Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.095
Filtrar
1.
PeerJ ; 12: e17197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708341

RESUMO

Waterborne transmission of the bacterium Legionella pneumophila has emerged as a major cause of severe nosocomial infections of major public health impact. The major route of transmission involves the uptake of aerosolized bacteria, often from the contaminated hot water systems of large buildings. Public health regulations aimed at controlling the mesophilic pathogen are generally concerned with acute pasteurization and maintaining high temperatures at the heating systems and throughout the plumbing of hot water systems, but L. pneumophila is often able to survive these treatments due to both bacterium-intrinsic and environmental factors. Previous work has established an experimental evolution system to model the observations of increased heat resistance in repeatedly but unsuccessfully pasteurized L. pneumophila populations. Here, we show rapid fixation of novel alleles in lineages selected for resistance to heat shock and shifts in mutational profile related to increases in the temperature of selection. Gene-level and nucleotide-level parallelisms between independently-evolving lineages show the centrality of the DnaJ/DnaK chaperone system in the heat resistance of L. pneumophila. Inference of epistatic interactions through reverse genetics shows an unexpected interaction between DnaJ/DnaK and the polyhydroxybutyrate-accumulation energy storage mechanism used by the species to survive long-term starvation in low-nutrient environments.


Assuntos
Resposta ao Choque Térmico , Legionella pneumophila , Legionella pneumophila/genética , Resposta ao Choque Térmico/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Temperatura Alta , Evolução Molecular
2.
Curr Microbiol ; 81(6): 165, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714565

RESUMO

Legionella pneumophila (Lp) is a Gram-negative bacterium found in natural and artificial aquatic environments and inhalation of contaminated aerosols can cause severe pneumonia known as Legionnaires' Disease (LD). In Brazil there is hardly any information about this pathogen, so we studied the genetic variation of forty Legionella spp. isolates obtained from hotels, malls, laboratories, retail centers, and companies after culturing in BCYE medium. These isolates were collected from various sources in nine Brazilian states. Molecular identification of the samples was carried out using Sequence-Based Typing (SBT), which consists of sequencing and analysis of seven genes (flaA, pilE, asd, mip, mompS, proA, and neuA) to define a Sequence Type (ST). Eleven STs were identified among 34/40 isolates, of which eight have been previously described (ST1, ST80, ST152, ST242, ST664, ST1185, ST1464, ST1642) and three were new STs (ST2960, ST2962, and ST2963), the former identified in five different cooling towers in the city of São Paulo. The ST1 that is widely distributed in many countries was also the most prevalent in this study. In addition, other STs that we observed have also been associated with legionellosis in other countries, reinforcing the potential of these isolates to cause LD in Brazil. Unfortunately, no human isolates could be characterized until presently, but our observations strongly suggest the need of surveillance implementation system and control measures of Legionella spp. in Brazil, including the use of more sensitive genotyping procedures besides ST.


Assuntos
Variação Genética , Legionella pneumophila , Microbiologia da Água , Brasil , Legionella pneumophila/genética , Legionella pneumophila/isolamento & purificação , Legionella pneumophila/classificação , Humanos , Filogenia , Genótipo
3.
Elife ; 122024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771316

RESUMO

Rab GTPases are representative targets of manipulation by intracellular bacterial pathogens for hijacking membrane trafficking. Legionella pneumophila recruits many Rab GTPases to its vacuole and exploits their activities. Here, we found that infection-associated regulation of Rab10 dynamics involves ubiquitin signaling cascades mediated by the SidE and SidC families of Legionella ubiquitin ligases. Phosphoribosyl-ubiquitination of Rab10 catalyzed by the SidE ligases is crucial for its recruitment to the bacterial vacuole. SdcB, the previously uncharacterized SidC-family effector, resides on the vacuole and contributes to retention of Rab10 at the late stages of infection. We further identified MavC as a negative regulator of SdcB. By the transglutaminase activity, MavC crosslinks ubiquitin to SdcB and suppresses its function, resulting in elimination of Rab10 from the vacuole. These results demonstrate that the orchestrated actions of many L. pneumophila effectors fine-tune the dynamics of Rab10 during infection.


Assuntos
Proteínas de Bactérias , Legionella pneumophila , Vacúolos , Proteínas rab de Ligação ao GTP , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Legionella pneumophila/metabolismo , Legionella pneumophila/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Humanos , Vacúolos/metabolismo , Vacúolos/microbiologia , Interações Hospedeiro-Patógeno , Ubiquitinação , Animais , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
4.
Euro Surveill ; 29(20)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38757288

RESUMO

Wastewater treatment plants (WWTPs) are increasingly identified as Legionnaires' disease (LD) sources. An outbreak investigation was initiated following five LD cases reported in September 2022 in Houten, the Netherlands. Case identification was based on the European LD case definition, with symptom onset from 1 September 2022, residence in or within 5 km of Houten, or visit to Houten within the incubation period, without other likely sources. We sampled potential sources and genotyped environmental and clinical isolates. We identified 15 LD cases with onset between 13 September and 23 October 2022. A spatial source identification and wind direction model suggested an industrial (iWWTP) and a municipal WWTP (mWWTP) as potential sources, with the first discharging water into the latter. Both tested positive for Legionella pneumophila serogroups 1 and 6 with multiple sequence types (ST). We detected L. pneumophila sg1 ST42 in the mWWTP, matching with one of three available clinical isolates. Following control measures at the WWTPs, no further cases were observed. This outbreak underlines that municipal and industrial WWTPs can play an important role in community LD cases and outbreaks, especially those with favourable conditions for Legionella growth and dissemination, or even non-favourable conditions for growth but with the influx of contaminated water.


Assuntos
Surtos de Doenças , Legionella pneumophila , Doença dos Legionários , Águas Residuárias , Microbiologia da Água , Doença dos Legionários/epidemiologia , Doença dos Legionários/microbiologia , Humanos , Países Baixos/epidemiologia , Águas Residuárias/microbiologia , Legionella pneumophila/isolamento & purificação , Legionella pneumophila/genética , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Purificação da Água , Adulto , Genótipo
5.
Environ Sci Technol ; 58(15): 6540-6551, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38574283

RESUMO

Water age in drinking water systems is often used as a proxy for water quality but is rarely used as a direct input in assessing microbial risk. This study directly linked water ages in a premise plumbing system to concentrations of Legionella pneumophila via a growth model. In turn, the L. pneumophila concentrations were used for a quantitative microbial risk assessment to calculate the associated probabilities of infection (Pinf) and clinically severe illness (Pcsi) due to showering. Risk reductions achieved by purging devices, which reduce water age, were also quantified. The median annual Pinf exceeded the commonly used 1 in 10,000 (10-4) risk benchmark in all scenarios, but the median annual Pcsi was always 1-3 orders of magnitude below 10-4. The median annual Pcsi was lower in homes with two occupants (4.7 × 10-7) than with one occupant (7.5 × 10-7) due to more frequent use of water fixtures, which reduced water ages. The median annual Pcsi for homes with one occupant was reduced by 39-43% with scheduled purging 1-2 times per day. Smart purging devices, which purge only after a certain period of nonuse, maintained these lower annual Pcsi values while reducing additional water consumption by 45-62%.


Assuntos
Água Potável , Legionella pneumophila , Legionella , Abastecimento de Água , Microbiologia da Água , Engenharia Sanitária , Medição de Risco
6.
Cell Rep ; 43(4): 114033, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38568811

RESUMO

Small GTPases of the Ras subfamily are best known for their role as proto-oncoproteins, while their function during microbial infection has remained elusive. Here, we show that Legionella pneumophila hijacks the small GTPase NRas to the Legionella-containing vacuole (LCV) surface. A CRISPR interference screen identifies a single L. pneumophila effector, DenR (Lpg1909), required for this process. Recruitment is specific for NRas, while its homologs KRas and HRas are excluded from LCVs. The C-terminal hypervariable tail of NRas is sufficient for recruitment, and interference with either NRas farnesylation or S-acylation sites abrogates recruitment. Intriguingly, we detect markers of active NRas signaling on the LCV, suggesting it acts as a signaling platform. Subsequent phosphoproteomics analyses show that DenR rewires the host NRas signaling landscape, including dampening of the canonical mitogen-activated protein kinase pathway. These results provide evidence for L. pneumophila targeting NRas and suggest a link between NRas GTPase signaling and microbial infection.


Assuntos
Proteínas de Bactérias , GTP Fosfo-Hidrolases , Legionella pneumophila , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidade , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Regulação para Baixo , Células HEK293 , Doença dos Legionários/microbiologia , Doença dos Legionários/metabolismo , Vacúolos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética
7.
Emerg Infect Dis ; 30(5): 1022-1025, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666647

RESUMO

We investigated molecular evolution and spatiotemporal dynamics of atypical Legionella pneumophila serogroup 1 sequence type 1905 and determined its long-term persistence and linkage to human disease in dispersed locations, far beyond the large 2014 outbreak epicenter in Portugal. Our finding highlights the need for public health interventions to prevent further disease spread.


Assuntos
Surtos de Doenças , Evolução Molecular , Legionella pneumophila , Doença dos Legionários , Análise Espaço-Temporal , Legionella pneumophila/genética , Legionella pneumophila/classificação , Portugal/epidemiologia , Humanos , Doença dos Legionários/epidemiologia , Doença dos Legionários/microbiologia , História do Século XXI , Recidiva , Filogenia , Sorogrupo
8.
Curr Microbiol ; 81(6): 141, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625380

RESUMO

Legionella pneumophila can be transmitted to people, especially immunocompromised patients, via hospital water pipe systems and cause severe pneumonia. The aim of our study was to investigate the presence of major virulence factor genes, ability of biofilms formation, and correlation between presence of Legionella isolates and temperature, pH, and residual chlorine of water. Hundred water samples were collected from nine hospitals in Tehran, Iran. Temperature, pH, and residual chlorine were determined during sampling. Different virulence genes and the ability to form biofilms were subsequently analyzed among the L. pneumophila isolates. Results showed that 12 (12%) samples were positive in culture method and all of the isolates were positive as L. pneumophila species (mip). A correlation was found between Legionella culture positivity and temperature and pH of water, but there was no significant correlation between residual chlorine of water samples and the presence of Legionella. The isolation of Legionella rate in summer and spring was higher than winter and autumn. Twelve (100%) isolates were positive for mip genes, 9 (75%) for dot genes, 8 (66.66%) for hsp, 6 (50%) for lvh, and 4 (33.33%) for rtx. All of the isolates displayed strong ability for biofilm production every three days. Two of these isolates (16.6%) displayed weak ability to form biofilm on the first day of incubation. This study revealed that water sources in hospitals were colonized by virulent Legionella and should be continuously monitored to avoid elevated concentrations of Legionella with visible biofilm formation.


Assuntos
Legionella pneumophila , Legionella , Humanos , Legionella pneumophila/genética , Virulência/genética , Cloro/farmacologia , Irã (Geográfico) , Biofilmes , Hospitais
9.
Analyst ; 149(10): 2978-2987, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38602145

RESUMO

Cultivation-independent molecular biological methods are essential to rapidly quantify pathogens like Legionella pneumophila (L. pneumophila) which is important to control aerosol-generating engineered water systems. A standard addition method was established to quantify L. pneumophila in the very complex matrix of process water and air of exhaust air purification systems in animal husbandry. Therefore, cryopreserved standards of viable L. pneumophila were spiked in air and water samples to calibrate the total bioanalytical process which includes cell lysis, DNA extraction, and qPCR. A standard addition algorithm was employed for qPCR to determine the initial concentration of L. pneumophila. In mineral water, the recovery rate of this approach (73%-134% within the concentration range of 100-5000 Legionella per mL) was in good agreement with numbers obtained from conventional genomic unit (GU) calibration with DNA standards. In air samples of biotrickling filters, in contrast, the conventional DNA standard approach resulted in a significant overestimation of up to 729%, whereas our standard addition gave a more realistic recovery of 131%. With this proof-of-principle study, we were able to show that the molecular biology-based standard addition approach is a suitable method to determine realistic concentrations of L. pneumophila in air and process water samples of biotrickling filter systems. Moreover, this quantification strategy is generally a promising method to quantify pathogens in challenging samples containing a complex microbiota and the classical GU approach used for qPCR leads to unreliable results.


Assuntos
Legionella pneumophila , Reação em Cadeia da Polimerase em Tempo Real , Legionella pneumophila/isolamento & purificação , Legionella pneumophila/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Filtração/métodos , Filtração/instrumentação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/análise , Microbiologia da Água , Microbiologia do Ar
10.
Sci Total Environ ; 927: 172410, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608884

RESUMO

There is little evidence of the long-term consequences of maintaining sanitary hot water at high temperatures on the persistence of Legionella in the plumbing system. The aims of this study were to describe the persistence and genotypic variability of L. pneumophila in a hospital building with two entirely independent hot water distribution systems, and to estimate the thermotolerance of the genotypic variants by studying the quantity of VBNC L. pneumophila. Eighty isolates from 55 water samples obtained between the years 2012-2017 were analyzed. All isolates correspond to L. pneumophila serogroup 6. The isolates were discriminated in four restriction patterns by pulsed-field gel electrophoresis. In one installation, pattern A + Aa predominated, accounting for 75.8 % of samples, while the other installation exhibited pattern B as the most frequent (81.8 % of samples; p < 0.001). The mean temperature of the isolates was: 52.6 °C (pattern A + Aa) and 55.0 °C (pattern B), being significantly different. Nine strains were selected as representative among patterns to study their thermotolerance by flow-cytometry after 24 h of thermic treatment. VBNC bacteria were detected in all samples. After thermic treatment at 50 °C, 52.0 % of bacteria had an intact membrane, and after 55 °C this percentage decreased to 23.1 %. Each pattern exhibited varying levels of thermotolerance. These findings indicate that the same hospital building can be colonized with different predominant types of Legionella if it has independent hot water installations. Maintaining a minimum temperature of 50 °C at distal points of the system would allow the survival of replicative L. pneumophila. However, the presence of Legionella in hospital water networks is underestimated if culture is considered as the standard method for Legionella detection, because VBNC do not grow on culture plates. This phenomenon can carry implications for the Legionella risk management plans in hospitals that adjust their control measures based on the microbiological surveillance of water.


Assuntos
Hospitais , Legionella pneumophila , Microbiologia da Água , Legionella pneumophila/isolamento & purificação , Legionella pneumophila/genética , Legionella pneumophila/fisiologia , Abastecimento de Água , Temperatura Alta
11.
J Occup Environ Hyg ; 21(4): 259-269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38447033

RESUMO

Legionella pneumophila, the leading cause of Legionnaires' disease in the United States, is found in lakes, ponds, and streams but poses a health risk when it grows in building water systems. The growth of L. pneumophila in hot water systems of healthcare facilities poses a significant risk to patients, staff, and visitors. Hospitals and long-term care facilities account for 76% of reported Legionnaires' disease cases with mortality rates of 25%. Controlling L. pneumophila growth in hot water systems serving healthcare and hospitality buildings is currently achieved primarily by adding oxidizing chemical disinfectants. Chemical oxidants generate disinfection byproducts and can accelerate corrosion of premise plumbing materials and equipment. Alternative control methods that do not generate hazardous disinfection byproducts or accelerate corrosion are needed. L. pneumophila is an obligate aerobe that cannot sustain cellular respiration, amplify, or remain culturable when dissolved oxygen (DO) concentrations are too low (< 0.3 mg/L). An alternative method of controlling L. pneumophila growth by reducing DO levels in a hot water model system using a gas transfer membrane contactor was evaluated. A hot water model system was constructed and inoculated with L. pneumophila at DO concentrations above 0.5 mg/L. Once the model system was colonized, DO levels were incrementally reduced. Water samples were collected each week to evaluate the effect of reducing dissolved oxygen levels when all other conditions favored Legionella amplification. At DO concentrations below 0.3 mg/L, L. pneumophila concentrations were reduced by 1-log over 7 days. Under conditions in the hot water model system, at favorable temperatures and with no residual chlorine disinfectant, L. pneumophila concentrations were reduced by 1-log, indicating growth inhibition by reducing DO levels as the sole control measure. In sections of the model system where DO levels were not lowered L. pneumophila continued to grow. Reducing dissolved oxygen levels in hot water systems of healthcare and other large buildings to control L. pneumophila could also lower the risk of supplemental chemical treatment methods currently in use.


Assuntos
Desinfetantes , Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Doença dos Legionários/prevenção & controle , Abastecimento de Água , Engenharia Sanitária , Desinfetantes/farmacologia , Água/farmacologia , Microbiologia da Água , Temperatura Alta
12.
J Clin Microbiol ; 62(4): e0130523, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38511938

RESUMO

The unprecedented precision and resolution of whole genome sequencing (WGS) can provide definitive identification of infectious agents for epidemiological outbreak tracking. WGS approaches, however, are frequently impeded by low pathogen DNA recovery from available primary specimens or unculturable samples. A cost-effective hybrid capture assay for Legionella pneumophila WGS analysis directly on primary specimens was developed. DNA from a diverse range of sputum and autopsy specimens PCR-positive for L. pneumophila serogroup 1 (LPSG1) was enriched with this method, and WGS was performed. All tested specimens were determined to be enriched for Legionella reads (up to 209,000-fold), significantly improving the discriminatory power to compare relatedness when no clinical isolate was available. We found the WGS data from some enriched specimens to differ by less than five single-nucleotide polymorphisms (SNPs) when compared to the WGS data of a matched culture isolate. This testing and analysis retrospectively provided previously unconfirmed links to environmental sources for clinical specimens of sputum and autopsy lung tissue. The latter provided the additional information needed to identify the source of these culture-negative cases associated with the South Bronx 2015 Legionnaires' disease (LD) investigation in New York City. This new method provides a proof of concept for future direct clinical specimen hybrid capture enrichment combined with WGS and bioinformatic analysis during outbreak investigations.IMPORTANCELegionnaires' disease (LD) is a severe and potentially fatal type of pneumonia primarily caused by inhalation of Legionella-contaminated aerosols from man-made water or cooling systems. LD remains extremely underdiagnosed as it is an uncommon form of pneumonia and relies on clinicians including it in the differential and requesting specialized testing. Additionally, it is challenging to obtain clinical lower respiratory specimens from cases with LD, and when available, culture requires specialized media and growth conditions, which are not available in all microbiology laboratories. In the current study, a method for Legionella pneumophila using hybrid capture by RNA baiting was developed, which allowed us to generate sufficient genome resolution from L. pneumophila serogroup 1 PCR-positive clinical specimens. This new approach offers an additional tool for surveillance of future LD outbreaks where isolation of Legionella is not possible and may help solve previously unanswered questions from past LD investigations.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Pneumonia , Humanos , Doença dos Legionários/diagnóstico , Estudos Retrospectivos , Legionella pneumophila/genética , Sequenciamento Completo do Genoma , Surtos de Doenças , DNA
13.
J Clin Microbiol ; 62(4): e0166523, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501659

RESUMO

Many Legionella pneumonia patients do not produce sputum, and it is unknown whether purulent sputum is required for the identification of Legionella species. This study aimed to evaluate the identification rate of Legionella species based on sputum quality and the factors predictive of Legionella infection. This study included Legionella pneumonia patients at Kurashiki Central Hospital from November 2000 to December 2022. Sputum quality, based on gram staining, was classified as the following: Geckler 1/2, 3/6 and 4/5. Geckler 4/5 was defined as purulent sputum. The sputa of 104 of 124 Legionella pneumonia patients were cultured. Fifty-four patients (51.9%) were identified with Legionella species, most of which were Legionella pneumophila serogroup 1 (81.5%). The identification rates of Legionella species according to sputum quality were 57.1% (16/28) in Geckler 1/2 sputum, 50.0% (34/68) in Geckler 3/6 sputum, and 50.0% (4/8) in Geckler 4/5 sputum, which were not significantly different (P = 0.86). On multivariate analysis, pre-culture treatment with anti-Legionella antimicrobials (odds ratio [OR] 0.26, 95% confidence interval [CI] 0.06-0.91), Pneumonia Severity Index class ≥IV (OR 2.57 [95% CI 1.02-6.71]), and intensive care unit admission (OR 3.08, 95% CI 1.06-10.09) correlated with the ability to identify Legionella species, but sputum quality did not (OR 0.88, 95% CI 0.17-4.41). The identification rate of Legionella species in non-purulent sputum was similar to that in purulent sputum. For the diagnosis of Legionella pneumonia, sputum should be collected before administering anti-Legionella antibiotics and cultured regardless of sputum quality.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Pneumonia , Humanos , Escarro , Doença dos Legionários/diagnóstico
14.
Ann Agric Environ Med ; 31(1): 24-28, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38549473

RESUMO

INTRODUCTION: Legionella pneumophila is the primary etiological agent of Legionnaires' disease. These are opportunistic pathogens causing lung infections by inhalation of contaminated aerosols. Controlling the presence of these bacteria in domestic distribution water systems (mainly hot water systems) is important for reducing the threat they pose to human health. Legionella pathogens are detected and quantified during routine testing of water samples according to procedures included in PN-EN ISO 11731:2017. However, these procedures are labour-intensive, and the results are obtained after a relatively long time. Implementing the Legiolert™/Quanti-Tray® test as an alternative method may constitute a good solution: it simplifies the testing procedure and significantly reduces the time necessary to obtain the final result. OBJECTIVE: The aim of the study was to compare the relative recovery of Legionella from water samples tested according to PN-EN ISO 11731:2017, and the alternative method of the most probable number (MPN) with the Legiolert™/Quanti-Tray® (IDEXX) test, and to assess the suitability of the alternative method for routine testing. MATERIAL AND METHODS: Parallel testing was conducted of 38 hot water samples to detect and determine Legionella acc. to PN-EN ISO 11731:2017 and the Legiolert™/Quanti-Tray® test. Statistical analysis of the results was performed according to PN-EN ISO 17994:2014 and the McNemar's test. RESULTS: The Legiolert™ test was confirmed to be comparable in performance to the reference standardized method in both qualitative and quantitative detection of L. pneumophila in hot water samples. CONCLUSIONS: The study confirmed that the Legiolert™ test is specific and easy to use, and may constitute an alternative to standardized procedures used in the quantification of L. pneumophila in water.


Assuntos
Água Potável , Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Microbiologia da Água , Aerossóis e Gotículas Respiratórios , Doença dos Legionários/diagnóstico , Doença dos Legionários/microbiologia
15.
Sci Total Environ ; 927: 172085, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554967

RESUMO

Airborne biological aerosols (also called bioaerosols) are found in various environmental and occupational settings. Among these, pathogenic bioaerosols can cause diseases such as legionellosis, influenza, measles, and tuberculosis. To prevent or minimize people's exposure to these pathogenic bioaerosols in the field, a rapid detection method is required. In this study, a size-selective bioaerosol (SSB) sampler was combined with the immunochromatographic assay (ICA). The SSB sampler can collect bioaerosols on the sampling swab and the lateral flow test kit used in ICA can rapidly detect the pathogens in bioaerosols collected on the swab. Before testing the combined method, the lower limit of detection (LOD) of the lateral flow test kit was determined. Legionella pneumophila (L. pneumophila) was used as a target pathogen. The results show that at least 1.3 × 103L. pneumophila cells are required to be detected by the lateral flow test kit. To test the developed method, L. pneumophila suspension was aerosolized in the sampling chamber and collected using two SSB samplers with different sampling times (10 and 20 min). The developed method could detect aerosolized L. pneumophila and also estimate the concentrations from the lower LOD, sampling time, and formation of a positive line on a test strip. When positive results were obtained from sampling for 10 min and 20 min, concentrations of respirable L. pneumophila were estimated ≥5.2 × 104 CFUresp/m3 and ≥2.6 × 104 CFUresp/m3, respectively. The conventional sampler Andersen impactor with colony counting was also used for comparison. In all cases, the estimated concentrations obtained by the developed method were higher than those obtained by the conventional method. These findings confirm that the developed method can overcome the limitations of conventional methods and eventually benefit environmental and occupational health by providing a better method for risk assessment.


Assuntos
Aerossóis , Microbiologia do Ar , Monitoramento Ambiental , Legionella pneumophila , Legionella pneumophila/isolamento & purificação , Monitoramento Ambiental/métodos , Aerossóis/análise , Cromatografia de Afinidade/métodos , Limite de Detecção
16.
Virulence ; 15(1): 2327096, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38466143

RESUMO

Legionella pneumophila (L. pneumophila) is a prevalent pathogenic bacterium responsible for significant global health concerns. Nonetheless, the precise pathogenic mechanisms of L. pneumophila have still remained elusive. Autophagy, a direct cellular response to L. pneumophila infection and other pathogens, involves the recognition and degradation of these invaders in lysosomes. Histone deacetylase 6 (HDAC6), a distinctive member of the histone deacetylase family, plays a multifaceted role in autophagy regulation. This study aimed to investigate the role of HDAC6 in macrophage autophagy via the autophagolysosomal pathway, leading to alleviate L. pneumophila-induced pneumonia. The results revealed a substantial upregulation of HDAC6 expression level in murine lung tissues infected by L. pneumophila. Notably, mice lacking HDAC6 exhibited a protective response against L. pneumophila-induced pulmonary tissue inflammation, which was characterized by the reduced bacterial load and diminished release of pro-inflammatory cytokines. Transcriptomic analysis has shed light on the regulatory role of HDAC6 in L. pneumophila infection in mice, particularly through the autophagy pathway of macrophages. Validation using L. pneumophila-induced macrophages from mice with HDAC6 gene knockout demonstrated a decrease in cellular bacterial load, activation of the autophagolysosomal pathway, and enhancement of cellular autophagic flux. In summary, the findings indicated that HDAC6 knockout could lead to the upregulation of p-ULK1 expression level, promoting the autophagy-lysosomal pathway, increasing autophagic flux, and ultimately strengthening the bactericidal capacity of macrophages. This contributes to the alleviation of L. pneumophila-induced pneumonia.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Pneumonia , Animais , Camundongos , Autofagia , Desacetilase 6 de Histona/genética , Legionella pneumophila/genética , Doença dos Legionários/genética , Macrófagos
17.
Medicina (Kaunas) ; 60(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38399516

RESUMO

Background and Objectives: Legionnaires' disease (LD) is an acute respiratory disease with increasing annual numbers of reported domestic and global cases. This study aimed to establish foundational data for the prevention and control of LD by investigating the occurrence and infection routes of reported and suspected cases of LD in Gyeonggi Province, Korea, from January 2016 to December 2022, and by and analyzing the risk factors for death. Materials and Methods: A sex-and-age standardization was performed on LD patients and suspected cases reported in Gyeonggi Province. The monthly average number of confirmed cases was visualized using graphs, and a survival analysis was performed using Kaplan-Meier survival curves. The mortality risk ratio was estimated using the Cox proportional hazards model. Results: The incidence of LD in Gyeonggi Province mirrored the national trend, peaking in July with the highest number of confirmed and suspected cases. While there was no significant difference in survival rates by age, the survival rate was higher for suspected cases when analyzed separately. Comparing the death ratio by infection route, nosocomial infections showed the highest death ratio, and intensive care unit (ICU) admission and the presence of coinfections were significantly correlated with mortality. Factors such as nosocomial infection, admission within 1 to 3 days following diagnosis, and the development of complications were factors contributing to a higher risk of death. Conclusions: The general characteristics of patients with LD were similar to those suggested by previous studies. The proportion of community-acquired infections was lower than in previous studies, but the length of hospital stay was similar for survivors and the deceased, and the mortality rate within 30 days after diagnosis was higher for nosocomial infections. In conclusion, nosocomial infection, a period of up to 3 days from admission to diagnosis, and complications were significantly related to the mortality rate of LD.


Assuntos
Infecção Hospitalar , Legionella pneumophila , Doença dos Legionários , Humanos , Doença dos Legionários/epidemiologia , Doença dos Legionários/diagnóstico , Doença dos Legionários/prevenção & controle , Infecção Hospitalar/diagnóstico , Estudos Epidemiológicos , Fatores de Risco , República da Coreia/epidemiologia
18.
PLoS Pathog ; 20(2): e1011996, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38386622

RESUMO

Vacuolar pathogens reside in membrane-bound compartments within host cells. Maintaining the integrity of this compartment is paramount to bacterial survival and replication as it protects against certain host surveillance mechanisms that function to eradicate invading pathogens. Preserving this compartment during bacterial replication requires expansion of the vacuole membrane to accommodate the increasing number of bacteria, and yet, how this is accomplished remains largely unknown. Here, we show that the vacuolar pathogen Legionella pneumophila exploits multiple sources of host cell fatty acids, including inducing host cell fatty acid scavenging pathways, in order to promote expansion of the replication vacuole and bacteria growth. Conversely, when exogenous lipids are limited, the decrease in host lipid availability restricts expansion of the replication vacuole membrane, resulting in a higher density of bacteria within the vacuole. Modifying the architecture of the vacuole prioritizes bacterial growth by allowing the greatest number of bacteria to remain protected by the vacuole membrane despite limited resources for its expansion. However, this trade-off is not without risk, as it can lead to vacuole destabilization, which is detrimental to the pathogen. However, when host lipid resources become extremely scarce, for example by inhibiting host lipid scavenging, de novo biosynthetic pathways, and/or diverting host fatty acids to storage compartments, bacterial replication becomes severely impaired, indicating that host cell fatty acid availability also directly regulates L. pneumophila growth. Collectively, these data demonstrate dual roles for host cell fatty acids in replication vacuole expansion and bacterial proliferation, revealing the central functions for these molecules and their metabolic pathways in L. pneumophila pathogenesis.


Assuntos
Legionella pneumophila , Legionella pneumophila/metabolismo , Vacúolos/metabolismo , Macrófagos/microbiologia , Ácidos Graxos/metabolismo , Lipídeos
19.
mBio ; 15(3): e0322123, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38335095

RESUMO

The survival of Legionella spp. as intracellular pathogens relies on the combined action of protein effectors delivered inside their eukaryotic hosts by the Dot/Icm (defective in organelle trafficking/intracellular multiplication) type IVb secretion system. The specific repertoire of effector arsenals varies dramatically across over 60 known species of this genera with Legionella pneumophila responsible for most cases of Legionnaires' disease in humans encoding over 360 Dot/Icm effectors. However, a small subset of "core" effectors appears to be conserved across all Legionella species raising an intriguing question of their role in these bacteria's pathogenic strategy, which for most of these effectors remains unknown. L. pneumophila Lpg0103 effector, also known as VipF, represents one of the core effector families that features a tandem of Gcn5-related N-acetyltransferase (GNAT) domains. Here, we present the crystal structure of the Lha0223, the VipF representative from Legionella hackeliae in complex with acetyl-coenzyme A determined to 1.75 Å resolution. Our structural analysis suggested that this effector family shares a common fold with the two GNAT domains forming a deep groove occupied by residues conserved across VipF homologs. Further analysis suggested that only the C-terminal GNAT domain of VipF effectors retains the active site composition compatible with catalysis, whereas the N-terminal GNAT domain binds the ligand in a non-catalytical mode. We confirmed this by in vitro enzymatic assays which revealed VipF activity not only against generic small molecule substrates, such as chloramphenicol, but also against poly-L-lysine and histone-derived peptides. We identified the human eukaryotic translation initiation factor 3 (eIF3) complex co-precipitating with Lpg0103 and demonstrated the direct interaction between the several representatives of the VipF family, including Lpg0103 and Lha0223 with the K subunit of eIF3. According to our data, these interactions involve primarily the C-terminal tail of eIF3-K containing two lysine residues that are acetylated by VipF. VipF catalytic activity results in the suppression of eukaryotic protein translation in vitro, revealing the potential function of VipF "core" effectors in Legionella's pathogenic strategy.IMPORTANCEBy translocating effectors inside the eukaryotic host cell, bacteria can modulate host cellular processes in their favor. Legionella species, which includes the pneumonia-causing Legionella pneumophila, encode a widely diverse set of effectors with only a small subset that is conserved across this genus. Here, we demonstrate that one of these conserved effector families, represented by L. pneumophila VipF (Lpg0103), is a tandem Gcn5-related N-acetyltransferase interacting with the K subunit of human eukaryotic initiation factor 3 complex. VipF catalyzes the acetylation of lysine residues on the C-terminal tail of the K subunit, resulting in the suppression of eukaryotic translation initiation factor 3-mediated protein translation in vitro. These new data provide the first insight into the molecular function of this pathogenic factor family common across Legionellae.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Acetiltransferases/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Lisina/metabolismo , Fator de Iniciação 3 em Procariotos/metabolismo , Legionella/genética , Legionella pneumophila/genética , Biossíntese de Proteínas , Proteínas de Bactérias/metabolismo
20.
Biofouling ; 40(1): 54-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38353250

RESUMO

Legionella pneumophila is a Gram-negative bacterial pathogen that colonizes natural and artificial water systems and has the ability to form a biofilm. The biofilm protects L. pneumophila from various environmental factors and makes it more resistant to chlorine-based disinfectants. This study investigated the anti-bacterial properties of tea tree (Melaleuca alternifolia (Maiden and Betche) Cheel) oil and lemon eucalyptus tree (Eucalyptus citriodora Hook) essential oils (EOs) and their synergistic, additive inhibitory and anti-adhesive effects against L. pneumophila biofilm formation on polystyrene. The minimum effective concentration (MEC) for tea tree is 12.8 mg ml-1 and for lemon eucalyptus tree EO 6.4 mg ml-1. In the checkerboard assay, different combinations of these two EO show synergistic and additive anti-microbial activity. The minimum anti-adhesive concentration (MAC) for tea tree is 12.8 mg ml-1 and for lemon eucalyptus tree EO 6.4 mg ml-1. A combination of 3.2 mg ml-1 tea tree EO and 0.8 mg ml-1 lemon eucalyptus tree EO showed the strongest anti-adhesive effect against L. pneumophila on polystyrene. The tested oils and their combination showed intriguing potential to inhibit L. pneumophila biofilm formation.


Assuntos
Citrus , Eucalyptus , Legionella pneumophila , Melaleuca , Óleos Voláteis , Óleos Voláteis/farmacologia , Árvores , Poliestirenos , Biofilmes , Chá , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA