Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(6)2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37372308

RESUMO

In recent years, it has become widely accepted that interspecific gene flow is common across the Tree of Life. Questions remain about how species boundaries can be maintained in the face of high levels of gene flow and how phylogeneticists should account for reticulation in their analyses. The true lemurs of Madagascar (genus Eulemur, 12 species) provide a unique opportunity to explore these questions, as they form a recent radiation with at least five active hybrid zones. Here, we present new analyses of a mitochondrial dataset with hundreds of individuals in the genus Eulemur, as well as a nuclear dataset containing hundreds of genetic loci for a small number of individuals. Traditional coalescent-based phylogenetic analyses of both datasets reveal that not all recognized species are monophyletic. Using network-based approaches, we also find that a species tree containing between one and three ancient reticulations is supported by strong evidence. Together, these results suggest that hybridization has been a prominent feature of the genus Eulemur in both the past and present. We also recommend that greater taxonomic attention should be paid to this group so that geographic boundaries and conservation priorities can be better established.


Assuntos
Lemuridae , Humanos , Animais , Lemuridae/genética , Filogenia , Fluxo Gênico , Madagáscar , DNA Mitocondrial/genética
2.
Genes (Basel) ; 14(3)2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36981017

RESUMO

Dispersal is a fundamental aspect of primates' lives and influences both population and community structuring, as well as species evolution. Primates disperse within an environmental context, where both local and intervening environmental factors affect all phases of dispersal. To date, research has primarily focused on how the intervening landscape influences primate dispersal, with few assessing the effects of local habitat characteristics. Here, we use a landscape genetics approach to examine between- and within-site environmental drivers of short-range black-and-white ruffed lemur (Varecia variegata) dispersal in the Ranomafana region of southeastern Madagascar. We identified the most influential drivers of short-range ruffed lemur dispersal as being between-site terrain ruggedness and canopy height, more so than any within-site habitat characteristic evaluated. Our results suggest that ruffed lemurs disperse through the least rugged terrain that enables them to remain within their preferred tall-canopied forest habitat. Furthermore, we noted a scale-dependent environmental effect when comparing our results to earlier landscape characteristics identified as driving long-range ruffed lemur dispersal. We found that forest structure drives short-range dispersal events, whereas forest presence facilitates long-range dispersal and multigenerational gene flow. Together, our findings highlight the importance of retaining high-quality forests and forest continuity to facilitate dispersal and maintain functional connectivity in ruffed lemurs.


Assuntos
Lemur , Lemuridae , Animais , Lemur/genética , Lemuridae/genética , Florestas , Ecossistema
3.
Arch Virol ; 168(1): 13, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576610

RESUMO

Papillomaviruses (PVs) are host-species-specific and tissue-specific viruses that infect a diverse array of vertebrate hosts, including humans and non-human primates, with varying pathogenic outcomes. Although primate PVs have been studied extensively, no complete genome sequences of PVs from lemurs have been determined to date. Saliva samples from three critically endangered, captive black-and-white ruffed lemurs (Varecia variegata variegata) at the Duke Lemur Center (USA) were analyzed, using high-throughput sequencing, for the presence of oral papillomaviruses. We identified three PVs from two individuals, one of which had a coinfection with two different PVs. Two of the three PVs share 99.6% nucleotide sequence identity, and we have named these isolates "Varecia variegata papillomavirus 1" (VavPV1). The third PV shares ~63% nucleotide sequence identity with VavPV1, and thus, we have named it "Varecia variegata papillomavirus 2" (VavPV2). Based on their E1 + E2 + L1 protein sequence phylogeny, the VavPVs form a distinct clade. This clade likely represents a novel genus, with VavPV1 and VavPV2 belonging to two distinct species. Our findings represent the first complete genome sequences of PVs found in lemuriform primates, with their presence suggesting the potential existence of diverse PVs across the over 100 species of lemurs.


Assuntos
Lemur , Lemuridae , Animais , Humanos , Lemuridae/genética , Primatas
4.
Mol Phylogenet Evol ; 174: 107551, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35690381

RESUMO

Among the primate malaria parasites, those found in lemurs have been neglected. Here, six Plasmodium lineages were detected in 169 lemurs. Nearly complete mitochondrial genomes (mtDNA, ≈6Kb) and apicoplast loci (≈6Kb) were obtained from these parasites and other Haemosporida species. Plasmodium spp. in lemurs are a diverse clade that shares a common ancestor with other primate parasites from continental Africa. Time-trees for the mtDNA were estimated under different scenarios, and the origin of the lemur clade coincides with the proposed time of their host species' most recent common ancestor (Lemuridae-Indriidae). A time tree with fewer taxa was estimated with mtDNA + Apicoplast loci. Those time estimates overlapped but were younger and had narrower credibility intervals than those from mtDNA alone. Importantly, the mtDNA + Apicoplast estimates that the clade including the most lethal malaria parasite in humans, Plasmodium falciparum, may have originated with Homininae (African apes). Finally, the phylogenetic congruence of the lemurs and their parasites was explored. A statistically significant scenario identified four cospeciation, two duplications, four transfer (host-switches), and zero loss events. Thus, the parasite species sampled in lemurs seem to be radiating with their hosts.


Assuntos
Lemur , Lemuridae , Malária , Parasitos , Plasmodium , Animais , DNA Mitocondrial/genética , Lemur/genética , Lemuridae/genética , Malária/genética , Malária/parasitologia , Parasitos/genética , Filogenia , Plasmodium/genética , Primatas/genética , Primatas/parasitologia
6.
Proc Biol Sci ; 285(1886)2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209228

RESUMO

In humans, pronounced age differences between parents have deleterious fitness consequences. In particular, the number of children is lower when mothers are much older than fathers. However, previous analyses failed to disentangle the influence of differential parental age per se from a direct age effect of each parent. In this study, we analyse the fitness consequences of both parental age and parental age differences on litter size and offspring survival in two closely related species of lemurs living in captivity. As captive lemurs do not choose their reproductive partner, we were able to measure litter size and offspring survival across breeding pairs showing a wide range of parental age differences. However, we demonstrated that the effect of the parental age difference on litter size was fully accounted for by female reproductive senescence because females mating with much younger males were old females. On the other hand, both parental age difference and female reproductive senescence influenced offspring survival. Our results emphasize the importance of teasing apart the effect of parental reproductive senescence when investigating the health and fitness consequences of parental age differences and also provide new insights for conservation programmes of endangered species.


Assuntos
Envelhecimento , Aptidão Genética , Lemuridae/fisiologia , Reprodução , Fatores Etários , Animais , Feminino , Lemuridae/genética , Masculino
7.
BMC Genomics ; 19(1): 445, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884119

RESUMO

BACKGROUND: The greater bamboo lemur (Prolemur simus) is a member of the Family Lemuridae that is unique in their dependency on bamboo as a primary food source. This Critically Endangered species lives in small forest patches in eastern Madagascar, occupying a fraction of its historical range. Here we sequence the genome of the greater bamboo lemur for the first time, and provide genome resources for future studies of this species that can be applied across its distribution. RESULTS: Following whole genome sequencing of five individuals we identified over 152,000 polymorphic single nucleotide variants (SNVs), and evaluated geographic structuring across nearly 19 k SNVs. We characterized a stronger signal associated with a north-south divide than across elevations for our limited samples. We also evaluated the demographic history of this species, and infer a dramatic population crash. This species had the largest effective population size (estimated between ~ 900,000 to one million individuals) between approximately 60,000-90,000 years before present (ybp), during a time in which global climate change affected terrestrial mammals worldwide. We also note the single sample from the northern portion of the extant range had the largest effective population size around 35,000 ybp. CONCLUSIONS: From our whole genome sequencing we recovered an average genomic heterozygosity of 0.0037%, comparable to other lemurs. Our demographic history reconstructions recovered a probable climate-related decline (60-90,000 ybp), followed by a second population decrease following human colonization, which has reduced the species to a census size of approximately 1000 individuals. The historical distribution was likely a vast portion of Madagascar, minimally estimated at 44,259 km2, while the contemporary distribution is only ~ 1700 km2. The decline in effective population size of 89-99.9% corresponded to a vast range retraction. Conservation management of this species is crucial to retain genetic diversity across the remaining isolated populations.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Genoma de Planta/genética , Lemuridae/genética , Animais , Genoma Mitocondrial/genética , Genômica , Lemuridae/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Dinâmica Populacional , Análise de Sequência
8.
Primates ; 57(4): 541-7, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27271303

RESUMO

Analyses of genetic polymorphisms can aid our understanding of intra- and interspecific variation in primate sociality, ecology, and behavior. Studies of primate opsin genes are prime examples of this, as single nucleotide variants (SNVs) in the X-linked opsin gene underlie variation in color vision. For primate species with polymorphic trichromacy, genotyping opsin SNVs can generally indicate whether individual primates are red-green color-blind (denoted homozygous M or homozygous L) or have full trichromatic color vision (heterozygous ML). Given the potential influence of color vision on behavior and fitness, characterizing the color vision status of study subjects is becoming commonplace for many primate field projects. Such studies traditionally involve a multi-step sequencing-based method that can be costly and time-consuming. Here we present a new reliable, rapid, and relatively inexpensive method for characterizing color vision in primate populations using high resolution melt analysis (HRMA). Using lemurs as a case study, we characterized variation at exons 3 and/or 5 of the X-linked opsin gene for 87 individuals representing nine species. We scored opsin genotypes and color vision status using both traditional sequencing-based methods as well as our novel melting-curve based HRMA protocol. For each species, the melting curves of varying genotypes (homozygous M, homozygous L, heterozygous ML) differed in melting temperature and/or shape. Melting curves for each sample were consistent across replicates, and genotype-specific melting curves were consistent across DNA sources (blood vs. feces). We show that opsin genotypes can be quickly and reliably scored using HRMA once lab-specific reference curves have been developed based on known genotypes. Although the protocol presented here focuses on genotyping lemur opsin loci, we also consider the larger potential for applying this approach to various types of genetic studies of primate populations.


Assuntos
Visão de Cores , Técnicas de Genotipagem/métodos , Reação em Cadeia da Polimerase/métodos , Strepsirhini/fisiologia , Animais , Lemuridae/genética , Lemuridae/fisiologia , Reação em Cadeia da Polimerase/instrumentação , Strepsirhini/genética
9.
BMC Evol Biol ; 13: 233, 2013 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-24159931

RESUMO

BACKGROUND: Species are the fundamental units in evolutionary biology. However, defining them as evolutionary independent lineages requires integration of several independent sources of information in order to develop robust hypotheses for taxonomic classification. Here, we exemplarily propose an integrative framework for species delimitation in the "brown lemur complex" (BLC) of Madagascar, which consists of seven allopatric populations of the genus Eulemur (Primates: Lemuridae), which were sampled extensively across northern, eastern and western Madagascar to collect fecal samples for DNA extraction as well as recordings of vocalizations. Our data base was extended by including museum specimens with reliable identification and locality information for skull shape and pelage color analysis. RESULTS: Between-group analyses of principal components revealed significant heterogeneity in skull shape, pelage color variation and loud calls across all seven populations. Furthermore, post-hoc statistical tests between pairs of populations revealed considerable discordance among different data sets for different dyads. Despite a high degree of incomplete lineage sorting among nuclear loci, significant exclusive ancestry was found for all populations, except for E. cinereiceps, based on one mitochondrial and three nuclear genetic loci. CONCLUSIONS: Using several independent lines of evidence, our results confirm the species status of the members of the BLC under the general lineage concept of species. More generally, the present analyses demonstrate the importance and value of integrating different kinds of data in delimiting recently evolved radiations.


Assuntos
Lemur/classificação , Lemur/genética , Animais , Evolução Biológica , DNA Mitocondrial/genética , Feminino , Lemur/anatomia & histologia , Lemuridae/genética , Madagáscar , Masculino , Filogenia , Análise de Componente Principal , Vocalização Animal
10.
J Evol Biol ; 26(8): 1677-90, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23865455

RESUMO

Studies of hybrid zones can inform our understanding of reproductive isolation and speciation. Two species of brown lemur (Eulemur rufifrons and E. cinereiceps) form an apparently stable hybrid zone in the Andringitra region of southeastern Madagascar. The aim of this study was to identify factors that contribute to this stability. We sampled animals at 11 sites along a 90-km transect through the hybrid zone and examined variation in 26 microsatellites, the D-loop region of mitochondrial DNA, six pelage and nine morphological traits; we also included samples collected in more distant allopatric sites. Clines in these traits were noncoincident, and there was no increase in either inbreeding coefficients or linkage disequilibrium at the centre of the zone. These results could suggest that the hybrid zone is maintained by weak selection against hybrids, conforming to either the tension zone or geographical selection-gradient model. However, a closer examination of clines in pelage and microsatellites indicates that these clines are not sigmoid or stepped in shape but instead plateau at their centre. Sites within the hybrid zone also occur in a distinct habitat, characterized by greater seasonality in precipitation and lower seasonality in temperature. Together, these findings suggest that the hybrid zone may follow the bounded superiority model, with exogenous selection favouring hybrids within the transitional zone. These findings are noteworthy, as examples supporting the bounded superiority model are rare and may indicate a process of ecologically driven speciation without geographical isolation.


Assuntos
Clima , Hibridização Genética , Lemuridae/genética , Animais , Feminino , Endogamia , Lemuridae/anatomia & histologia , Desequilíbrio de Ligação , Madagáscar , Masculino , Modelos Genéticos , Seleção Genética
11.
J Evol Biol ; 26(8): 1790-801, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23865477

RESUMO

Understanding ecological niche evolution over evolutionary timescales is crucial to elucidating the biogeographic history of organisms. Here, we used, for the first time, climate-based ecological niche models (ENMs) to test hypotheses about ecological divergence and speciation processes between sister species pairs of lemurs (genus Eulemur) in Madagascar. We produced ENMs for eight species, all of which had significant validation support. Among the four sister species pairs, we found nonequivalent niches between sisters, varying degrees of niche overlap in ecological and geographic space, and support for multiple divergence processes. Specifically, three sister-pair comparisons supported the null model that niches are no more divergent than the available background region. These findings are consistent with an allopatric speciation model, and for two sister pairs (E. collaris-E. cinereiceps and E. rufus-E. rufifrons), a riverine barrier has been previously proposed for driving allopatric speciation. However, for the fourth sister pair E. flavifrons-E. macaco, we found support for significant niche divergence, and consistent with their parapatric distribution on an ecotone and the lack of obvious geographic barriers, these findings most strongly support a parapatric model of speciation. These analyses thus suggest that various speciation processes have led to diversification among closely related Eulemur species.


Assuntos
Ecossistema , Especiação Genética , Lemuridae/genética , Animais , Madagáscar
12.
Am J Phys Anthropol ; 151(3): 398-407, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23640739

RESUMO

How many distinct molecular paths lead to the same phenotype? One approach to this question has been to examine the genetic basis of convergent traits, which likely evolved repeatedly under a shared selective pressure. We investigated the convergent phenotype of blue iris pigmentation, which has arisen independently in four primate lineages: humans, blue-eyed black lemurs, Japanese macaques, and spider monkeys. Characterizing the phenotype across these species, we found that the variation within the blue-eyed subsets of each species occupies strongly overlapping regions of CIE L*a*b* color space. Yet whereas Japanese macaques and humans display continuous variation, the phenotypes of blue-eyed black lemurs and their sister species (whose irises are brown) occupy more clustered subspaces. Variation in an enhancer of OCA2 is primarily responsible for the phenotypic difference between humans with blue and brown irises. In the orthologous region, we found no variant that distinguishes the two lemur species or associates with quantitative phenotypic variation in Japanese macaques. Given the high similarity between the blue iris phenotypes in these species and that in humans, this finding implies that evolution has used different molecular paths to reach the same end.


Assuntos
Atelinae/fisiologia , Evolução Molecular , Cor de Olho , Lemuridae/fisiologia , Macaca nemestrina/fisiologia , Proteínas de Membrana Transportadoras/genética , Animais , Atelinae/genética , Feminino , Humanos , Lemuridae/genética , Macaca nemestrina/genética , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Fotografação , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Homologia de Sequência
14.
Mol Phylogenet Evol ; 66(2): 442-52, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22982436

RESUMO

Morris Goodman was a revolutionary. Together with a mere handful of like-minded scientists, Morris established himself as a leader in the molecular phylogenetic revolution of the 1960s. The effects of this revolution are most evident in this journal, which he founded in 1992. Happily for lemur biologists, one of Morris Goodman's primary interests was in reconstructing the phylogeny of the primates, including the tooth-combed Lorisifomes of Africa and Asia, and the Lemuriformes of Madagascar (collectively referred to as the suborder Strepsirrhini). This paper traces the development of molecular phylogenetic and evolutionary genetic trends and methods over the 50-year expanse of Morris Goodman's career, particularly as they apply to our understanding of lemuriform phylogeny, biogeography, and biology. Notably, this perspective reveals that the lemuriform genome is sufficiently rich in phylogenetic signal such that the very earliest molecular phylogenetic studies - many of which were conducted by Goodman himself - have been validated by contemporary studies that have exploited advanced computational methods applied to phylogenomic scale data; studies that were beyond imagining in the earliest days of phylogeny reconstruction. Nonetheless, the frontier still beckons. New technologies for gathering and analyzing genomic data will allow investigators to build upon what can now be considered a nearly-known phylogeny of the Lemuriformes in order to ask innovative questions about the evolutionary mechanisms that generate and maintain the extraordinary breadth and depth of biological diversity within this remarkable clade of primates.


Assuntos
Evolução Molecular , Genômica/métodos , Lemuridae/genética , Filogenia , Animais , Genômica/história , História do Século XX , História do Século XXI , Madagáscar , Análise de Sequência de DNA/métodos
15.
Gene ; 464(1-2): 44-9, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20547216

RESUMO

The complete mitochondrial DNA (mtDNA) genome of Hubbard's or Zombitse sportive lemur (Lepilemur hubbardorum) was generated by polymerase chain reaction (PCR) amplification, primer-walking sequencing and fragment cloning. Comparative analyses of Hubbard's sportive lemur were conducted with available complete mitochondrial genome sequences from eight other lemur species. The mitochondrial genome of Hubbard's sportive lemur is 16,854 base pairs (bp) and contains 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and one control region. Three rare start codons were found, in which GTG is the start codon for the ATPase 6 subunit gene (ATP), ATC for the NADH dehydrogenase (ND) 2 subunit gene, and ATT for the ND5 subunit gene. In the control region, sequence analysis found one repetitive unit between conserved sequence blocks (CSB)-1 and CSB-2 for L. hubbardorum. Comparative analysis of eight other lemur species showed different repetitive units between and outside of these two blocks. According to the phylogenetic analysis of the 12 heavy-strand encoded protein-coding genes, all nine lemur species representative of four lemuriformes families were monophyletic. This template and the newly designed primers described in this study will allow scientists to generate comparative sequences for all sportive lemurs to validate phylogenetic discrepancies in the genus Lepilemur and to evaluate evolutionary and biogeographic models.


Assuntos
Genoma Mitocondrial , Lemuridae/genética , Animais , Sequência de Bases , DNA Mitocondrial , Masculino , Dados de Sequência Molecular , Filogenia
16.
Primates ; 51(1): 53-61, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19821011

RESUMO

The current range of the red ruffed lemur (Varecia rubra) population is primarily restricted to forests of the Masoala Peninsula on the northeastern coast of Madagascar. Whereas much of the peninsula is protected as Masoala National Park, parts of the forest are at risk from anthropogenic pressures and habitat fragmentation. We sampled 32 individual red ruffed lemur from two sites: Ambatoledama (DAMA), a narrow forest corridor across an area of degraded habitat connecting larger blocks of forest in the northwestern reaches of the park, and Masiaposa (MAS) forest, a largely pristine forest on the lower western side of the peninsula. Population genetic parameters were estimated for these two populations employing 15 microsatellite loci derived from the V. variegata genome. We found that by exceeding the expected heterozygosity at mutation-drift equilibrium, the DAMA population has undergone a recent population bottleneck. Population structure analysis detected individuals harboring genotypic admixture of the DAMA genetic cluster in the MAS population, suggesting a possibility of unilateral gene flow or movement between these populations.


Assuntos
Ecossistema , Variação Genética , Lemuridae/genética , Animais , Demografia , Genótipo , Madagáscar , Árvores
17.
Am J Phys Anthropol ; 139(2): 269-73, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19278018

RESUMO

Almost all mammals have brown or darkly-pigmented eyes (irises), but among primates, there are some prominent blue-eyed exceptions. The blue eyes of some humans and lemurs are a striking example of convergent evolution of a rare phenotype on distant branches of the primate tree. Recent work on humans indicates that blue eye color is associated with, and likely caused by, a single nucleotide polymorphism (rs12913832) in an intron of the gene HERC2, which likely regulates expression of the neighboring pigmentation gene OCA2. This raises the immediate question of whether blue eyes in lemurs might have a similar genetic basis. We addressed this by sequencing the homologous genetic region in the blue-eyed black lemur (Eulemur macaco flavifrons; N = 4) and the closely-related black lemur (Eulemur macaco macaco; N = 4), which has brown eyes. We then compared a 166-bp segment corresponding to and flanking the human eye-color-associated region in these lemurs, as well as other primates (human, chimpanzee, orangutan, macaque, ring-tailed lemur, mouse lemur). Aligned sequences indicated that this region is strongly conserved in both Eulemur macaco subspecies as well as the other primates (except blue-eyed humans). Therefore, it is unlikely that this regulatory segment plays a major role in eye color differences among lemurs as it does in humans. Although convergent phenotypes can sometimes come about via the same or similar genetic changes occurring independently, this does not seem to be the case here, as we have shown that the genetic basis of blue eyes in lemurs differs from that of humans.


Assuntos
Cor de Olho/genética , Lemuridae/genética , Fenótipo , Animais , Sequência de Bases , Primers do DNA/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie , Ubiquitina-Proteína Ligases
18.
Chromosome Res ; 16(8): 1143-58, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19067195

RESUMO

In recent years several new sportive lemur species (genus Lepilemur) have been described. In contrast to other lemur taxa, the genus shows comparatively high chromosomal variability, which, in addition to molecular data, can be used to infer phylogenetic relationships within the genus. By comparing R-banding patterns and fluorescence in-situ hybridization data, we detected chromosomal rearrangements that occurred during speciation within the genus. The analysis of these data with cladistic methods resulted in a dichotomic phylogenetic tree comparable to that obtained from mitochondrial sequence data. However, a phase of reticulation can not be excluded from the evolution of Lepilemur. Although some incongruences were detected, both phylogenies show similar patterns concerning relationships of the basal and terminal splits. We therefore hypothesize that both, chromosome rearrangements and molecular mutations, alone or in combination, contributed to the speciation process in sportive lemurs.


Assuntos
Cromossomos de Mamíferos/genética , DNA Mitocondrial/genética , Evolução Molecular , Especiação Genética , Lemuridae/genética , Filogenia , Animais , Bandeamento Cromossômico , Hibridização in Situ Fluorescente , Madagáscar , Especificidade da Espécie
19.
Primates ; 49(3): 211-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18615265

RESUMO

Sportive lemurs constitute a highly diverse endemic lemur family (24 species) for which many biogeographic boundaries are not yet clarified. Based on recent phylogeographic models, this study aims to determine the importance of two large rivers (the Antainambalana and Rantanabe) in northeastern Madagascar as species barriers for Lepilemur seali. The Antainambalana River was previously assumed to act as the southern border of its distribution. A total of 1,038 bp of the mtDNA of four individuals stemming from two adjacent inter-river systems south of the Antainambalana River was sequenced and compared to sequences of 22 described Lepilemur species. The phylogenetic reconstruction did not find support for either of the two rivers as species barrier for Lepilemur, as all captured individuals clustered closely with and therefore belonged to L. seali. However, a previously published sequence of an individual from a site south of our study sites belongs to a separate species. The southern boundary of L. seali must therefore be one of two large rivers further south of our study sites. The results suggest that L. seali may possess a relatively large altitudinal range that enabled this species to migrate around the headwaters of the Antainambalana and Rantanabe Rivers. Previous phylogeographic models need to be refined in order to incorporate these findings, and more species-specific altitudinal range data are urgently needed in order to fully understand the biogeographic patterns of lemurs on Madagascar.


Assuntos
Lemur , Lemuridae , Rios , Animais , Ecossistema , Geografia , Lemur/genética , Lemuridae/classificação , Lemuridae/genética , Funções Verossimilhança , Madagáscar , Filogenia
20.
Am J Primatol ; 70(4): 372-85, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18027864

RESUMO

Although appearing in the literature as early as 1890, the brown lemur form Eulemur cinereiceps has recently resurfaced as a potentially valid taxon, distinct from neighboring, presumably closely related species such as white-collared lemurs (Eulemur albocollaris). We propose two scenarios for the potential separation of E. cinereiceps and E. albocollaris: (1) coastal and interior populations represent two distinct taxa and (2) the coastal population north of the Manampatrana River (the locality for purported museum specimens of E. cinereiceps) represents a distinct species from E. albocollaris found south of the river and in the interior escarpment forests. We tested these hypotheses using data from ground surveys and genetic sampling. Surveys were conducted in coastal forest fragments both north and south of the Manampatrana River in July-August 2006. Genetic samples were collected at two coastal sites and one interior forest. We used maximum parsimony, maximum likelihood, and neighbor-joining analyses on mitochondrial DNA regions to determine if populations from different sites clustered into diagnosable clades. Results from field surveys confirmed the presence of forms commonly referred to as E. albocollaris at the two southern coastal forests; no consistent phenotypic differences across sites were observed. All genetic analyses yielded identical results: coastal and interior populations do not cluster into separate groups, thus rejecting the first hypothesis. Eulemur species and all other day-active lemurs have apparently been extirpated from coastal forests north of the Manampatrana. Owing to the absence of lemurs from the northern coastal localities, we could not conclusively support or reject the second scenario. However, based on examination of the original plates and museum specimens, as well as the biogeographic patterns typical of this region, we strongly suspect that all populations from this area belong to a single species. We conclude with remarks regarding the apparent priority of E. cinereiceps for this taxon.


Assuntos
Lemuridae/classificação , Lemuridae/genética , Fenótipo , Filogenia , Animais , Sequência de Bases , Análise por Conglomerados , DNA Mitocondrial/genética , Geografia , Funções Verossimilhança , Madagáscar , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA