater number of increasingly spherical ellipsoidal particles with pools of more bulk-like water. Proteins distinctively influence the thermodynamics of the mixture, encapsulating at their optimal RM size and driving protein-free RM sizes to scale accordingly. These findings inform the future development of similarly malleable encapsulation systems and build a foundation for application of 10MAG/LDAO RMs to analyze biological and chemical processes under nanoscale confinement.


Assuntos
Glicerol , Micelas , Mioglobina , Tensoativos , Mioglobina/química , Tensoativos/química , Glicerol/química , Citocromos c/química , Flavodoxina/química , Lauratos/química , Termodinâmica , Água/química , Dimetilaminas
2.
Food Chem ; 453: 139689, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38781902

RESUMO

In this study, based on the discovery of thymol/glycerol monolaurate (GML) eutectic solvent, we studied the effect of GML as a multi-functional component (ripening inhibitor and antibacterial agent) on the formation, stability and antibacterial activity of eutectic nanoemulsions, and investigated the preservation of nanoemulsion in fresh pork. These results indicated that the formation of eutectic solvent was due to the hydrogen bonding between thymol and GML in the molten state. And eutectic nanoemulsions prepared with medium GML concentrations (20%, 40%, and 60%) of eutectic solvents as oil phases had small droplet diameters (<150 nm), exhibited sustained-release characteristics, and had excellent physicochemical stability. Moreover, the addition of GML enhanced the antibacterial activity of thymol nanoemulsion against S. aureus. as seen by their ability to inhibit affect formation more effectively. Treatment of fresh pork with optimized eutectic nanoemulsions (40% thymol/60% GML) extended its shelf life during refrigeration, which was mainly attributed to the ability of the encapsulated essential oil to inhibit microbial growth and lipid oxidation. These results provide a novel strategy to control Ostwald ripening and maintain the high antibacterial activity of thymol in nanoemulsion-based delivery systems.


Assuntos
Antibacterianos , Emulsões , Lauratos , Monoglicerídeos , Staphylococcus aureus , Timol , Timol/química , Timol/farmacologia , Emulsões/química , Emulsões/farmacologia , Lauratos/química , Lauratos/farmacologia , Monoglicerídeos/química , Monoglicerídeos/farmacologia , Suínos , Animais , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antibacterianos/química , Conservação de Alimentos
3.
J Photochem Photobiol B ; 250: 112833, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141326

RESUMO

The solvatochromic dye Laurdan is widely used in sensing the lipid packing of both model and biological membranes. The fluorescence emission maximum shifts from about 440 nm (blue channel) in condensed membranes (So) to about 490 nm (green channel) in the liquid-crystalline phase (Lα). Although the fluorescence intensity based generalized polarization (GP) is widely used to characterize lipid membranes, the fluorescence lifetime of Laurdan, in the blue and the green channel, is less used for that purpose. Here we explore the correlation between GP and fluorescence lifetimes by spectroscopic measurements on the So and Lα phases of large unilamellar vesicles of DMPC and DPPC. A positive correlation between GP and the lifetimes is observed in each of the optical channels for the two lipid phases. Microfluorimetric determinations on giant unilamellar vesicles of DPPC and DOPC at room temperature are performed under linearly polarized two-photon excitation to disentangle possible subpopulations of Laurdan at a scale below the optical resolution. Fluorescence intensities, GP and fluorescence lifetimes depend on the angle between the orientation of the linear polarization of the excitation light and the local normal to the membrane of the optical cross-section. This angular variation depends on the lipid phase and the emission channel. GP and fluorescence intensities in the blue and green channel in So and in the blue channel in Lα exhibit a minimum near 90o. Surprisingly, the intensity in the green channel in Lα reaches a maximum near 90o. The fluorescence lifetimes in the two optical channels also reach a pronounced minimum near 90o in So and Lα, apart from the lifetime in the blue channel in Lα where the lifetime is short with minimal angular variation. To our knowledge, these experimental observations are the first to demonstrate the existence of a bent conformation of Laurdan in lipid membranes, as previously suggested by molecular dynamics calculations.


Assuntos
Lauratos , Lipossomas Unilamelares , Membrana Celular , Lauratos/análise , Lauratos/química , 2-Naftilamina/química , Corantes Fluorescentes/química , Polarização de Fluorescência
4.
Biochim Biophys Acta Biomembr ; 1865(7): 184176, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37328024

RESUMO

Cells are constantly adapting to maintain their identity in response to the surrounding media's temporal and spatial heterogeneity. The plasma membrane, which participates in the transduction of external signals, plays a crucial role in this adaptation. Studies suggest that nano and micrometer areas with different fluidities at the plasma membrane change their distribution in response to external mechanical signals. However, investigations linking fluidity domains with mechanical stimuli, specifically matrix stiffness, are still in progress. This report tests the hypothesis that the stiffness of the extracellular matrix can modify the equilibrium of areas with different order in the plasma membrane, resulting in changes in overall membrane fluidity distribution. We studied the effect of matrix stiffness on the distribution of membrane lipid domains in NIH-3 T3 cells immersed in matrices of varying concentrations of collagen type I, for 24 or 72 h. The stiffness and viscoelastic properties of the collagen matrices were characterized by rheometry, fiber sizes were measured by Scanning Electron Microscopy (SEM) and the volume occupied by the fibers by second harmonic generation imaging (SHG). Membrane fluidity was measured using the fluorescent dye LAURDAN and spectral phasor analysis. The results demonstrate that an increase in collagen stiffness alters the distribution of membrane fluidity, leading to an increasing amount of the LAURDAN fraction with a high degree of packing. These findings suggest that changes in the equilibrium of fluidity domains could represent a versatile and refined component of the signal transduction mechanism for cells to respond to the highly heterogeneous matrix structural composition. Overall, this study sheds light on the importance of the plasma membrane's role in adapting to the extracellular matrix's mechanical cues.


Assuntos
Lauratos , Fluidez de Membrana , Membrana Celular/metabolismo , Lauratos/química , Colágeno/metabolismo
5.
Methods Appl Fluoresc ; 11(1)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36252561

RESUMO

Hyperspectral imaging (HSI) is a paramount technique in biomedical science, however, unmixing and quantification of each spectral component is a challenging task. Traditional unmixing relies on algorithms that need spectroscopic parameters from the fluorescent species in the sample. The phasor-based multi-harmonic unmixing method requires only the empirical measurement of the pure species to compute the pixel-wise photon fraction of every spectral component. Using simulations, we demonstrate the feasibility of the approach for up to 5 components and explore the use of adding a 6th unknown component representing autofluorescence. The simulations show that the method can be successfully used in typical confocal imaging experiments (with pixel photon counts between 101and 103). As a proof of concept, we tested the method in living cells, using 5 common commercial dyes for organelle labeling and we easily and accurately separate them. Finally, we challenged the method by introducing a solvatochromic probe, 6-Dodecanoyl-N,N-dimethyl-2-naphthylamine (LAURDAN), intended to measure membrane dynamics on specific subcellular membrane-bound organelles by taking advantage of the linear combination between the organelle probes and LAURDAN. We succeeded in monitoring the membrane order in the Golgi apparatus, Mitochondria, and plasma membrane in the samein-vivocell and quantitatively comparing them. The phasor-based multi-harmonic unmixing method can help expand the outreach of HSI and democratize its use by the community for it does not require specialized knowledge.


Assuntos
2-Naftilamina , Lauratos , Lauratos/análise , Lauratos/química , 2-Naftilamina/análise , 2-Naftilamina/química , Microscopia de Fluorescência/métodos , Membrana Celular
6.
Am J Physiol Lung Cell Mol Physiol ; 322(2): L191-L203, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851730

RESUMO

By coating the alveolar air-liquid interface, lung surfactant overwhelms surface tension forces that, otherwise, would hinder the lifetime effort of breathing. Years of research have provided a picture of how highly hydrophobic and specialized proteins in surfactant promote rapid and efficient formation of phospholipid-based complex three-dimensional films at the respiratory surface, highly stable under the demanding breathing mechanics. However, recent evidence suggests that the structure and performance of surfactant typically isolated from bronchoalveolar lung lavages may be far from that of nascent, still unused, surfactant as freshly secreted by type II pneumocytes into the alveolar airspaces. In the present work, we report the isolation of lung surfactant from human amniotic fluid (amniotic fluid surfactant, AFS) and a detailed description of its composition, structure, and surface activity in comparison to a natural surfactant (NS) purified from porcine bronchoalveolar lavages. We observe that the lipid/protein complexes in AFS exhibit a substantially higher lipid packing and dehydration than in NS. AFS shows melting transitions at higher temperatures than NS and a conspicuous presence of nonlamellar phases. The surface activity of AFS is not only comparable with that of NS under physiologically meaningful conditions but displays significantly higher resistance to inhibition by serum or meconium, agents that inactivate surfactant in the context of severe respiratory pathologies. We propose that AFS may be the optimal model to study the molecular mechanisms sustaining pulmonary surfactant performance in health and disease, and the reference material to develop improved therapeutic surfactant preparations to treat yet unresolved respiratory pathologies.


Assuntos
Líquido Amniótico/química , Surfactantes Pulmonares/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Animais , Varredura Diferencial de Calorimetria , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lauratos/química , Lipídeos/química , Membranas , Suínos
7.
Biochim Biophys Acta Biomembr ; 1864(1): 183794, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627747

RESUMO

Employing fluorescence spectroscopy and the membrane-embedded dye Laurdan we experimentally show that linear changes of cell membrane order in the physiological temperature regime are part of broad order-disorder-phase transitions which extend over a much broader temperature range. Even though these extreme temperatures are usually not object of live science research due to failure of cellular functions, our findings help to understand and predict cell membrane properties under physiological conditions as they explain the underlying physics of a broad order-disorder phase transition. Therefore, we analyzed the membranes of various cell lines, red blood cell ghosts and lipid vesicles by spectral decomposition in a custom-made setup in a temperature range from -40 °C to +90 °C. While the generalized polarization as a measure for membrane order of artificial lipid membranes like phosphatidylcholine show sharp transitions as known from calorimetry measurements, living cells in a physiological temperature range do only show linear changes. However, extending the temperature range shows the existence of broad transitions and their sensitivity to cholesterol content, pH and anaesthetic. Moreover, adaptation to culture conditions like decreased temperature and morphological changes like detachment of adherent cells or dendrite growth are accompanied by changes in membrane order as well. The observed changes of the generalized polarization are equivalent to temperature changes dT in the range of +12 K < dT < -6 K.


Assuntos
Membrana Celular/química , Membrana Eritrocítica/química , Lipídeos/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Colesterol/química , Corantes Fluorescentes/química , Lauratos/química , Transição de Fase , Fosfatidilcolinas/química , Espectrometria de Fluorescência , Termodinâmica
8.
J Food Sci ; 86(10): 4717-4729, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34553787

RESUMO

(-)-Epigallocatechin-3-O-gallate(EGCG) was enzymatically modified to enhance the lipophilicity and the antioxidant property. The determination of optimal reaction conditions are as follows: Lipase DF "Amano" 15 and acetone were used as catalyst and solvent, respectively. Equal molar of EGCG and vinyl laurate (1:1); lipase addition of 6.0% (w/w of total substrates); reaction temperature of 50°C and reaction time of 96 h, which obtained the conversion rate of EGCG at 80.1%. The structure of EGCG lauroyl derivatives were 5″-O-lauroyl-EGCG, 3″,5″-2-O-lauroyl-EGCG, and 5',3″,5″-3-O-lauroyl-EGCG, identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR). Compared with the logP of precursor EGCG (0.69 ± 0.03), the logP of EGCG lauroyl derivatives was 1.37 ± 0.19, 2.27 ± 0.33, and 3.28 ± 0.37, increasing by 0.98, 2.28, and 3.75 times, respectively (p < 0.05), suggesting the grafted fatty acid chains make EGCG derivatives more lipophilic, and the lipid solubility gradually increased as the number of substituents increased. Furthermore, EGCG lauroyl derivatives had excellent lipid oxidation than that of EGCG. The POVs (peroxide values) of soybean oil with mono-, di-, tri-lauroyl EGCG were significantly reduced by 42%, 47%, and 57% than that of EGCG at 21 days, respectively, indicating the antioxidative inhibition of these derivatives decreased with the increase in substituents. This indicates that these derivatives have broad prospects of the antioxidant application while improving their solubility properties in lipophilic environments/high-fat food. Practical Application: The lipophilic esterification reaction of EGCG catalyzed by new catalytic lipase DF "Amano" 15 was carried out in a non-aqueous solvent.Various reaction factors on a higher conversion rate of EGCG lauroyl derivatives were evaluated. The lipophilicity and antioxidant properties of EGCG lauroyl derivatives were much excellent than that of parent EGCG.


Assuntos
Catequina/análogos & derivados , Lauratos , Compostos de Vinila , Antioxidantes/química , Antioxidantes/farmacologia , Catequina/química , Catequina/farmacologia , Esterificação , Lauratos/química , Lauratos/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Compostos de Vinila/química , Compostos de Vinila/farmacologia
9.
Biochim Biophys Acta Biomembr ; 1863(12): 183728, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34416246

RESUMO

Using LAURDAN fluorescence we observed that water dynamics measured at the interface of DOPC bilayers can be differentially regulated by the presence of crowded suspensions of different proteins (HSA, IgG, Gelatin) and PEG, under conditions where the polymers are not in direct molecular contact with the lipid interface. Specifically, we found that the decrease in water dipolar relaxation at the membrane interface correlates with an increased fraction of randomly oriented (or random coil) configurations in the polymers, as Gelatin > PEG > IgG > HSA. By using the same experimental strategy, we also demonstrated that structural transitions from globular to extended conformations in proteins can induce transitions between lamellar and non-lamellar phases in mixtures of DOPC and monoolein. Independent experiments using Raman spectroscopy showed that aqueous suspensions of polymers exhibiting high proportions of randomly oriented conformations display increased fractions of tetracoordinated water, a configuration that is dominant in ice. This indicates a greater capacity of this type of structure for polarizing water and consequently reducing its chemical activity. This effect is in line with one of the tenets of the Association Induction Hypothesis, which predicts a long-range dynamic structuring of water molecules via their interactions with proteins (or other polymers) showing extended conformations. Overall, our results suggest a crucial role of water in promoting couplings between structural changes in macromolecules and supramolecular arrangements of lipids. This mechanism may be of relevance to cell structure/function when the crowded nature of the intracellular milieu is considered.


Assuntos
Imunoglobulina G/química , Lipídeos/química , Albumina Sérica Humana/química , Água/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Gelatina/química , Glicerídeos/química , Lauratos/química , Conformação Molecular , Fosfatidilcolinas/química , Polietilenoglicóis/química , Polímeros/química
10.
ACS Appl Mater Interfaces ; 13(25): 29936-29948, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34143617

RESUMO

Alzheimer's disease (AD) is a major cause of dementia characterized by the overexpression of transmembrane amyloid precursor protein and its neurotoxic byproduct amyloid beta (Aß). A small peptide of considerable hydrophobicity, Aß is aggregation prone catalyzed by the presence of cell membranes, among other environmental factors. Accordingly, current AD mitigation strategies often aim at breaking down the Aß-membrane communication, yet no data is available concerning the cohesive interplay of the three key entities of the cell membrane, Aß, and its inhibitor. Using a lipophilic Laurdan dye and confocal fluorescence microscopy, we observed cell membrane perturbation and actin reorganization induced by Aß oligomers but not by Aß monomers or amyloid fibrils. We further revealed recovery of membrane fluidity by ultrasmall MoS2 quantum dots, also shown in this study as a potent inhibitor of Aß amyloid aggregation. Using discrete molecular dynamics simulations, we uncovered the binding of MoS2 and Aß monomers as mediated by hydrophilic interactions between the quantum dots and the peptide N-terminus. In contrast, Aß oligomers and fibrils were surface-coated by the ultrasmall quantum dots in distinct testudo-like, reverse protein-corona formations to prevent their further association with the cell membrane and adverse effects downstream. This study offers a crucial new insight and a viable strategy for regulating the amyloid aggregation and membrane-axis of AD pathology with multifunctional nanomedicine.


Assuntos
Peptídeos beta-Amiloides , Dissulfetos/química , Fluidez de Membrana/fisiologia , Molibdênio/química , Pontos Quânticos/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Actinas/química , Actinas/metabolismo , Doença de Alzheimer , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lauratos/química , Microscopia Confocal , Simulação de Dinâmica Molecular , Nanomedicina
11.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803648

RESUMO

Free fatty acids are essential structural components of the cell, and their intracellular distribution and effects on membrane organelles have crucial roles in regulating the metabolism, development, and cell cycle of most cell types. Here we engineered novel fluorescent, polarity-sensitive fatty acid derivatives, with the fatty acid aliphatic chain of increasing length (from 12 to 18 carbons). As in the laurdan probe, the lipophilic acyl tail is connected to the environmentally sensitive dimethylaminonaphthalene moiety. The fluorescence lifetime imaging analysis allowed us to monitor the intracellular distribution of the free fatty acids within the cell, and to simultaneously examine how the fluidity and the microviscosity of the membrane environment influence their localization. Each of these probes can thus be used to investigate the membrane fluidity regulation of the correspondent fatty acid intracellular distribution. We observed that, in PC-12 cells, fluorescent sensitive fatty acid derivatives with increased chain length compartmentalize more preferentially in the fluid regions, characterized by a low microviscosity. Moreover, fatty acid derivatives with the longest chain compartmentalize in lipid droplets and lysosomes with characteristic lifetimes, thus making these probes a promising tool for monitoring lipophagy and related events.


Assuntos
Ácidos Graxos/metabolismo , Corantes Fluorescentes/metabolismo , Espaço Intracelular/metabolismo , Fluidez de Membrana , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Animais , Fluorescência , Lauratos/química , Lisossomos/metabolismo , Células PC12 , Ratos , Solventes , Viscosidade
12.
J Oleo Sci ; 70(4): 571-580, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33692238

RESUMO

Polyglycerol monolaurates are generally recognized as safe food additives and are commonly used as food emulsifiers. In this study, the antimicrobial effect of four polyglycerol monolaurates on two Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two Gram-negative bacteria (Escherichia. coli and Pseudomonas aeruginosa) were investigated. The minimum inhibitory concentration (MIC) of diglycerol monolaurate (PG2ML), triglycerol monolaurate (PG3ML), hexaglycerol monolaurate (PG6ML), and decaglycerol monolaurate (PG10ML) against S. aureus was 0.16, 0.32, 0.63, and 1.25 mg/mL, respectively. The MIC of PG2ML, PG3ML, PG6ML, and PG10ML against B. subtilis was 0.32, 0.63, 1.25, and 3.75 mg/mL, respectively. No apparent antimicrobial effect of these four polyglycerol monolaurates on E. coli and P. aeruginosa was observed even up to 10.00 mg/mL. The underlying mechanism was investigated by assessing cell membrane permeability, the integrity of cell membrane, and morphology. We concluded that polyglycerol monolaurates might eliminate Gram-positive bacteria by disrupting the cell membrane, thereby increasing cell membrane permeability, releasing the cellular contents, and altering the cell morphology.


Assuntos
Antibacterianos , Emulsificantes , Aditivos Alimentares , Glicerol/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Lauratos/farmacologia , Polímeros/farmacologia , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Microbiologia de Alimentos , Glicerol/química , Bactérias Gram-Negativas/citologia , Bactérias Gram-Positivas/citologia , Lauratos/química , Testes de Sensibilidade Microbiana , Polímeros/química , Relação Estrutura-Atividade
13.
J Sci Food Agric ; 101(13): 5660-5670, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33782974

RESUMO

BACKGROUND: Electrospun fibers are a good candidate for the delivery of bioactive compounds in the food industry because of their advantages that include a tunable diameter, high porosity and a high specific surface area. In the present study, we fabricated gelatin/glycerol monolaurate (GML) microemulsion nanofibers by solubilizing GML in Tween-80 followed by mixing with gelatin solution for electrospinning. We hypothesized that the addition of GML microemulsions affects the properties of the gelatin solution and modifies the physical and antimicrobial properties of the resulting nanofibers. RESULTS: Both pure gelatin solution and gelatin/GML microemulsions showed shear-thinning behavior. However, electrospinnability was not affected by the addition of GML microemulsions. A significantly higher average diameter of nanofibers (1147 nm) with 5% GML was observed compared to the gelatin fiber diameter of 560 nm. Fourier transform infrared spectroscopy showed hydrogen bonding between gelatin molecules and GML microemulsions. Thermal analysis and X-ray diffraction indicated an amorphous structure of gelatin/GML microemulsion nanofibers, although a small amount of crystalline GML existed in the nanofibers with high GML content. Gelatin/GML microemulsion nanofibers showed high thermal stability and improved hydrophilicity. Nanofibers with 5% GML (weight with respect to nanofiber) (D64 nanofibers) showed effective antimicrobial activity against Escherichia coli and Staphylococcus aureus. CONCLUSION: Gelatin/GML microemulsion nanofibrous films demonstrate superhydrophilicity and fast dissolution properties as a result of the high surface-to-volume ratio, amorphous structure and improved hydrophilicity of the nanofiber surface. The results indicate the potential application of gelatin/GML microemulsion nanofibrous films as edible antimicrobial food packaging. © 2021 Society of Chemical Industry.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Composição de Medicamentos/métodos , Lauratos/química , Lauratos/farmacocinética , Monoglicerídeos/química , Monoglicerídeos/farmacocinética , Escherichia coli , Gelatina/química , Nanofibras/química , Polissorbatos/química , Solubilidade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
14.
J Food Sci ; 86(3): 867-873, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33580513

RESUMO

The solubility of oxygen and its transfer rate to the lipid phase play important roles in lipid oxidation, which affects the taste and safety of lipid-containing foods. In this study, we measured the Henry's constants (solubility) of oxygen for fatty acids, fatty acid esters, and triacylglycerols (TAGs; vegetable oils), as well as the mass transfer coefficients of oxygen at the gas- and water-lipid interfaces. The constants and coefficients were estimated by analyzing the change over time in the oxygen partial pressure or concentration in the closed container based on the mass balance equations of oxygen in the gas and liquid phases. The constant for water obtained by the method used in this study was in agreement with the previously reported value to confirm the validity of the method. The constants for lipids depended on the lipid type, and were higher in the order of fatty acid ester, fatty acid, and TAG. That is, the solubility of oxygen decreased in this order. For all lipids, the constant increased as the number of carbon atoms in the fatty acid chain increased. The constants for fatty acids and their esters were linearly correlated with the enthalpies of evaporation of the lipids. The mass transfer coefficients of oxygen at the gas-liquid interface were on the order of 10-5 m/s for water and methyl dodecanoate and of 10-6 m/s for TAG (rapeseed oil). The coefficient at the water-lipid interface was on the order of 10-6 m/s. PRACTICAL APPLICATION: The Henry's constants (solubility) and transfer rate of oxygen to the lipid phase, fatty acids, fatty acid esters, and triacylglycerols (TAG) were measured. The lipids solubilized three to five times more oxygen than water, and mass transfer rate of oxygen at gas- and water-lipid interfaces were almost same. The constants for fatty acids and fatty acid esters were linearly correlated to their enthalpies of evaporation, and this correlation is expected to be useful for estimating the Henry's constants for other fatty acids and their esters.


Assuntos
Lipídeos/química , Oxigênio/química , Água/química , Ésteres/química , Ácidos Graxos/química , Lauratos/química , Peroxidação de Lipídeos , Óleo de Brassica napus/química , Solubilidade , Termodinâmica , Triglicerídeos/química
15.
Carbohydr Polym ; 256: 117525, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483046

RESUMO

Microfibrillated cellulose (MFC) is widely used as a reinforcement filler for biocomposites due to its unique properties. However, the challenge of drying MFC and the incompatibility between nanocellulose and polymer matrix still limits the mechanical performance of MFC-reinforced biocomposites. In this study, we used a water-based transesterification reaction to functionalize MFC and explored the capability of oven-dried MFC as a reinforcement filler for polylactic acid (PLA). Remarkably, this oven-dried, vinyl laurate-modified MFC improved the tensile strength by 38 % and Young's modulus by 71 % compared with neat PLA. Our results suggested improved compatibility and dispersion of the fibrils in PLA after modification. This study demonstrated that scalable water-based surface modification and subsequent straightforward oven drying could be a facile method for effectively drying cellulose nanomaterials. The method helps significantly disperse fibrils in polymers and enhances the mechanical properties of microfibrillar cellulose-reinforced biocomposites.


Assuntos
Celulose/química , Lauratos/química , Nanocompostos/química , Poliésteres/química , Compostos de Vinila/química , Varredura Diferencial de Calorimetria , Celulose/ultraestrutura , Dessecação/métodos , Módulo de Elasticidade , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanocompostos/ultraestrutura , Propriedades de Superfície , Resistência à Tração , Termogravimetria , Água/química
16.
Carbohydr Polym ; 256: 117560, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483062

RESUMO

The recent progress in the manufacturing of new functional cellulose-derived materials shows that the renewable side of these materials does not ensure sustainable development. In contrast, reaction/process design and waste minimization play a key role here. Herein, reactive extrusion was used as a fast method for cellulose transesterification with vinyl laurate in 1-ethyl-3-methylimidazolium acetate (EmimOAc)/DMSO system. It was demonstrated that cellulose laurate can be synthesized with high reaction efficiency (91 %). The low amount of solvent during the process provides high cellulose concentration (20 wt%) mild chemical modification within minutes and without any depolymerization. Temperature has a significant influence on the reaction kinetics. To examine the sustainability of the process E-factor was employed. Processing properties of obtained cellulose laurates were investigated. Samples with DS of 2.5 and higher can be easily extruded showing low melt viscosity. EmimOAc was recovered and reused for subsequent cellulose transesterification exhibiting high catalytic activity.


Assuntos
Celulose/química , Imidazóis/química , Líquidos Iônicos/química , Lauratos/química , Solventes/química , Varredura Diferencial de Calorimetria , Catálise , Esterificação , Cinética , Espectroscopia de Ressonância Magnética , Valores de Referência , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria , Viscosidade , Difração de Raios X
17.
Sci Rep ; 11(1): 246, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420359

RESUMO

TRPV1, a member of the transient receptor potential (TRP) family, is a nonselective calcium permeable ion channel gated by physical and chemical stimuli. In the skin, TRPV1 plays an important role in neurogenic inflammation, pain and pruritus associated to many dermatological diseases. Consequently, TRPV1 modulators could represent pharmacological tools to respond to important patient needs that still represent an unmet medical demand. Previously, we reported the design of capsaicinoid-based molecules that undergo dermal deactivation (soft drugs), thus preventing their long-term dermal accumulation. Here, we investigated the pharmacological properties of the lead antagonist, 2-((4-hydroxy-2-iodo-5-methoxybenzyl) amino)-2-oxoethyl dodecanoate (AG1529), on heterologously expressed human TRPV1 (hTRPV1), on nociceptor excitability and on an in vivo model of acute pruritus. We report that AG1529 competitively blocked capsaicin-evoked activation of hTRPV1 with micromolar potency, moderately affected pH-induced gating, and did not alter voltage- and heat-mediated responses. AG1529 displays modest receptor selectivity as it mildly blocked recombinant hTRPA1 and hTRPM8 channels. In primary cultures of rat dorsal root ganglion (DRG) neurons, AG1529 potently reduced capsaicin-evoked neuronal firing. AG1529 exhibited lower potency on pH-evoked TRPV1 firing, and TRPA1-elicited nociceptor excitability. Furthermore, AG1529 abolished histaminergic and inflammation mediated TRPV1 sensitization in primary cultures of DRG neurons. Noteworthy, dermal wiping of AG1529, either in an acetone-based formulation or in an anhydrous ointment, dose-dependently attenuated acute histaminergic itch in a rodent model. This cutaneous anti-pruritic effect was devoid of the normal nocifensive action evoked by the burning sensation of capsaicin. Taken together, these preclinical results unveil the mode of action of AG1529 on TRPV1 channels and substantiate the tenet that this capsaicinoid-based soft drug is a promising candidate for drug development as a topical anti-pruritic and anti-inflammatory medication.


Assuntos
Capsaicina/análogos & derivados , Histamina/metabolismo , Lauratos/química , Lauratos/farmacologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Descoberta de Drogas , Gânglios Espinais/efeitos dos fármacos , Humanos , Inflamação/patologia , Células Receptoras Sensoriais/metabolismo
18.
Acc Chem Res ; 54(4): 976-987, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33513300

RESUMO

Any chemist studying the interaction of molecules with lipid assemblies will eventually be confronted by the topic of membrane bilayer heterogeneity and may ultimately encounter the heterogeneity of natural membranes. In artificial bilayers, heterogeneity is defined by phase segregation that can be in the nano- and micrometer range. In biological bilayers, heterogeneity is considered in the context of small (10-200 nm) sterol and sphingolipid-enriched heterogeneous and highly dynamic domains. Several techniques can be used to assess membrane heterogeneity in living systems. Our approach is to use a fluorescent reporter molecule immersed in the bilayer, which, by changes in its spectroscopic properties, senses physical-chemistry aspects of the membrane. This dye in combination with microscopy and fluctuation techniques can give information about membrane heterogeneity at different temporal and spatial levels: going from average fluidity to number and diffusion coefficient of nanodomains. LAURDAN (6-dodecanoyl-2-(dimethylamino) naphthalene), is a fluorescent probe designed and synthesized in 1979 by Gregorio Weber with the purpose to study the phenomenon of dipolar relaxation. The spectral displacement observed when LAURDAN is either in fluid or gel phase permitted the use of the technique in the field of membrane dynamics. The quantitation of the spectral displacement was first addressed by the generalized polarization (GP) function in the cuvette, a ratio of the difference in intensity at two wavelengths divided by their sum. In 1997, GP measurements were done for the first time in the microscope, adding to the technique the spatial resolution and allowing the visualization of lipid segregation both in liposomes and cells. A new prospective to the membrane heterogeneity was obtained when LAURDAN fluorescent lifetime measurements were done in the microscope. Two channel lifetime imaging provides information on membrane polarity and dipole relaxation (the two parameters responsible for the spectral shift of LAURDAN), and the application of phasor analysis allows pixel by pixel understanding of these two parameters in the membrane. To increase temporal resolution, LAURDAN GP was combined with fluctuation correlation spectroscopy (FCS) and the motility of nanometric highly packed structures in biological membranes was registered. Lately the application of phasor analysis to spectral images from membranes labeled with LAURDAN allows us to study the full spectra pixel by pixel in an image. All these methodologies, using LAURDAN, offer the possibility to address different properties of membranes depending on the question being asked. In this Account, we will focus on the principles, advantages, and limitations of different approaches to orient the reader to select the most appropriate technique for their research.


Assuntos
2-Naftilamina/análogos & derivados , Membrana Celular/química , Corantes Fluorescentes/química , Lauratos/química , Microscopia de Fluorescência , 2-Naftilamina/química , Animais , Membrana Celular/efeitos dos fármacos , Células HEK293 , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Peróxido de Hidrogênio/farmacologia , Lipossomos/química , Camundongos , Células NIH 3T3 , Polimorfismo de Nucleotídeo Único , Espectrometria de Fluorescência
19.
Molecules ; 25(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158027

RESUMO

Organogel (OG) is a class of semi-solid gel, entrapping organic solvent within a three-dimensional network, which is formed via the self-assembly of organogelators. In the present study, OG was produced by glycerol monolaurate (GML) as organogelator. The influence of hydrocolloids with different surface charges (chitosan (CS), konjac glucomannan (KGM) and sodium alginate (SA)) on the physiochemical properties of OG was investigated. Rheological studies demonstrated that OG and pure hydrocolloid solution showed shear-thinning behavior. After incorporation of the hydrocolloid, the initial viscosity of OG was lowered from ~100 Pa·s to <10 Pa·s, and then the viscosity increased to more than 100 Pa·s at a low shear rate of 0.1-0.2 s-1, which subsequently decreased with a higher shear rate. OGs in the presence of hydrocolloids still kept the thermo-sensitivity, while the melting point of the OG decreased with the incorporation of hydrocolloids. Hydrocolloid addition greatly shortened the gelling time of the OG from 21 min to less than 2 min. The presence of hydrocolloids increased the particle size of oil droplets in the molten OG. Some aggregation and coalescence of oil droplets occurred in the presence of positive-charged CS and negative-charged SA, respectively. After gelling, the gel structure converted into a biphasic-like network. Hydrocolloids improved the hardness, stickiness and the oil-holding stability of OGs by 18.8~33.9%. Overall, hydrocolloid incorporation could modulate the properties of OGs through their different surface charge properties. These novel OGs have potential as nutrient carriers or low-fat margarine alternatives and avoid the trans-fatty acid intake.


Assuntos
Lauratos/química , Monoglicerídeos/química , Coloides , Tamanho da Partícula , Reologia , Propriedades de Superfície , Viscosidade
20.
BMC Res Notes ; 13(1): 527, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176880

RESUMO

OBJECTIVES: The aim of this study was to use Ligand-based pharmacophore modelling approach for four established antiviral drugs, namely remdesivir, lopinavir, ritonavir and hydroxychloroquine for COVID-19 inhibitors as training sets. In this study Twenty vanillin derivatives together with monolaurin and tetrodotoxin were used as test sets to evaluate as potential SARS-CoV-2 inhibitors. The Structure-based pharmacophore modelling approach was also performed using 5RE6, 5REX and 5RFZ in order to analyse the binding site and ligand-protein complex interactions. RESULTS: The pharmacophore modelling mode of 5RE6 displayed two Hydrogen Bond Acceptors (HBA) and one Hydrophobic (HY) interaction. Besides, the pharmacophore model of 5REX showed two HBA and two HY interactions. Finally, the pharmacophore model of 5RFZ showed three HBA and one HY interaction. Based on ligand-based approach, 20 Schiff-based vanillin derivatives, showed strong MPro inhibition activity. This was due to their good alignment and common features to PDB-5RE6. Similarly, monolaurin and tetrodotoxin displayed some significant activity against SARS-CoV-2. From structure-based approach, vanillin derivatives (1) to (12) displayed some potent MPro inhibition against SARS-CoV-2. Favipiravir, chloroquine and hydroxychloroquine also showed some significant MPro inhibition.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Cloroquina/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Amidas/química , Amidas/farmacologia , Antivirais/química , Benzaldeídos/química , Cloroquina/química , Simulação por Computador , Proteases 3C de Coronavírus , Cisteína Endopeptidases , Inibidores de Cisteína Proteinase/química , Humanos , Hidroxicloroquina/química , Hidroxicloroquina/farmacologia , Lauratos/química , Lauratos/farmacologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Monoglicerídeos/química , Monoglicerídeos/farmacologia , Pirazinas/química , Pirazinas/farmacologia , SARS-CoV-2 , Relação Estrutura-Atividade , Tetrodotoxina/química , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA