Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.116
Filtrar
1.
Radiat Res ; 201(5): 460-470, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376474

RESUMO

With the current volatile geopolitical climate, the threat of nuclear assault is high. Exposure to ionizing radiation from either nuclear incidents or radiological accidents often lead to major harmful consequences to human health. Depending on the absorbed dose, the symptoms of the acute radiation syndrome and delayed effects of acute radiation exposure (DEARE) can appear within hours, weeks to months. The lung is a relatively radiosensitive organ with manifestation of radiation pneumonitis as an acute effect, followed by apparent fibrosis in weeks or even months. A recently developed, first-of-its-kind murine model for partial-body irradiation (PBI) injury, which can be used to test potential countermeasures against multi-organ damage such as gastrointestinal (GI) tract and lungs was used for irradiation, with 2.5% bone marrow spared (BM2.5-PBI) from radiation exposure. Long-term damage to lungs from radiation was evaluated using µ-CT scans, pulmonary function testing, histopathological parameters and molecular biomarkers. Pulmonary fibrosis was detected by ground glass opacity observed in µ-CT scans of male and female C57BL/6J mice 6-7 months after BM2.5-PBI. Lung mechanics assessments pertaining to peripheral airways suggested fibrotic lungs with stiffer parenchymal lung tissue and reduced inspiratory capacity in irradiated animals 6-7 months after BM2.5-PBI. Histopathological evaluation of the irradiated lungs revealed presence of focal and diffuse pleural, and parenchymal inflammatory and fibrotic lesions. Fibrosis was confirmed by elevated levels of collagen when compared to lungs of age-matched naïve mice. These findings were validated by findings of elevated levels of pro-fibrotic biomarkers and reduction in anti-inflammatory proteins. In conclusion, a long-term model for radiation-induced pulmonary fibrosis was established, and countermeasures could be screened in this model for survival and protection/mitigation or recovery from radiation-induced pulmonary damage.


Assuntos
Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fibrose Pulmonar , Animais , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , Camundongos , Masculino , Feminino , Pulmão/efeitos da radiação , Pulmão/patologia , Pneumonite por Radiação/patologia , Pneumonite por Radiação/etiologia , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/etiologia
2.
Exp Eye Res ; 216: 108947, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35074344

RESUMO

Zebrafish possess the ability to completely regenerate the retina following injury, however little is understood about the damage signals that contribute to inducing Müller glia reprogramming and proliferation to regenerate lost neurons. Multiple studies demonstrated that iron contributes to various retinal injuries, however no link has been shown between iron and zebrafish retinal regeneration. Here we demonstrate that Müller glia exhibit transcriptional changes following injury to regulate iron levels within the retina, allowing for increased iron uptake and decreased export. The response of the zebrafish retina to intravitreal iron injection was then characterized, showing that ferrous, and not ferric, iron induces retinal cell death. Additionally, iron chelation resulted in decreased numbers of TUNEL-positive photoreceptors and fewer proliferating Müller glia. Despite the contribution of iron to retinal cell death, inhibition of ferroptosis did not significantly reduce cell death following light treatment. Finally, we demonstrate that both the anti-ferroptotic protein Glutathione peroxidase 4b and the Transferrin receptor 1b are required for Müller glia proliferation following light damage. Together these findings show that iron contributes to cell death in the light-damaged retina and is essential for inducing the Müller glia regeneration response.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Ependimogliais/efeitos dos fármacos , Compostos Ferrosos/toxicidade , Células Fotorreceptoras/efeitos dos fármacos , Lesões Experimentais por Radiação/etiologia , Degeneração Retiniana/induzido quimicamente , Animais , Animais Geneticamente Modificados , Apoptose , Deferiprona/farmacologia , Células Ependimogliais/metabolismo , Marcação In Situ das Extremidades Cortadas , Injeções Intravítreas , Luz , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Células Fotorreceptoras/efeitos da radiação , Lesões Experimentais por Radiação/metabolismo , Receptores da Transferrina/metabolismo , Degeneração Retiniana/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
3.
Bull Exp Biol Med ; 172(2): 236-244, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34855080

RESUMO

We studied the possibility of using sodium deoxyribonucleate (Derinat) for improving the efficiency of co-transplantation of mesenchymal (MSC) and hematopoietic stem cells (HSC) to female F1(CBA×C57BL/6) mice with bone marrow aplasia caused by exposure to γ-radiation. It was found that immunomodulator Derinat enhanced the effect of co-transplantation, in particular, triple post-irradiation administration of Derinat accelerated hematopoiesis recovery judging from the parameters of peripheral blood, total cellularity of the bone marrow and spleen, and animal survival. Single or double administration of Derinat prior to irradiation was ineffective. The optimal result was obtained when the following scheme was applied: MSC→HSC with an interval of 48 h starting during the first hours after irradiation and triple administration of Derinat (in 10-15 min, 3 and 7 days after irradiation) in a dose of 3 mg/mouse.


Assuntos
DNA/farmacologia , Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Lesões Experimentais por Radiação/terapia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/fisiologia , Transtornos da Insuficiência da Medula Óssea/etiologia , Transtornos da Insuficiência da Medula Óssea/terapia , Terapia Combinada , DNA/química , DNA/uso terapêutico , Feminino , Raios gama/efeitos adversos , Hematopoese/efeitos dos fármacos , Hematopoese/fisiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Lesões Experimentais por Radiação/etiologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Sódio/química , Sódio/farmacologia , Irradiação Corporal Total/efeitos adversos
4.
Invest Ophthalmol Vis Sci ; 62(15): 29, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34967856

RESUMO

Purpose: Ultraviolet B (UVB) has been well documented to induce capsular cataracts; however, the mechanism of the lens epithelial cell-mediated repair process after UVB irradiation is not fully understood. The purpose of this study was to better understand lens epithelial cell repair after UVB-induced epithelium damage. Method: C57BL/6J mice were irradiated by various doses of UVB. Lens morphology and lens capsule opacity were monitored by slit lamp, darkfield microscopy, and phase-contrast microscopy. Lens epithelial cell mitotic activation and cell apoptosis were measured by immunohistochemistry. Lens epithelial ultrastructure was analyzed by transmission electron microscopy. Results: UVB irradiation above a dose of 2.87 kJ/m2 triggered lens epithelial cell apoptosis and subcapsular cataract formation, with a ring-shaped structure composed of multilayered epithelial cell clusters manifesting a dense ring-shaped capsular cataract. The epithelial cells immediately outside the edge of the ring-shaped aggregates transitioned to mitotically active cells and performed wound healing through the epithelialization process. However, repairs ceased when lens epithelial cells made direct contact, and scar-like tissue in the center of the anterior capsule remained even by 6 months after UVB irradiation. Conclusions: Our present study demonstrates that normally quiescent lens epithelial cells can be reactivated for epithelialization repair in response to UV-induced damage.


Assuntos
Catarata/etiologia , Células Epiteliais/fisiologia , Cristalino/efeitos da radiação , Mitose/fisiologia , Lesões Experimentais por Radiação/etiologia , Reepitelização/fisiologia , Cicatrização/fisiologia , Animais , Apoptose/efeitos da radiação , Catarata/patologia , Diferenciação Celular , Linhagem Celular , Movimento Celular , Modelos Animais de Doenças , Células Epiteliais/patologia , Imuno-Histoquímica , Cristalino/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Contraste de Fase , Lesões Experimentais por Radiação/patologia , Microscopia com Lâmpada de Fenda , Raios Ultravioleta/efeitos adversos
5.
Health Phys ; 121(4): 345-351, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34546216

RESUMO

ABSTRACT: Near total body exposure to high-dose ionizing radiation results in organ-specific sequelae, including acute radiation syndromes and delayed effects of acute radiation exposure. Among these sequelae are acute kidney injury and chronic kidney injury. Reports that neither oxidative stress nor inflammation are dominant mechanisms defining radiation nephropathy inspired an unbiased, discovery-based proteomic interrogation in order to identify mechanistic pathways of injury. We quantitatively profiled the proteome of kidney from non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing over a time period of 3 wk. Kidney was analyzed by liquid chromatography-tandem mass spectrometry. Out of the 3,432 unique proteins that were identified, we found that 265 proteins showed significant and consistent responses across at least three time points post-irradiation, of which 230 proteins showed strong upregulation while 35 proteins showed downregulation. Bioinformatics analysis revealed significant pathway and upstream regulator perturbations post-high dose irradiation and shed light on underlying mechanisms of radiation damage. These data will be useful for a greater understanding of the molecular mechanisms of injury in well-characterized animal models of partial body irradiation with minimal bone marrow sparing. These data may be potentially useful in the future development of medical countermeasures.


Assuntos
Síndrome Aguda da Radiação , Lesões Experimentais por Radiação , Síndrome Aguda da Radiação/diagnóstico , Síndrome Aguda da Radiação/etiologia , Síndrome Aguda da Radiação/metabolismo , Animais , Medula Óssea/efeitos da radiação , Rim/efeitos da radiação , Macaca mulatta , Proteômica , Lesões Experimentais por Radiação/etiologia , Lesões Experimentais por Radiação/metabolismo
6.
Health Phys ; 121(4): 384-394, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34546219

RESUMO

ABSTRACT: Radiation-induced lung injury is a delayed effect of acute radiation exposure resulting in pulmonary pneumonitis and fibrosis. Molecular mechanisms that lead to radiation-induced lung injury remain incompletely understood. Using a non-human primate model of partial body irradiation with minimal bone marrow sparing, lung was analyzed from animals irradiated with 12 Gy at timepoints every 4 d up to 21 d after irradiation and compared to non-irradiated (sham) controls. Tryptic digests of lung tissues were analyzed by liquid chromatography-tandem mass spectrometry followed by pathway analysis. Out of the 3,101 unique proteins that were identified, we found that 252 proteins showed significant and consistent responses across at least three time points post-irradiation, of which 215 proteins showed strong up-regulation while 37 proteins showed down-regulation. Canonical pathways affected by irradiation, changes in proteins that serve as upstream regulators, and proteins involved in key processes including inflammation, fibrosis, and retinoic acid signaling were identified. The proteomic profiling of lung conducted here represents an untargeted systems biology approach to identify acute molecular events in the non-human primate lung that could potentially be initiating events for radiation-induced lung injury.


Assuntos
Lesões Experimentais por Radiação , Pneumonite por Radiação , Animais , Medula Óssea/efeitos da radiação , Pulmão/metabolismo , Primatas , Proteômica , Lesões Experimentais por Radiação/etiologia , Lesões Experimentais por Radiação/metabolismo
7.
Sci Rep ; 11(1): 19277, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588475

RESUMO

Long term-side effects from cancer therapies are a growing health care concern as life expectancy among cancer survivors increases. Damage to the bladder is common in patients treated with radiation therapy for pelvic cancers and can result in radiation (hemorrhagic) cystitis (RC). The disease progression of RC consists of an acute and chronic phase, separated by a symptom-free period. Gaining insight in tissue changes associated with these phases is necessary to develop appropriate interventions. Using a mouse preclinical model, we have previously shown that fibrosis and vascular damage are the predominant pathological features of chronic RC. The goal of this study was to determine the pathological changes during acute RC. We identified that radiation treatment results in a temporary increase in micturition frequency and decrease in void volume 4-8 weeks after irradiation. Histologically, the micturition defect is associated with thinning of the urothelium, loss of urothelial cell-cell adhesion and tight junction proteins and decrease in uroplakin III expression. By 12 weeks, the urothelium had regenerated and micturition patterns were similar to littermate controls. No inflammation or fibrosis were detected in bladder tissues after irradiation. We conclude that functional bladder defects during acute RC are driven primarily by a urothelial defect.


Assuntos
Cistite/fisiopatologia , Lesões Experimentais por Radiação/fisiopatologia , Bexiga Urinária/patologia , Micção/efeitos da radiação , Animais , Caderinas/análise , Caderinas/metabolismo , Cistite/etiologia , Cistite/patologia , Feminino , Humanos , Camundongos , Neoplasias Pélvicas/radioterapia , Lesões Experimentais por Radiação/etiologia , Lesões Experimentais por Radiação/patologia , Bexiga Urinária/fisiopatologia , Bexiga Urinária/efeitos da radiação , Micção/fisiologia , Uroplaquina III/análise , Uroplaquina III/metabolismo , Urotélio/patologia , Urotélio/efeitos da radiação , Proteína da Zônula de Oclusão-1/análise , Proteína da Zônula de Oclusão-1/metabolismo
8.
Sci Rep ; 11(1): 19096, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580369

RESUMO

Childhood radiation exposure is a known thyroid cancer risk factor. This study evaluated the effects of age on radiation-induced thyroid carcinogenesis in rats irradiated with 8 Gy X-rays. We analyzed cell proliferation, cell death, DNA damage response, and autophagy-related markers in 4-week-old (4W) and 7-month-old (7M) rats and the incidence of thyroid tumors in 4W, 4-month-old (4M), and 7M rats 18 months after irradiation. Cell death and DNA damage response were increased in 4W rats compared to those in controls at 1 month post-irradiation. More Ki-67-positive cells were observed in 4W rats at 12 months post-irradiation. Thyroid tumors were confirmed in 61.9% (13/21), 63.6% (7/11), and 33.3% (2/6) of irradiated 4W, 4M, and 7M rats, respectively, compared to 0%, 14.3% (1/7), and 16.7% (1/6) in the respective nonirradiated controls. There were 29, 9, and 2 tumors in irradiated 4W, 4M, and 7M rats, respectively. The expression of several autophagy components was downregulated in the area surrounding radiation-induced thyroid carcinomas in 4W and 7M rats. LC3 and p62 expression levels decreased in radiation-induced follicular carcinoma in 4W rats. Radiosensitive cells causing thyroid tumors may be more prevalent in young rats, and abrogation of autophagy may be associated with radiation-induced thyroid carcinogenesis.


Assuntos
Carcinogênese/efeitos da radiação , Neoplasias Induzidas por Radiação/epidemiologia , Lesões Experimentais por Radiação/epidemiologia , Neoplasias da Glândula Tireoide/epidemiologia , Adulto , Fatores Etários , Animais , Criança , Relação Dose-Resposta à Radiação , Humanos , Incidência , Masculino , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/patologia , Lesões Experimentais por Radiação/etiologia , Lesões Experimentais por Radiação/patologia , Tolerância a Radiação , Ratos , Fatores de Risco , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/etiologia , Neoplasias da Glândula Tireoide/patologia , Raios X/efeitos adversos
9.
Exp Eye Res ; 211: 108746, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450185

RESUMO

PURPOSE: To develop a model of focal injury by blue light-emitting diode (LED)-induced phototoxicity (LIP) in pigmented mouse retinas and to study the effects on cone, Iba-1+ cells and retinal pigment epithelium (RPE) cell populations after administration of basic fibroblast growth factor (bFGF) and minocycline, alone or combined. METHODS: In anesthetized dark-adapted adult female pigmented C57BL/6 mice, left pupils were dilated and the eye exposed to LIP (500 lux, 45 s). The retina was monitored longitudinally in vivo with SD-OCT for 7 days (d). Ex vivo, the effects of LIP and its protection with bFGF (0.5 µg) administered alone or combined with minocycline (45 mg/kg) were studied in immunolabeled arrestin-cone outer segments (a+OS) and quantified within a predetermined fixed-size circular area (PCA) centered on the lesion in flattened retinas at 1, 3, 5 or 7d. Moreover, Iba-1+ cells and RPE cell morphology were analysed with Iba-1 and ZO-1 antibodies, respectively. RESULTS: LIP caused a focal lesion within the superior-temporal retina with retinal thinning, particularly the outer retinal layers (116.5 ± 2.9 µm to 36.8 ± 6.3 µm at 7d), and with progressive diminution of a+OS within the PCA reaching minimum values at 7d (6218 ± 342 to 3966 ± 311). Administration of bFGF alone (4519 ± 320) or in combination with minocycline (4882 ± 446) had a significant effect on a+OS survival at 7d and Iba-1+ cell activation was attenuated in the groups treated with minocycline. In parallel, the RPE cell integrity was progressively altered after LIP and administration of neuroprotective components had no restorative effect at 7d. CONCLUSIONS: LIP resulted in progressive outer retinal damage affecting the OS cone population and RPE. Administration of bFGF increased a+OS survival but did not prevent RPE deterioration.


Assuntos
Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Luz/efeitos adversos , Lesões Experimentais por Radiação/etiologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Degeneração Retiniana/etiologia , Animais , Arrestinas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Microscopia de Fluorescência , Minociclina/uso terapêutico , Lesões Experimentais por Radiação/diagnóstico por imagem , Lesões Experimentais por Radiação/prevenção & controle , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/prevenção & controle , Epitélio Pigmentado da Retina/metabolismo , Tomografia de Coerência Óptica
10.
J Radiat Res ; 62(5): 793-803, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34062561

RESUMO

The objective of the study was to describe cellular and molecular markers of radioprotection by anisomycin, focusing on the changes in rat brain tissue. Two-month-old Wistar rats were exposed to a 60Co radiation source at a dose of 6 Gy, with or without radioprotection with anisomycin (150 mg/kg) administered subcutaneously 30 min before or 3 or 6 h after irradiation. Survivors were analyzed 30 days after treatment. Astroglial and microglial responses were investigated based on the expression of glial markers assessed with immunohistochemistry, and quantitative changes in brain biomolecules were investigated by Raman microspectroscopy. In addition, blood plasma levels of pro-inflammatory (interleukin 6 and tumor necrosis factor α) and anti-inflammatory (interleukin 10) cytokines were assessed. We found that application of anisomycin either before or after irradiation significantly decreased the expression of the microglial marker Iba-1. We also found an increased intensity of Raman spectral bands related to nucleic acids, as well as an increased level of cytokines when anisomycin was applied after irradiation. This suggests that the radioprotective effects of anisomycin are by decreasing Iba-1 expression and stabilizing genetic material by increasing the level of nucleic acids.


Assuntos
Anisomicina/uso terapêutico , Encéfalo/efeitos da radiação , Irradiação Craniana/efeitos adversos , Raios gama/efeitos adversos , Lesões Experimentais por Radiação/metabolismo , Protetores contra Radiação/uso terapêutico , Animais , Anisomicina/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/efeitos da radiação , Encéfalo/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/genética , Radioisótopos de Cobalto , Citocinas/sangue , Proteínas dos Microfilamentos/biossíntese , Proteínas dos Microfilamentos/genética , Microglia/efeitos dos fármacos , Microglia/efeitos da radiação , Ácidos Nucleicos/metabolismo , Pré-Medicação , Lesões Experimentais por Radiação/etiologia , Lesões Experimentais por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Ratos , Ratos Wistar
11.
Radiat Res ; 196(3): 284-296, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34153091

RESUMO

Thrombocytopenia is a major complication in hematopoietic-acute radiation syndrome (H-ARS) that increases the risk of mortality from uncontrolled hemorrhage. There is a great demand for new therapies to improve survival and mitigate bleeding in H-ARS. Thrombopoiesis requires interactions between megakaryocytes (MKs) and endothelial cells. 16, 16-dimethyl prostaglandin E2 (dmPGE2), a longer-acting analogue of PGE2, promotes hematopoietic recovery after total-body irradiation (TBI), and various angiotensin-converting enzyme (ACE) inhibitors mitigate endothelial injury after radiation exposure. Here, we tested a combination therapy of dmPGE2 and lisinopril to mitigate thrombocytopenia in murine models of H-ARS following TBI. After 7.75 Gy TBI, dmPGE2 and lisinopril each increased survival relative to vehicle controls. Importantly, combined dmPGE2 and lisinopril therapy enhanced survival greater than either individual agent. Studies performed after 4 Gy TBI revealed reduced numbers of marrow MKs and circulating platelets. In addition, sublethal TBI induced abnormalities both in MK maturation and in in vitro and in vivo platelet function. dmPGE2, alone and in combination with lisinopril, improved recovery of marrow MKs and peripheral platelets. Finally, sublethal TBI transiently reduced the number of marrow Lin-CD45-CD31+Sca-1- sinusoidal endothelial cells, while combined dmPGE2 and lisinopril treatment, but not single-agent treatment, accelerated their recovery. Taken together, these data support the concept that combined dmPGE2 and lisinopril therapy improves thrombocytopenia and survival by promoting recovery of the MK lineage, as well as the MK niche, in the setting of H-ARS.


Assuntos
16,16-Dimetilprostaglandina E2/uso terapêutico , Síndrome Aguda da Radiação/tratamento farmacológico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Plaquetas/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Transtornos Hemorrágicos/tratamento farmacológico , Lisinopril/uso terapêutico , Megacariócitos/efeitos dos fármacos , Trombocitopenia/tratamento farmacológico , Trombopoese/efeitos dos fármacos , Síndrome Aguda da Radiação/complicações , Animais , Plaquetas/efeitos da radiação , Medula Óssea/efeitos dos fármacos , Medula Óssea/efeitos da radiação , Proteína C-Reativa/análise , Radioisótopos de Césio , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/efeitos da radiação , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/efeitos da radiação , Feminino , Raios gama/efeitos adversos , Transtornos Hemorrágicos/etiologia , Megacariócitos/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Selectina-P/análise , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos da radiação , Fator Plaquetário 4/análise , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/etiologia , Trombocitopenia/etiologia , Trombopoese/efeitos da radiação , Irradiação Corporal Total , Fator de von Willebrand/análise
12.
Radiat Res ; 196(3): 297-305, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34129665

RESUMO

Survival from partial-body irradiation (PBI) may be limited by the development of the late lung injury response of pneumonitis. Herein we investigated the hypothesis that acute hematopoietic depletion alters the onset and severity of lung disease in a mouse model. To establish depletion, C3H/HeJ mice received 8 Gy PBI with shielding of only the tibiae, ankles and feet. One week after irradiation, blood lymphocyte and neutrophil counts were each significantly reduced (P < 0.04) in these mice compared to levels in untreated controls or in mice receiving 16 Gy to the whole thorax only. All 8 Gy PBI mice survived to the experimental end point of 16 weeks postirradiation. To determine whether the hematopoietic depletion affects lung disease, groups of mice received 8 Gy PBI plus 8 Gy whole-thorax irradiation (total lung dose of 16 Gy) or 16 Gy whole-thorax irradiation only. The weight loss, survival to onset of respiratory distress (P = 0.17) and pneumonitis score (P = 0.96) of mice that received 8 Gy PBI plus 8 Gy whole-thorax irradiation were not significantly different from those of mice receiving 16 Gy whole-thorax irradiation only. Mice in respiratory distress from PBI plus whole-thorax irradiation had significantly reduced (P = 0.02) blood monocyte counts compared to levels in distressed, whole-thorax irradiated mice, and symptomatic pneumonitis was associated with increased blood neutrophil counts (P = 0.04) relative to measures from irradiated, non-distressed mice. In conclusion, survivable acute hematopoietic depletion by partial-body irradiation did not alter the onset or severity of lethal pneumonitis in the C3H/HeJ mouse model.


Assuntos
Pancitopenia/etiologia , Lesões Experimentais por Radiação/terapia , Pneumonite por Radiação/prevenção & controle , Animais , Progressão da Doença , Feminino , Inflamação/prevenção & controle , Contagem de Leucócitos , Pulmão/patologia , Pulmão/efeitos da radiação , Camundongos , Camundongos Endogâmicos C3H , Lesões Experimentais por Radiação/sangue , Lesões Experimentais por Radiação/etiologia , Pneumonite por Radiação/sangue , Pneumonite por Radiação/etiologia , Pneumonite por Radiação/patologia , Tórax/efeitos da radiação , Redução de Peso/efeitos da radiação
13.
Radiat Res ; 196(3): 235-249, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34087939

RESUMO

We defined the time course of ionizing radiation-induced senescence in lung compared to bone marrow of p16+/LUC mice in which the senescence-induced biomarker (p16) is linked to a luciferase reporter gene. Periodic in situ imaging revealed increased luciferase activity in the lungs of 20 Gy thoracic irradiated, but not 8 Gy total-body irradiated (TBI) mice beginning at day 75 and increasing to day 170. In serial sections of explanted lungs, senescent cells appeared in the same areas as did fibrosis in the 20 Gy thoracic irradiated, but not the 8 Gy TBI group. Lungs from 8 Gy TBI mice at one year did show increased RNA levels for p16, p21, p19 and TGF-ß. Individual senescent cells in 20 Gy irradiated mouse lung included those with epithelial, endothelial, fibroblast and hematopoietic cell biomarkers. Rare senescent cells in the lungs of 8 Gy TBI mice at one year were of endothelial phenotype. Long-term bone marrow cultures (LTBMCs) were established at either day 60 or one year after 8 Gy TBI. In freshly removed marrow at both times after irradiation, there were increased senescent cells. In LTBMCs, there were increased senescent cells in both weekly harvested single cells and in colonies of multilineage hematopoietic progenitor cells producing CFU-GEMM (colony forming unit-granulocyte, erythrocyte, monocyte/macrophage, mega-karyocyte) that were formed in secondary cultures when these single cells were plated in semisolid media. LTBMCs from TBI mice produced fewer CFU-GEMM; however, the relative percentage of senescent cell-containing colonies was increased as measured by both p16-luciferase and ß-galactosidase. Therefore, 20 Gy thoracic radiation, as well as 8 Gy TBI, induces senescent cells in the lungs. With bone marrow, 8 Gy TBI induced senescence in both hematopoietic cells and in colony-forming progenitors. The p16+/LUC mouse strain provides a valuable system in which to compare the kinetics of radiation-induced senescence between organs in vivo, and to evaluate the potential role of senescent cells in irradiation pulmonary fibrosis.


Assuntos
Medula Óssea/efeitos da radiação , Senescência Celular/efeitos da radiação , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Células-Tronco Hematopoéticas/efeitos da radiação , Pulmão/efeitos da radiação , Células-Tronco Multipotentes/efeitos da radiação , Irradiação Corporal Total/efeitos adversos , Animais , Linhagem da Célula , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Inibidor p16 de Quinase Dependente de Ciclina/genética , Genes p16 , Luciferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/etiologia , Lesões Experimentais por Radiação/etiologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Transgenes
14.
Mol Vis ; 27: 206-220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967574

RESUMO

Purpose: To explore synaptic changes and the response of microglia in a light-induced photoreceptor degeneration model. Methods: Sprague-Dawley rats were euthanized 1 h, 1 day, 3 days, 7 days, and 14 days after being exposed to intense blue light for 24 h. Hematoxylin and eosin (H&E) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining were used to evaluate changes in the outer nuclear layer (ONL). Transmission electron microscopy (TEM) was applied to observe the ultrastructural changes in the synapses between the photoreceptors and second-order neurons. Western blotting was conducted to evaluate specific proteins, including postsynaptic density-95 (PSD-95), metabotropic glutamate receptor 6 (mGluR6), synapsin I, and synaptophysin. Immunofluorescence of CD11b and PKC-α or mGluR6 was used to explore the spatial relationships between microglial processes and synaptic elements. Immunoelectron microscopy of PSD-95 was performed to further confirm its engulfment of synaptic materials. Results: H&E and TUNEL staining showed that the thickness of the ONL decreased markedly, and the number of apoptotic photoreceptors peaked at day 1. TEM revealed darkened photoreceptor terminals and that ribbons of them were floating in the cytoplasm, coinciding with the downregulation of PSD-95 and mGluR6. Downstream synaptic protein synapsin I and synaptophysin exhibited upregulation in the inner plexiform layer. Activated microglia migrated to the outer retina, and their processes were found in close proximity to synapses in the outer plexiform layer under light and electron microscopy levels. Double immunostaining of CD11b and mGluR6 showed colocalization. PSD-95-immunoreactive electron-dense materials were observed inside the microglia suggesting engulfment of synaptic components. Conclusions: The study showed that there are early synaptic impairment and late compensatory changes in downstream synapses in this photic injury model. Activated microglia touched and directly engulfed synaptic materials. Microglia may play a role or a partial role in synaptic changes.


Assuntos
Luz/efeitos adversos , Microglia/fisiologia , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Lesões Experimentais por Radiação/fisiopatologia , Degeneração Retiniana/fisiopatologia , Sinapses/fisiologia , Animais , Western Blotting , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Marcação In Situ das Extremidades Cortadas , Masculino , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/ultraestrutura , Lesões Experimentais por Radiação/etiologia , Lesões Experimentais por Radiação/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Sinapsinas/metabolismo , Sinaptofisina/metabolismo
15.
Int J Radiat Oncol Biol Phys ; 111(1): 249-259, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33848608

RESUMO

PURPOSE: Radiation-induced lung injury (RILI) is a progressive condition with an early phase (radiation pneumonitis) and a late phase (lung fibrosis). RILI may occur after partial-body ionizing radiation exposures or internal radioisotope exposure, with wide individual variability in timing and extent of lung injury. This study aimed to provide new insights into the pathogenesis and progression of RILI in the nonhuman primate (NHP) rhesus macaque model. METHODS AND MATERIALS: We used an integrative approach to understand RILI and its evolution at clinical and molecular levels in 17 NHPs exposed to 10 Gy of whole-thorax irradiation in comparison with 3 sham-irradiated control NHPs. Clinically, we monitored respiratory rates, computed tomography (CT) scans, plasma cytokine levels, and bronchoalveolar lavage (BAL) over 8 months and lung samples collected at necropsy for molecular and histopathologic analyses using RNA sequencing and immunohistochemistry. RESULTS: Elevated respiratory rates, greater CT density, and more severe pneumonitis with increased macrophage content were associated with early mortality. Radiation-induced lung fibrosis included polarization of macrophages toward the M2-like phenotype, TGF-ß signaling, expression of CDKN1A/p21 in epithelial cells, and expression of α-SMA in lung stroma. RNA sequencing analysis of lung tissue revealed SERPINA3, ATP12A, GJB2, CLDN10, TOX3, and LPA as top dysregulated transcripts in irradiated animals. In addition to transcriptomic data, we observed increased protein expression of SERPINA3, TGF-ß1, CCL2, and CCL11 in BAL and plasma samples. CONCLUSIONS: Our combined clinical, imaging, histologic, and transcriptomic analysis provides new insights into the early and late phases of RILI and highlights possible biomarkers and potential therapeutic targets of RILI. Activation of TGF-ß and macrophage polarization appear to be key mechanisms involved in RILI.


Assuntos
Perfilação da Expressão Gênica , Lesão Pulmonar/etiologia , Lesões Experimentais por Radiação/etiologia , Animais , Pontos de Checagem do Ciclo Celular , Citocinas/sangue , Pulmão/imunologia , Pulmão/patologia , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Macaca mulatta , Macrófagos/fisiologia , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , Lesões Experimentais por Radiação/diagnóstico por imagem , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Pneumonite por Radiação/etiologia , Pneumonite por Radiação/patologia , Tomografia Computadorizada por Raios X , Fator de Crescimento Transformador beta/fisiologia
16.
Biochem Biophys Res Commun ; 554: 199-205, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33812084

RESUMO

Radiation enteritis (RE) is the most common radiotherapy complication, and effective RE treatments are lacking. Resveratrol exerts beneficial effects on radiation injury. However, the effect of resveratrol in radiation-induced intestinal injury and the underlying mechanism remain unclear. Here, a C57BL/6 mouse model of RE was established and an intestinal epithelial cell line was used to evaluate the protective effects of resveratrol against radiation-induced intestinal injury and the underlying mechanisms. Resveratrol improved radiation-induced oxidative stress and cell apoptosis via upregulating antioxidant enzymes and downregulating p53 acetylation. In vivo, resveratrol-treated mice exhibited longer survival; longer villi; more intestinal crypt cells; upregulated expression of Ki67, catalase, and superoxide dismutase 2; and fewer inflammatory proteins and apoptotic cells. These protective effects were suppressed by inhibition of SIRT1. These results demonstrate that resveratrol can reduce radiation-induced intestinal injury by inhibiting oxidative stress and apoptosis via the SIRT1/FOXO3a and PI3K/AKT pathways.


Assuntos
Enterite/prevenção & controle , Proteína Forkhead Box O3/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lesões Experimentais por Radiação/prevenção & controle , Resveratrol/farmacologia , Sirtuína 1/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose , Linhagem Celular , Modelos Animais de Doenças , Enterite/etiologia , Enterite/metabolismo , Enterite/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Lesões Experimentais por Radiação/etiologia , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Radiação Ionizante , Ratos , Transdução de Sinais
17.
J UOEH ; 43(1): 25-31, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33678783

RESUMO

In the event of a high-dose radiation exposure accident, adipose-derived stem cell (ADSC) transplantation might be used as an emergency medical treatment to compensate for bone marrow failure. To investigate the possible course of that treatment, we examined whether transplantation of ADSCs into whole-body X-ray irradiated mice would provide resistance to radiation damage. ADSCs were obtained from a primary culture of adipocytes from adipose tissue of syngeneic mice. The ADSCs were transplanted via an intravenous (i.v.) route after whole-body irradiation (6 Gy, X-rays) of the ICR mice. Fifty days after transplantation, the survival rate of the transplanted group was 40% higher than the control group, and the difference in survival rates was maintained in the following 200 days. After 400 days, however, the difference in survival rates became smaller and disappeared after 650 days. The results indicate that ADSC transplantation may reduce lethality from acute radiation bone marrow injury for several hundred days.


Assuntos
Adipócitos/transplante , Tecido Adiposo/citologia , Transtornos da Insuficiência da Medula Óssea/etiologia , Transtornos da Insuficiência da Medula Óssea/terapia , Lesões Experimentais por Radiação/etiologia , Lesões Experimentais por Radiação/terapia , Transplante de Células-Tronco/métodos , Irradiação Corporal Total/efeitos adversos , Raios X/efeitos adversos , Adipócitos/citologia , Animais , Transtornos da Insuficiência da Medula Óssea/mortalidade , Células Cultivadas , Feminino , Camundongos Endogâmicos ICR , Doses de Radiação , Lesões Experimentais por Radiação/mortalidade , Taxa de Sobrevida , Fatores de Tempo
18.
J Surg Res ; 263: 167-175, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33667872

RESUMO

BACKGROUND: The capsular contracture is one of the main complications after radiotherapy in patients with implant-based reconstruction. The aim of this study is to evaluate the efficacy of ramipril for the prevention of radiation-induced fibrosis around the silicone implant. MATERIALS AND METHODS: Thirty Wistar rats in 5 groups were used. Group 1: implant; group 2: implant + radiation; group 3: ramipril + implant; group 4: ramipril + implant + radiation; group 5: sham. Ramipril treatment was started 5 d before surgery and continued for 12 wk after surgery. A mini silicone implant was placed in the back of the rats. A single fraction of 21.5 Gy radiation was applied. Tissues were examined histologically and immunohistochemically (TGF-ß1, MMP-2, and TIMP-2 expression). The alteration of plasma TGF-ß1 levels was examined before and after the experiment. RESULTS: After applying implant or implant + radiation, capsular thickness, percentage of fibrotic area, tissue and plasma TGF-ß1 levels significantly increased, and MMP-2/TIMP-2 ratio significantly decreased compared with the sham group. In ramipril-treated groups, the decrease in capsular thickness, fibrosis, TGF-ß1 positivity, and an increase in MMP-2/TIMP-2 ratio were found significant. In the ramipril + implant + radiation group, the alteration values of TGF-ß1 dramatically decreased. CONCLUSIONS: Our results show that ramipril reduces radiation-induced fibrosis and contracture. The results of our study may be important for the design of the clinical trials required to investigate the effective and safe doses of ramipril, which is an inexpensive and easily tolerated drug, on humans.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Mama/patologia , Contratura Capsular em Implantes/prevenção & controle , Lesões Experimentais por Radiação/prevenção & controle , Ramipril/administração & dosagem , Animais , Mama/efeitos da radiação , Mama/cirurgia , Implante Mamário/efeitos adversos , Implante Mamário/instrumentação , Implantes de Mama/efeitos adversos , Neoplasias da Mama/terapia , Feminino , Fibrose , Humanos , Contratura Capsular em Implantes/etiologia , Contratura Capsular em Implantes/patologia , Masculino , Mastectomia/efeitos adversos , Lesões Experimentais por Radiação/etiologia , Lesões Experimentais por Radiação/patologia , Radioterapia Adjuvante/efeitos adversos , Ratos , Géis de Silicone/efeitos adversos
19.
Strahlenther Onkol ; 197(6): 537-546, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33688971

RESUMO

PURPOSE: In a previous study we have shown in a mouse model that administration of nuclear factor-kappa B (NF-κB) inhibitor thalidomide has promising therapeutic effects on early radiation cystitis (ERC) and late radiation sequelae (LRS) of the urinary bladder. The aim of this study was to evaluate in the same mice the effect of thalidomide on adherens junction (AJ) proteins in ERC and LRS. METHODS: Urothelial expressions of E­cadherin and ß­catenin were assessed by immunohistochemistry in formalin-fixed paraffin-embedded (FFPE) bladder specimens over 360 days post single-dose irradiation on day 0. First, the effect of irradiation on AJ expression and then effects of thalidomide on irradiation-induced AJ alterations were assessed using three different treatment times. RESULTS: Irradiation provoked a biphasic upregulation of E­cadherin and ß­catenin in the early phase. After a mild decrease of E­cadherin and a pronounced decrease of ß­catenin at the end of the early phase, both increased again in the late phase. Early administration of thalidomide (day 1-15) resulted in a steeper rise in the first days, an extended and increased expression at the end of the early phase and a higher expression of ß­catenin alone at the beginning of the late phase. CONCLUSION: Upregulation of AJ proteins is an attempt to compensate irradiation-induced impairment of urothelial barrier function. Early administration of thalidomide improves these compensatory mechanisms by inhibiting NF-κB signaling and its interfering effects.


Assuntos
Caderinas/biossíntese , Regulação da Expressão Gênica/efeitos da radiação , NF-kappa B/antagonistas & inibidores , Lesões Experimentais por Radiação/metabolismo , Talidomida/farmacologia , Bexiga Urinária/efeitos da radiação , beta Catenina/biossíntese , Junções Aderentes/efeitos da radiação , Animais , Caderinas/genética , Cistite/etiologia , Cistite/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C3H , Lesões Experimentais por Radiação/etiologia , Fatores de Tempo , Bexiga Urinária/metabolismo , Urotélio/metabolismo , Urotélio/efeitos da radiação , beta Catenina/genética
20.
Radiat Oncol ; 16(1): 30, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33549130

RESUMO

BACKGROUND: Radiation-induced brain injury is a common concern for survivors of adult and pediatric brain cancer. Pre-clinically, rodent models are the standard approach to evaluate mechanisms of injury and test new therapeutics for this condition. However, these rodent models fail to recapitulate the radiological and histological characteristics of the clinical disease. METHODS: Here we describe a hemispheric mini-pig model of radiation-induced brain injury generated with a clinical 6 MV photon irradiator and evaluated with a clinical 3T MRI. Two pairs of Yucatan mini-pigs each received either 15 Gy or 25 Gy to the left brain hemisphere. Quality of intensity modulated radiation therapy treatment plans was evaluated retrospectively with parameters reported according to ICRU guidelines. The pigs were observed weekly to check for any outright signs of neurological impairment. The pigs underwent anatomical MRI examination before irradiation and up to 6 months post-irradiation. Immediately after the last imaging time point, the pigs were euthanized and their brains were collected for histopathological assessment. RESULTS: Analysis of the dose volume histograms showed that 93% of the prescribed dose was delivered to at least 93% of the target volume in the left hemisphere. Organs at risk excluded from the target volume received doses below clinical safety thresholds. For the pigs that received a 25 Gy dose, progressive neurological impairment was observed starting at 2 months post-irradiation leading to the need for euthanasia by 3-4 months. On MRI, these two animals presented with diffuse white matter pathology consistent with the human disease that progressed to outright radiation necrosis and severe brain swelling. Histology was consistent with the final MRI evaluation. The pigs that received a 15 Gy dose appeared normal all the way to 6 months post-irradiation with no obvious neurological impairment or lesions on MRI or histopathology. CONCLUSION: Based on our results, a mini-pig model of radiation-induced brain injury is feasible though some optimization is still needed. The mini-pig model produced lesions on MRI that are consistent with the human disease and which are not seen in rodent models. Our data shows that the ideal radiation dose for this model likely lies between 15 and 25 Gy.


Assuntos
Lesões Encefálicas/patologia , Cérebro/efeitos da radiação , Raios gama/efeitos adversos , Lesões Experimentais por Radiação/patologia , Animais , Lesões Encefálicas/etiologia , Imageamento por Ressonância Magnética , Masculino , Lesões Experimentais por Radiação/etiologia , Suínos , Porco Miniatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA