Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.768
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673930

RESUMO

Marine algal lectins specific for high-mannose N-glycans have attracted attention because they strongly inhibit the entry of enveloped viruses, including influenza viruses and SARS-CoV-2, into host cells by binding to high-mannose-type N-glycans on viral surfaces. Here, we report a novel anti-influenza virus lectin (named HBL40), specific for complex-type N-glycans, which was isolated from a marine green alga, Halimeda borneensis. The hemagglutination activity of HBL40 was inhibited with both complex-type N-glycan and O-glycan-linked glycoproteins but not with high-mannose-type N-glycan-linked glycoproteins or any of the monosaccharides examined. In the oligosaccharide-binding experiment using 26 pyridylaminated oligosaccharides, HBL40 only bound to complex-type N-glycans with bi- and triantennary-branched sugar chains. The sialylation, core fucosylation, and the increased number of branched antennae of the N-glycans lowered the binding activity with HBL40. Interestingly, the lectin potently inhibited the infection of influenza virus (A/H3N2/Udorn/72) into NCI-H292 cells at IC50 of 8.02 nM by binding to glycosylated viral hemagglutinin (KD of 1.21 × 10-6 M). HBL40 consisted of two isolectins with slightly different molecular masses to each other that could be separated by reverse-phase HPLC. Both isolectins shared the same 16 N-terminal amino acid sequences. Thus, HBL40 could be useful as an antivirus lectin specific for complex-type N-glycans.


Assuntos
Antivirais , Clorófitas , Lectinas , Polissacarídeos , Polissacarídeos/farmacologia , Polissacarídeos/química , Clorófitas/química , Antivirais/farmacologia , Antivirais/química , Lectinas/farmacologia , Lectinas/química , Lectinas/metabolismo , Lectinas/isolamento & purificação , Humanos , Animais , Cães , Células Madin Darby de Rim Canino , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos
2.
Molecules ; 27(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209158

RESUMO

Dietary food components have the ability to affect immune function; following absorption, specifically orally ingested dietary food containing lectins can systemically modulate the immune cells and affect the response to self- and co-administered food antigens. The mannose-binding lectins from garlic (Allium sativum agglutinins; ASAs) were identified as immunodulatory proteins in vitro. The objective of the present study was to assess the immunogenicity and adjuvanticity of garlic agglutinins and to evaluate whether they have adjuvant properties in vivo for a weak antigen ovalbumin (OVA). Garlic lectins (ASA I and ASA II) were administered by intranasal (50 days duration) and intradermal (14 days duration) routes, and the anti-lectin and anti-OVA immune (IgG) responses in the control and test groups of the BALB/c mice were assessed for humoral immunogenicity. Lectins, co-administered with OVA, were examined for lectin-induced anti-OVA IgG response to assess their adjuvant properties. The splenic and thymic indices were evaluated as a measure of immunomodulatory functions. Intradermal administration of ASA I and ASA II had showed a four-fold and two-fold increase in anti-lectin IgG response, respectively, vs. the control on day 14. In the intranasal route, the increases were 3-fold and 2.4-fold for ASA I and ASA II, respectively, on day 50. No decrease in the body weights of animals was noticed; the increases in the spleen and thymus weights, as well as their indices, were significant in the lectin groups. In the adjuvanticity study by intranasal administration, ASA I co-administered with ovalbumin (OVA) induced a remarkable increase in anti-OVA IgG response (~six-fold; p < 0.001) compared to the control, and ASA II induced a four-fold increase vs. the control on day 50. The results indicated that ASA was a potent immunogen which induced mucosal immunogenicity to the antigens that were administered intranasally in BALB/c mice. The observations made of the in vivo study indicate that ASA I has the potential use as an oral and mucosal adjuvant to deliver candidate weak antigens. Further clinical studies in humans are required to confirm its applicability.


Assuntos
Adjuvantes Imunológicos , Alho/química , Imunidade Humoral , Lectinas/imunologia , Administração Intranasal , Administração através da Mucosa , Animais , Biomarcadores , Ensaio de Imunoadsorção Enzimática , Imunização/métodos , Imunoglobulina G/imunologia , Imunomodulação , Lectinas/administração & dosagem , Lectinas/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Especificidade de Órgãos/imunologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia
3.
Mar Drugs ; 20(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35200632

RESUMO

Marine algae are an excellent source of novel lectins. The isolation of lectins from marine algae expands the diversity in structure and carbohydrate specificities of lectins isolated from other sources. Marine algal lectins have been reported to have antiviral, antitumor, and antibacterial activity. Lectins are typically isolated from marine algae by grinding the algal tissue with liquid nitrogen and extracting with buffer and alcohol. While this method produces higher yields, it may not be sustainable for large-scale production, because a large amount of biomass is required to produce a minute amount of compound, and a significant amount of waste is generated during the extraction process. Therefore, non-destructive extraction using algal culture water could be used to ensure a continuous supply of lectins without exclusively disrupting the marine algae. This review discusses the traditional and recent advancements in algal lectin extraction methods over the last decade, as well as the steps required for large-scale production. The challenges and prospects of various extraction methods (destructive and non-destructive) are also discussed.


Assuntos
Organismos Aquáticos/química , Lectinas/isolamento & purificação , Animais , Clorófitas/química , Humanos , Lectinas/química , Lectinas/farmacologia , Phaeophyceae/química , Rodófitas/química
4.
Molecules ; 27(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35164055

RESUMO

Rice weevil, Sitophilus oryzae L. (Coleoptera: Curculionidae), is one of the most destructive stored-product pests that is resistant to a wide range of chemical insecticides. In the present study, we investigated whether a lectin extracted from Polygonum persicaria L. (PPA) can be used as a biorational agent to control such insect pests. Along with the lethal digestive assay, the sub-lethal insecticidal activities of PPA, including the effects on digestive, detoxifying, and antioxidant enzyme activities, were evaluated against S. oryzae adults. The effect of feeding a diet containing PPA and carob extract as a food attractant on the mortality of S. oryzae adults was also investigated. Feeding on the diet containing PPA resulted in a significant mortality of S. oryzae adults with a LC50 (Lethal Concentration to kill 50% of insects) of 3.68% (w/w). The activity of digestive enzymes, including α-amylase, α-glucosidase, TAG-lipase, trypsin, chymotrypsin, elastase, and carboxy- and aminopeptidase, were decreased by the sub-lethal concentration of PPA. Detoxifying and antioxidant enzymes, including esterase, superoxide dismutase, catalase, glutathione-S-transferase, ascorbate peroxidase, glucose 6-phosphate dehydrogenase, and malondialdehyde, were activated in adults affected by PPA. These findings indicated that PPA, in addition to causing digestive disorders, leads to oxidative stress in S. oryzae. The presence of carob extract had no effect on the PPA-induced mortality of the insect. According to the results of the present study, PPA has promising insecticidal efficiency against S. oryzae. In addition, the usage of PPA with a food attractant carob extract in bait traps can be recommended as a new biorational formulation in S. oryzae management.


Assuntos
Inseticidas/farmacologia , Lectinas/farmacologia , Extratos Vegetais/farmacologia , Polygonum/química , Gorgulhos/efeitos dos fármacos , Animais , Ativação Enzimática/efeitos dos fármacos , Inseticidas/isolamento & purificação , Lectinas/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos
5.
Anal Biochem ; 635: 114450, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34767809

RESUMO

Lectin is a carbohydrate-binding protein, which exhibits a plethora of biological properties such as antimicrobial, antifungal, and anticancer activities. In the present study, lectin, with an antibacterial and antioxidant potential, was purified from the oyster mushroom Pleurotus flabellatus. The P. flabellatus Lectin (PFL-L) was purified by using a DEAE - cellulose anion exchange chromatography followed by gel-filtration chromatography. The PFL-L was characterized by CD, HPLC, and MALDI-TOF/MS. The purity of PFL-L increased to 62.40% with the recovery of hemagglutinating activity (HA) by 12.12%. On SDS - PAGE, the PFL-L gave a single band of 18 kDa. PFL-L, consisting of d-galactose, exhibits a strong hemagglutinating activity. It was stable at pH (6.0-7.5) and temperature (10-20 °C) in addition to having extensive hemagglutinating activity. PFL-L enhanced the HA with the use of different metal ions namely Mg2+, Ca2+, and Fe2+. The study of bacterial growth inhibition led to the inference that the PFL-L was more potent against gram-negative bacteria. PFL-L showed the highest radical scavenging activity for the DPPH assay at 100 µg/mL (89.9 ± 2.53%). The highest antioxidant activities with IC50 values (for DPPH assay) of 53.96 µg/mL were determined for PFL-L and the present study shows that lectin from P. flabellatus manifested distinctive character and potentially exploitable activities.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Lectinas/farmacologia , Pleurotus/química , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Lectinas/química , Lectinas/isolamento & purificação , Testes de Sensibilidade Microbiana , Picratos/antagonistas & inibidores , Ovinos
6.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361776

RESUMO

In this study, we examined aqueous extracts of the edible mushrooms Pleurotus ostreatus (oyster mushroom) and Lentinula edodes (shiitake mushroom). Proteome analysis was conducted using LC-Triple TOF-MS and showed the expression of 753 proteins by Pleurotus ostreatus, and 432 proteins by Lentinula edodes. Bioactive peptides: Rab GDP dissociation inhibitor, superoxide dismutase, thioredoxin reductase, serine proteinase and lectin, were identified in both mushrooms. The extracts also included promising bioactive compounds including phenolics, flavonoids, vitamins and amino acids. The extracts showed promising antiviral activities, with a selectivity index (SI) of 4.5 for Pleurotus ostreatus against adenovirus (Ad7), and a slight activity for Lentinula edodes against herpes simplex-II (HSV-2). The extracts were not cytotoxic to normal human peripheral blood mononuclear cells (PBMCs). On the contrary, they showed moderate cytotoxicity against various cancer cell lines. Additionally, antioxidant activity was assessed using DPPH radical scavenging, ABTS radical cation scavenging and ORAC assays. The two extracts showed potential antioxidant activities, with the maximum activity seen for Pleurotus ostreatus (IC50 µg/mL) = 39.46 ± 1.27 for DPPH; 11.22 ± 1.81 for ABTS; and 21.40 ± 2.20 for ORAC assays. This study encourages the use of these mushrooms in medicine in the light of their low cytotoxicity on normal PBMCs vis à vis their antiviral, antitumor and antioxidant capabilities.


Assuntos
Antineoplásicos/química , Antioxidantes/química , Antivirais/química , Proteínas Fúngicas/química , Pleurotus/química , Proteoma/química , Cogumelos Shiitake/química , Aminoácidos/química , Aminoácidos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Antivirais/isolamento & purificação , Antivirais/farmacologia , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Misturas Complexas/química , Flavonoides/química , Flavonoides/isolamento & purificação , Proteínas Fúngicas/classificação , Proteínas Fúngicas/isolamento & purificação , Humanos , Lectinas/química , Lectinas/isolamento & purificação , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Especificidade de Órgãos , Fenóis/química , Fenóis/isolamento & purificação , Picratos/antagonistas & inibidores , Pleurotus/metabolismo , Cultura Primária de Células , Proteoma/classificação , Proteoma/isolamento & purificação , Serina Proteases/química , Serina Proteases/isolamento & purificação , Cogumelos Shiitake/metabolismo , Ácidos Sulfônicos/antagonistas & inibidores , Superóxido Dismutase/química , Superóxido Dismutase/isolamento & purificação , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/isolamento & purificação , Vitaminas/química , Vitaminas/isolamento & purificação , Água/química
7.
Cells ; 10(7)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203435

RESUMO

Betacoronaviruses, responsible for the "Severe Acute Respiratory Syndrome" (SARS) and the "Middle East Respiratory Syndrome" (MERS), use the spikes protruding from the virion envelope to attach and subsequently infect the host cells. The coronavirus spike (S) proteins contain receptor binding domains (RBD), allowing the specific recognition of either the dipeptidyl peptidase CD23 (MERS-CoV) or the angiotensin-converting enzyme ACE2 (SARS-Cov, SARS-CoV-2) host cell receptors. The heavily glycosylated S protein includes both complex and high-mannose type N-glycans that are well exposed at the surface of the spikes. A detailed analysis of the carbohydrate-binding specificity of mannose-binding lectins from plants, algae, fungi, and bacteria, revealed that, depending on their origin, they preferentially recognize either complex type N-glycans, or high-mannose type N-glycans. Since both complex and high-mannose glycans substantially decorate the S proteins, mannose-specific lectins are potentially useful glycan probes for targeting the SARS-CoV, MERS-CoV, and SARS-CoV-2 virions. Mannose-binding legume lectins, like pea lectin, and monocot mannose-binding lectins, like snowdrop lectin or the algal lectin griffithsin, which specifically recognize complex N-glycans and high-mannose glycans, respectively, are particularly adapted for targeting coronaviruses. The biomedical prospects of targeting coronaviruses with mannose-specific lectins are wide-ranging including detection, immobilization, prevention, and control of coronavirus infection.


Assuntos
Lectinas/farmacologia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , SARS-CoV-2/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/virologia , Cianobactérias/química , Sistemas de Liberação de Medicamentos/métodos , Fungos/química , Humanos , Lectinas/isolamento & purificação , Lectinas/uso terapêutico , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Plantas/química , Ligação Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2/fisiologia , Especificidade da Espécie , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
8.
Artigo em Inglês | MEDLINE | ID: mdl-34126205

RESUMO

The increasing availability of sequenced genomes has enabled a deeper understanding of the complexity of fish lectin repertoires involved in early development and immune recognition. The teleost fucose-type lectin (FTL) family includes proteins that preferentially bind fucose and display tandemly arrayed carbohydrate-recognition domains (CRDs) or are found in mosaic combinations with other domains. They function as opsonins, promoting phagocytosis and the clearance of microbial pathogens. The Antarctic fish Trematomus bernacchii is a Perciforme living at extremely low temperatures (-1.68 °C) which is considered a model for studying adaptability to the variability of environmental waters. Here, we isolated a Ca++-independent fucose-binding protein from the serum of T. bernacchii by affinity chromatography with apparent molecular weights of 32 and 30 kDa under reducing and non-reducing conditions, respectively. We have characterized its carbohydrate binding properties, thermal stability and potential ability to recognize bacterial pathogens. In western blot analysis, the protein showed intense cross-reactivity with antibodies specific for a sea bass (Dicentrarchus labrax) fucose-binding lectin. In addition, its molecular and structural aspects, showing that it contains two CRD-FTLs confirmed that T. bernacchii FTL (TbFTL) is a bona fide member of the FTL family, with binding activity at low temperatures and the ability to agglutinate bacteria, thereby suggesting it participates in host-pathogen interactions in low temperature environments.


Assuntos
Bactérias/metabolismo , Fucose/metabolismo , Lectinas/sangue , Lectinas/fisiologia , Perciformes/fisiologia , Sequência de Aminoácidos , Animais , Regiões Antárticas , Sequência de Bases , Lectinas/isolamento & purificação , Lectinas/metabolismo , Filogenia
9.
Yakugaku Zasshi ; 141(4): 481-488, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-33790114

RESUMO

Two novel ß-trefoil lectins, MytiLec-1 and SeviL were found from mussels in the coast of Yokohama and Nagasaki. MytiLec-1 was purified from gill and mantle of Mytilus galloprovincialis. It was consisted of 149 amino acid residues and there was no similarity with any other proteins when it was discovered. We advocate for this "Mytilectin" as a new protein family because of their novelty of its primary structure and homologues were also found in other mussels. Glycan array analysis revealed that MytiLec-1 specifically bound to the Gb3 and Gb4 glycan which contained the α-galactoside. MytiLec-1 caused the apoptosis against the Burkitt's lymphoma cells through the interaction of Gb3 express in their cell surface. On the other hand, SeviL obtained from gill and mantle of Mytilisepta virgata showed the specific binding against GM1b, asialo GM1 and SSEA-4 which are known as glycosphingolipid glycan including the ß-galactoside. In addition, SeviL was identified as R type lectin by confirmation of QXW motif within its primary structure. Messenger RNA of SeviL like R type lectins was also found among the musssels including Mytilus galloprovincialis. SeviL also showed the apoptosis against asialo GM1 expressing cells. To apply the anticancer lectin as a novel molecular target drug, primary structure of MytiLec-1 was analyzed to enhance the stabilization of confirmation by computational design technique. It was succeeded to produce a monomeric artificial ß-trefoil lectin, Mitsuba-1 without losing the Gb3 binding ability. Comparison of biological function between Mitsuba-1 and MytiLec-1 is also described in this study.


Assuntos
Dissacarídeos/farmacologia , Galectinas/farmacologia , Lectinas/farmacologia , Mytilidae/química , Trissacarídeos/farmacologia , Animais , Antineoplásicos , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/patologia , Dissacarídeos/química , Dissacarídeos/isolamento & purificação , Dissacarídeos/metabolismo , Desenho de Fármacos , Galectinas/química , Galectinas/isolamento & purificação , Galectinas/metabolismo , Lectinas/química , Lectinas/isolamento & purificação , Lectinas/metabolismo , Conformação Molecular , Terapia de Alvo Molecular , Polissacarídeos/metabolismo , Sequências de Repetição em Tandem , Trissacarídeos/química , Trissacarídeos/isolamento & purificação , Trissacarídeos/metabolismo
10.
Int J Biol Macromol ; 181: 1104-1123, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33895178

RESUMO

Vicieae tribe, Leguminosae family (Fabaceae), has been extensively studied. In particular, the study of lectins. The purification, physicochemical and structural characterizations of the various purified lectins and the analysis of their relevant biological activities are ongoing. In this review, several works already published about Vicieae lectins are addressed. Initially, we presented the purification protocols and the physicochemical aspects, such as specificity for carbohydrates, optimal activity in the face of variations in temperature and pH, as well metals-dependence. Following, structural characterization studies are highlighted and, finally, various biological activities already reported are summarized. Studies on lectins in almost all genera (Lathyrus, Lens, Pisum and Vicia) are considered, with the exception of Vavilovia which studies of lectins have not yet been reported. Like other leguminous lectins, Vicieae lectins present heterogeneous profiles of agglutination profiles for erythrocytes and other cells of the immune system, and glycoproteins. Most Vicieae lectins consist of two subunits, α and ß, products of a single precursor protein derived from a single gene. The differences between the isoforms result from varying degrees of proteolytic processing. Along with the identification of these molecules and their characteristics, biological activities become very relevant and robust for both basic and applied research.


Assuntos
Carboidratos/química , Lectinas/química , Lectinas/isolamento & purificação , Vicia/química , Sequência de Aminoácidos/genética , Carboidratos/genética , Lectinas/genética , Lectinas/ultraestrutura
11.
Molecules ; 26(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917694

RESUMO

The recently emerged COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has adversely affected the whole world. As a significant public health threat, it has spread worldwide. Scientists and global health experts are collaborating to find and execute speedy diagnostics, robust and highly effective vaccines, and therapeutic techniques to tackle COVID-19. The ocean is an immense source of biologically active molecules and/or compounds with antiviral-associated biopharmaceutical and immunostimulatory attributes. Some specific algae-derived molecules can be used to produce antibodies and vaccines to treat the COVID-19 disease. Algae have successfully synthesized several metabolites as natural defense compounds that enable them to survive under extreme environments. Several algae-derived bioactive molecules and/or compounds can be used against many diseases, including microbial and viral infections. Moreover, some algae species can also improve immunity and suppress human viral activity. Therefore, they may be recommended for use as a preventive remedy against COVID-19. Considering the above critiques and unique attributes, herein, we aimed to systematically assess algae-derived, biologically active molecules that could be used against this disease by looking at their natural sources, mechanisms of action, and prior pharmacological uses. This review also serves as a starting point for this research area to accelerate the establishment of anti-SARS-CoV-2 bioproducts.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Clorófitas/química , Phaeophyceae/química , Rodófitas/química , Antivirais/química , Antivirais/isolamento & purificação , COVID-19/patologia , COVID-19/virologia , Carragenina/química , Carragenina/isolamento & purificação , Carragenina/uso terapêutico , Clorófitas/metabolismo , Humanos , Lectinas/isolamento & purificação , Lectinas/uso terapêutico , Phaeophyceae/metabolismo , Polissacarídeos/isolamento & purificação , Polissacarídeos/uso terapêutico , Rodófitas/metabolismo , SARS-CoV-2/isolamento & purificação
12.
Comput Biol Chem ; 92: 107477, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33773472

RESUMO

Legumes are endowed with an opulent class of proteins called lectins that can detect tenuous variations in carbohydrate structures and bind them reversibly with high affinity and specificity. The genus Canavalia, in the family of Leguminosae, is considered to be an affluent source of lectin. An effort has been made to analyse the sequences encoded by the lectin gene and its carbohydrate binding pockets from three species of Canavalia, including C. virosa, C. rosea, and C. pubescens. Crude seed extract showed highest haemagglutination titer against buffalo RBCs and has high affinity to mannose and trehalose. Amplification of the lectin gene by gene-specific primers showed the presence of an 870 bp amplicon. Physicochemical characterization using various bioinformatic tools showed that the isoelectric point was below 7, suggesting that lectin molecules were acidic. A high aliphatic index and high instability index were observed, which indicated that lectin molecules were stable towards a wide range of temperatures. The occurrence of N-glycosylation sites at two sites was also identified in all three species. Prediction of secondary structure showed that approximately 59.05 %, 56.76 % and 54.88 % of the elements were random coils in the case of C. virosa, C. pubescens and C. rosea, respectively. Comparative modelling of the proteins and docking of hypothetical models with sugar moieties that inhibited the agglutination activity suggested that asparagine, serine, alanine, valine, tyrosine and threonine were the major residues involved in hydrogen bonding and other stacking interactions. This can further provide insights on its prospective antibiosis property.


Assuntos
Canavalia/genética , Carboidratos/química , Lectinas/química , Extratos Vegetais/química , Animais , Sítios de Ligação , Búfalos , Canavalia/classificação , Bovinos , Cabras , Lectinas/genética , Lectinas/isolamento & purificação , Extratos Vegetais/genética , Extratos Vegetais/isolamento & purificação , Ovinos
13.
Chem Biodivers ; 18(2): e2000827, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33410600

RESUMO

Vicia palaestina Boiss. is an annual herb that grows in dry areas of eastern Mediterranean countries. It belongs to section Cracca subgenus Vicilla, which is characterized by having a high content in the non-protein amino acid canavanine. The seeds from some of these vetches are also rich in lectins. The purification and characterization of a single-chain lectin from the seeds of V. palaestina is described here. This lectin was the most abundant protein in albumin extracts. It has affinity for the glycoconjugate N-acetylgalactosamine and inhibits proliferation of the cancerous Caco-2 and THP-1 cell lines. In addition to their high nutritional value, the seeds from V. palaestina represent a source of lectins with health promoting and pharmacological potential because of their antiproliferative activity.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Lectinas/química , Lectinas/farmacologia , Vicia/química , Antineoplásicos Fitogênicos/isolamento & purificação , Células CACO-2 , Humanos , Lectinas/isolamento & purificação , Neoplasias/tratamento farmacológico , Sementes/química , Células THP-1
14.
Int J Biol Macromol ; 171: 389-397, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33428960

RESUMO

Zizyphus mauritiana Lam. seeds (ZMS) have been used medicinally as sedative or hypnotic drugs in most of Asian countries. ZMS has significant benefits to the human health. Therefore, we have evaluated immunomodulatory effect of lectin extracted from these ZMSL in both in vitro and in vivo study. Anaphylaxis is a severe life-threatening allergic reaction and Arthus reaction is deposition of immune complex and complement system activation, so we hypothesized that if ZMSL can protect these severe allergic diseases. We have studied the effect of ZMSL on macrophages and Wistar albino rats and confirmed its protective effect against anaphylaxis and Arthus reaction. Results of this study suggest ZMSL have immunostimulatory and antiallergic activity.


Assuntos
Adjuvantes Imunológicos/isolamento & purificação , Antialérgicos/isolamento & purificação , Fatores Imunológicos/isolamento & purificação , Lectinas/isolamento & purificação , Ziziphus/química , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Anafilaxia/prevenção & controle , Animais , Antialérgicos/farmacologia , Antialérgicos/uso terapêutico , Reação de Arthus/prevenção & controle , Antígenos de Grupos Sanguíneos , Inativadores do Complemento/isolamento & purificação , Inativadores do Complemento/farmacologia , Inativadores do Complemento/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Hemaglutinação/efeitos dos fármacos , Humanos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Lectinas/farmacologia , Lectinas/uso terapêutico , Leucócitos/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Lisossomos/enzimologia , Macrófagos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Plantas Medicinais/química , Coelhos , Ratos Wistar , Sementes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Int J Biol Macromol ; 166: 1173-1187, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33159939

RESUMO

In the present study aimed to purify the lectin from the sap of Musa acuminata pseudostem and elucidate the apoptotic and angiogenic molecular mechanism in both in-vitro and in-vivo model. Mannose specific lectin was purified by using mannose affinity column chromatography and analyzed by RP-HPLC, SDS-PAGE, and PAS staining method. Furthermore, the protein was identified by MALDI-MS/MS. MAL effectively agglutinates trypsinized RBCs and showed effective cytotoxicity against various human cancer cell lines. MAL mitigates the cell proliferation, colony formation, cell migration, arrest the cell cycle in the G2/M phase, and induce apoptosis by altering the expression of apoptotic proteins/mRNA level (Bax and Bcl-2) via caspase 8/9, 3 dependent pathway in both in-vitro and in-vivo. Supporting this, in-vivo EAC tumor mice models prove the efficacy of MAL by inducing cell death and inhibiting the neovessel formation by targeting the MVD, inhibition of VEGF secretion, suppressing the expression of MMPs, HIF-1α, Flt-1, Akt, Jnk, and Erk1/2. More importantly, the MAL treatment leads to effective inhibition of tumor growth and an increase in the survivability of EAC mice. Our study summarizes that the MAL having a significant anticancer potential expressively degenerates the tumor development by inducing apoptosis and suppressing neoangiogenesis.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma de Ehrlich/patologia , Caspases/metabolismo , Lectinas/uso terapêutico , Sistema de Sinalização das MAP Quinases , Musa/química , Neovascularização Patológica/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Aglutinação/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Galinhas , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Lectinas/isolamento & purificação , Lectinas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos , Testes de Toxicidade Aguda
16.
STAR Protoc ; 1(3): 100204, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377098

RESUMO

Galectins are soluble lectins that participate in many physiological and pathological functions. Since they can act extracellularly, the use of the recombinant protein is a recurrent strategy for studying their biological functions. Here, we provide a general protocol for the production of Galectins and their isolated or chimeric domains. We take advantage of their lectin activity and the 6xHis-tag addition for purification, thus obtaining a highly pure and active Galectin to use in both in vitro and in vivo assays. For complete details on the use and execution of this protocol, please refer to Cattaneo et al. (2011), Tribulatti et al. (2012), and Prato et al. (2020).


Assuntos
Cromatografia de Afinidade/métodos , Galectinas/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Bactérias/metabolismo , Sítios de Ligação , Galectinas/biossíntese , Hemaglutininas , Lectinas/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo
17.
Biomed Res Int ; 2020: 7251346, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33145357

RESUMO

Lectins are the oligomeric sugar-specific glycoprotein of nonimmune origin, are involved in the multiple biological recognition process, and have the capacity to perform a wide variety of physiological functions including antifungal, antiviral, antitumor, and cell agglutination. The main objective of the current study was to prepare lectin protein-loaded chitosan-TPP nanoparticles via ionic gelation methods with different CS/TPP ratios and to investigate anticancer potential against HepG2 cells. The best ratio showed the mean particle size (298.10 ± 1.9 nm, 21.05 ± 0.95 mv) with optimal encapsulation efficiencies of 52.435 ± 0.09%. The cytotoxicity was evaluated against HepG2 cells, and IC50 values obtained were 265 µg/ml for lectin protein and 105 µg/ml for lectin-loaded chitosan-TPP nanoparticles, respectively. The mRNA expression of proliferation markers like GPC3 was significantly decreased in hepatocellular carcinoma cells (HepG2) during lectin protein-loaded chitosan-TPP nanoparticle treatment. Apoptotic genes that indicating a marked increase in expression are Caspase 3, p53, and Bax, while Bcl2 and AFP showed a downregulation of expression after treatment of HepG2 cells with lectin-loaded chitosan-TPP nanoparticles. The preliminary findings of our study highlighted that lectin protein-loaded chitosan-TPP nanoparticles could be a promising anticancer agent.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Quitosana/análogos & derivados , Composição de Medicamentos/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lectinas/farmacologia , Lepidium sativum/química , Nanopartículas/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Quitosana/química , Portadores de Fármacos , Géis , Células Hep G2 , Humanos , Concentração Inibidora 50 , Lectinas/química , Lectinas/isolamento & purificação , Nanopartículas/ultraestrutura , Tamanho da Partícula , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
18.
Cancer Sci ; 111(12): 4548-4557, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33058342

RESUMO

Drug resistance represents an obstacle in colorectal cancer (CRC) treatment because of its association with poor prognosis. rBC2LCN is a lectin isolated from Burkholderia that binds cell surface glycans that have fucose moieties. Because fucosylation is enhanced in many types of cancers, this lectin could be an efficient drug carrier if CRC cells specifically present such glycans. Therefore, we examined the therapeutic efficacy and toxicity of lectin drug conjugate therapy in CRC mouse xenograft models. The affinity of rBC2LCN for human CRC cell lines HT-29, LoVo, LS174T, and DLD-1 was assessed in vitro. The cytocidal efficacy of a lectin drug conjugate, rBC2LCN-38 kDa domain of pseudomonas exotoxin A (PE38) was evaluated by MTT assay. The therapeutic effects and toxicity for each CRC cell line-derived mouse xenograft model were compared between the intervention and control groups. LS174T and DLD-1 cell lines showed a strong affinity for rBC2LCN. In the xenograft model, the tumor volume in the rBC2LCN-PE38 group was significantly reduced compared with that using control treatment alone. However, the HT-29 cell line showed weak affinity and poor therapeutic efficacy. No significant toxicities or adverse responses were observed. In conclusion, we demonstrated that rBC2LCN lectin binds CRC cells and that rBC2LCN-PE38 significantly suppresses tumor growth in vivo. In addition, the efficacy of the drug conjugate correlated with its binding affinity for each CRC cell line. These results suggest that lectin drug conjugate therapy has potential as a novel targeted therapy for CRC cell surface glycans.


Assuntos
ADP Ribose Transferases/uso terapêutico , Adenocarcinoma/tratamento farmacológico , Toxinas Bacterianas/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Exotoxinas/uso terapêutico , Imunoconjugados/uso terapêutico , Lectinas/uso terapêutico , Fatores de Virulência/uso terapêutico , ADP Ribose Transferases/efeitos adversos , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Toxinas Bacterianas/efeitos adversos , Burkholderia cenocepacia/química , Linhagem Celular Tumoral , Sobrevivência Celular , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Portadores de Fármacos , Exotoxinas/efeitos adversos , Fucose/metabolismo , Fucosiltransferases/metabolismo , Células HT29 , Xenoenxertos , Humanos , Imunoconjugados/efeitos adversos , Técnicas In Vitro , Lectinas/isolamento & purificação , Lectinas/metabolismo , Camundongos , Proteínas Recombinantes de Fusão/efeitos adversos , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/uso terapêutico , Carga Tumoral , Fatores de Virulência/efeitos adversos , Exotoxina A de Pseudomonas aeruginosa
19.
Molecules ; 25(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899754

RESUMO

The emergence of the Coronavirus Disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has led to an unprecedented pandemic, which demands urgent development of antiviral drugs and antibodies; as well as prophylactic approaches, namely vaccines. Algae biotechnology has much to offer in this scenario given the diversity of such organisms, which are a valuable source of antiviral and anti-inflammatory compounds that can also be used to produce vaccines and antibodies. Antivirals with possible activity against SARS-CoV-2 are summarized, based on previously reported activity against Coronaviruses or other enveloped or respiratory viruses. Moreover, the potential of algae-derived anti-inflammatory compounds to treat severe cases of COVID-19 is contemplated. The scenario of producing biopharmaceuticals in recombinant algae is presented and the cases of algae-made vaccines targeting viral diseases is highlighted as valuable references for the development of anti-SARS-CoV-2 vaccines. Successful cases in the production of functional antibodies are described. Perspectives on how specific algae species and genetic engineering techniques can be applied for the production of anti-viral compounds antibodies and vaccines against SARS-CoV-2 are provided.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Chlamydomonas reinhardtii/genética , Infecções por Coronavirus/tratamento farmacológico , Lectinas/farmacologia , Pneumonia Viral/tratamento farmacológico , Polifenóis/farmacologia , Polissacarídeos/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/patogenicidade , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , COVID-19 , Vacinas contra COVID-19 , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/química , Cloroplastos/genética , Cloroplastos/metabolismo , Infecções por Coronavirus/prevenção & controle , Engenharia Genética/métodos , Humanos , Lectinas/química , Lectinas/isolamento & purificação , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Pandemias , Polifenóis/química , Polifenóis/isolamento & purificação , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Vacinas Virais/biossíntese , Vacinas Virais/farmacologia
20.
Curr Pharm Biotechnol ; 21(14): 1444-1450, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32744967

RESUMO

BACKGROUND: Lectins are class of proteins characterized by their ability to selectively bind carbohydrate moieties of glycoproteins. Many invertebrate lectins, especially derived from hemolymph, are being purified, and yet their functions and medical applications are subjects of major interest. METHODS: Hemolymph lectins in invertebrates play a major role in protecting against many pathogens and microbes. Further, many hemolymph lectins show anticancer properties towards various cancer cell lines, which expresses globotriaosyl ceramides on their cell surface. RESULTS: These vast repertoires of hemolymph lectins in recognizing and inhibiting the growth of various harmful microbes and cancerous cells have spurred the biochemist to use them in histochemical and cytochemical studies. CONCLUSION: The present review will address the biological roles and biomedical applications of hemolymph lectin.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Pesquisa Biomédica , Hemolinfa/química , Invertebrados/química , Lectinas/farmacologia , Animais , Antibacterianos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Hemolinfa/metabolismo , Humanos , Imunidade Inata/efeitos dos fármacos , Invertebrados/imunologia , Lectinas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA