Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Obstet Gynecol ; 225(1): 89.e1-89.e16, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33412130

RESUMO

BACKGROUND: Intra-amniotic infection or inflammation is common in early preterm birth and associated with substantial neonatal lung morbidity owing to fetal exposure to proinflammatory cytokines and infectious organisms. Amniotic fluid interleukin 8, a proinflammatory cytokine, was previously correlated with the development of neonatal bronchopulmonary dysplasia, but whether amniotic fluid cytokines or placental pathology more accurately predicts neonatal lung pathology and morbidity is unknown. We have used a pregnant nonhuman primate model of group B Streptococcus infection to study the pathogenesis of intra-amniotic infection, bacterial invasion of the amniotic cavity and fetus, and microbial-host interactions. In this nonhuman primate model, we have studied the pathogenesis of group B Streptococcus strains with differing potential for virulence, which has resulted in a spectrum of intra-amniotic infection and fetal lung injury that affords the opportunity to study the inflammatory predictors of fetal lung pathology and injury. OBJECTIVE: This study aimed to determine whether fetal lung injury is best predicted by placental histopathology or the cytokine response in amniotic fluid or maternal plasma. STUDY DESIGN: Chronically catheterized pregnant monkeys (Macaca nemestrina, pigtail macaque) at 116 to 125 days gestation (term at 172 days) received a choriodecidual inoculation of saline (n=5), weakly hemolytic group B Streptococcus strain (n=5, low virulence), or hyperhemolytic group B Streptococcus strain (n=5, high virulence). Adverse pregnancy outcomes were defined as either preterm labor, microbial invasion of the amniotic cavity, or development of the fetal inflammatory response syndrome. Amniotic fluid and maternal and fetal plasma samples were collected after inoculation, and proinflammatory cytokines (tumor necrosis factor alpha, interleukin beta, interleukin 6, interleukin 8) were measured by a multiplex assay. Cesarean delivery was performed at the time of preterm labor or within 1 week of inoculation. Fetal necropsy was performed at the time of delivery. Placental pathology was scored in a blinded fashion by a pediatric pathologist, and fetal lung injury was determined by a semiquantitative score from histopathology evaluating inflammatory infiltrate, necrosis, tissue thickening, or collapse scored by a veterinary pathologist. RESULTS: The principal findings in our study are as follows: (1) adverse pregnancy outcomes occurred more frequently in animals receiving hyperhemolytic group B Streptococcus (80% with preterm labor, 80% with fetal inflammatory response syndrome) than in animals receiving weakly hemolytic group B Streptococcus (40% with preterm labor, 20% with fetal inflammatory response syndrome) and in controls (0% preterm labor, 0% fetal inflammatory response syndrome); (2) despite differences in the rate of adverse pregnancy outcomes and fetal inflammatory response syndrome, fetal lung injury scores were similar between animals receiving the weakly hemolytic group B Streptococcus strains and animals receiving the hyperhemolytic group B Streptococcus strains; (3) fetal lung injury score was significantly correlated with peak amniotic fluid cytokines interleukin 6 and interleukin 8 but not tumor necrosis factor alpha or interleukin 1 beta; and (4) fetal lung scores were poorly correlated with maternal and fetal plasma cytokine levels and placental pathology. CONCLUSION: Amniotic fluid interleukin 6 and interleukin 8 levels were superior predictors of fetal lung injury than placental histopathology or maternal plasma cytokines. This evidence supports a role for amniocentesis in the prediction of neonatal lung morbidity owing to intra-amniotic infection, which cannot be provided by cytokine analysis of maternal plasma or placental histopathology.


Assuntos
Líquido Amniótico/química , Citocinas/sangue , Interleucina-6/análise , Interleucina-8/análise , Lesão Pulmonar/embriologia , Placenta/patologia , Líquido Amniótico/microbiologia , Animais , Modelos Animais de Doenças , Feminino , Inflamação/embriologia , Inflamação/microbiologia , Pulmão/embriologia , Pulmão/microbiologia , Pulmão/patologia , Lesão Pulmonar/diagnóstico , Lesão Pulmonar/microbiologia , Macaca nemestrina , Masculino , Gravidez , Resultado da Gravidez , Infecções Estreptocócicas/embriologia , Streptococcus agalactiae
2.
J Pineal Res ; 69(3): e12687, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32737901

RESUMO

Inflammation is associated with injury to immature lungs, and melatonin administration to preterm newborns with acute respiratory distress improves pulmonary outcomes. We hypothesized that maternally administered melatonin may reduce inflammation, oxidative stress, and structural injury in fetal lung and help fetal lung maturation in a mouse model of intrauterine inflammation (IUI). Mice were randomized to the following groups: control (C), melatonin (M), lipopolysaccharide (LPS; a model of IUI) (L), and LPS with melatonin (ML). Pro-inflammatory cytokines, components of the Hippo pathway, and Yap1/Taz were analyzed in the fetal lung at E18 by real-time RT-qPCR. Confirmatory histochemistry and immunohistochemical analyses (surfactant protein B, vimentin, HIF-1ß, and CXCR2) were performed. The gene expression of IL1ß in the fetal lung was significantly increased in L compared to C, M, and ML. Taz expression was significantly decreased in L compared to C and M. Taz gene expression in L was significantly decreased compared with those in ML. Immunohistochemical analyses showed that the expression of HIF-1ß and CXCR2 was significantly increased in L compared to C, M, and ML. The area of surfactant protein B and vimentin were significantly decreased in L than C, M, or ML in the fetal and neonatal lung. Antenatal maternally administered melatonin appears to prevent fetal lung injury induced by IUI and to help lung maturation. The results from this study results suggest that melatonin could serve as a novel safe preventive and/or therapeutic medicine for preventing fetal lung injury from IUI and for improving lung maturation in prematurity.


Assuntos
Doenças Fetais , Feto/embriologia , Lesão Pulmonar , Pulmão/embriologia , Melatonina/farmacologia , Animais , Feminino , Doenças Fetais/induzido quimicamente , Doenças Fetais/prevenção & controle , Inflamação/induzido quimicamente , Inflamação/embriologia , Inflamação/prevenção & controle , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/embriologia , Lesão Pulmonar/prevenção & controle , Camundongos , Gravidez
3.
PLoS One ; 9(11): e113473, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25419969

RESUMO

BACKGROUND: Sustained inflations (SI) are used with the initiation of ventilation at birth to rapidly recruit functional residual capacity and may decrease lung injury and the need for mechanical ventilation in preterm infants. However, a 20 second SI in surfactant-deficient preterm lambs caused an acute phase injury response without decreasing lung injury from subsequent mechanical ventilation. HYPOTHESIS: A 20 second SI at birth will decrease lung injury from mechanical ventilation in surfactant-treated preterm fetal lambs. METHODS: The head and chest of fetal sheep at 126±1 day GA were exteriorized, with tracheostomy and removal of fetal lung fluid prior to treatment with surfactant (300 mg in 15 ml saline). Fetal lambs were randomized to one of four 15 minute interventions: 1) PEEP 8 cmH2O; 2) 20 sec SI at 40 cmH2O, then PEEP 8 cmH2O; 3) mechanical ventilation with 7 ml/kg tidal volume; or 4) 20 sec SI then mechanical ventilation at 7 ml/kg. Fetal lambs remained on placental support for the intervention and for 30 min after the intervention. RESULTS: SI recruited a mean volume of 6.8±0.8 mL/kg. SI did not alter respiratory physiology during mechanical ventilation. Heat shock protein (HSP) 70, HSP60, and total protein in lung fluid similarly increased in both ventilation groups. Modest pro-inflammatory cytokine and acute phase responses, with or without SI, were similar with ventilation. SI alone did not increase markers of injury. CONCLUSION: In surfactant treated fetal lambs, a 20 sec SI did not alter ventilation physiology or markers of lung injury from mechanical ventilation.


Assuntos
Insuflação/métodos , Lesão Pulmonar/fisiopatologia , Pulmão/efeitos dos fármacos , Respiração Artificial/métodos , Tensoativos/farmacologia , Animais , Animais Recém-Nascidos , Líquido da Lavagem Broncoalveolar/química , Chaperonina 60/metabolismo , Citocinas/genética , Citocinas/metabolismo , Feminino , Capacidade Residual Funcional/efeitos dos fármacos , Capacidade Residual Funcional/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Proteínas de Choque Térmico HSP70/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Lesão Pulmonar/embriologia , Lesão Pulmonar/etiologia , Placenta/fisiologia , Gravidez , Respiração Artificial/efeitos adversos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ovinos , Fatores de Tempo
4.
Am J Physiol Lung Cell Mol Physiol ; 300(2): L232-41, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21131401

RESUMO

Mechanical ventilation is a risk factor for the development of bronchopulmonary dysplasia in premature infants. Fifteen minutes of high tidal volume (V(T)) ventilation induces inflammatory cytokine expression in small airways and lung parenchyma within 3 h. Our objective was to describe the temporal progression of cytokine and maturation responses to lung injury in fetal sheep exposed to a defined 15-min stretch injury. After maternal anesthesia and hysterotomy, 129-day gestation fetal lambs (n = 7-8/group) had the head and chest exteriorized. Each fetus was intubated, and airway fluid was gently removed. While placental support was maintained, the fetus received ventilation with an escalating V(T) to 15 ml/kg without positive end-expiratory pressure (PEEP) for 15 min using heated, humidified 100% nitrogen. The fetus was then returned to the uterus for 1, 6, or 24 h. Control lambs received a PEEP of 2 cmH(2)O for 15 min. Tissue samples from the lung and systemic organs were evaluated. Stretch injury increased the early response gene Egr-1 and increased expression of pro- and anti-inflammatory cytokines within 1 h. The injury induced granulocyte/macrophage colony-stimulating factor mRNA and matured monocytes to alveolar macrophages by 24 h. The mRNA for the surfactant proteins A, B, and C increased in the lungs by 24 h. The airway epithelium demonstrated dynamic changes in heat shock protein 70 (HSP70) over time. Serum cortisol levels did not increase, and induction of systemic inflammation was minimal. We conclude that a brief period of high V(T) ventilation causes a proinflammatory cascade, a maturation of lung monocytic cells, and an induction of surfactant protein mRNA.


Assuntos
Maturidade dos Órgãos Fetais/fisiologia , Lesão Pulmonar/embriologia , Lesão Pulmonar/fisiopatologia , Pulmão/embriologia , Pulmão/fisiopatologia , Actinas/genética , Actinas/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Feto/fisiopatologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Inflamação/etiologia , Inflamação/fisiopatologia , Lesão Pulmonar/genética , Respiração com Pressão Positiva , Gravidez , Surfactantes Pulmonares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Respiração Artificial/efeitos adversos , Carneiro Doméstico , Estresse Mecânico , Volume de Ventilação Pulmonar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA