Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Toxicology ; 500: 153691, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38042275

RESUMO

Environmental arsenic (As) or high-fat diet (HFD) exposure alone are risk factors for the development of cardiovascular disease (CVDs). However, the effects and mechanisms of co-exposure to As and HFD on the cardiovascular system remain unclear. The current study aimed to investigate the combined effects of As and HFD on vascular injury and shed some light on the underlying mechanisms. The results showed that co-exposure to As and HFD resulted in a significant increase in serum lipid levels and significant lipid accumulation in the aorta of rats compared with exposure to As or HFD alone. Meanwhile, the combined exposure altered blood pressure and disrupted the morphological structure of the abdominal aorta in rats. Furthermore, As combined with HFD exposure upregulated the expression of vascular endothelial cells pyroptosis-related proteins (ASC, Pro-caspase-1, Caspase-1, IL-18, IL-1ß), as well as the expression of vascular endothelial adhesion factors (VCAM-1 and ICAM-1). More importantly, we found that with increasing exposure time, vascular injury-related indicators were significantly higher in the combined exposure group compared with exposure to As or HFD alone, and the vascular injury was more severe in female rats compared with male rats. Taken together, these results suggested that the combination of As and HFD induced vascular endothelial cells pyroptosis through activation of the ASC/Caspase-1 pathway. Therefore, vascular endothelial cells pyroptosis may be a potential molecular mechanism for vascular injury induced by As combined with HFD exposure.


Assuntos
Arsênio , Lesões do Sistema Vascular , Animais , Feminino , Masculino , Ratos , Arsênio/toxicidade , Caspase 1/metabolismo , Caspase 1/farmacologia , Caspases , Dieta Hiperlipídica , Células Endoteliais , Lipídeos , Piroptose , Lesões do Sistema Vascular/induzido quimicamente
2.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163435

RESUMO

Lower-extremity arterial disease is a major health problem with increasing prevalence, often leading to non-traumatic amputation, disability and mortality. The molecular mechanisms underpinning abnormal vascular wall remodeling are not fully understood. We hypothesized on the existence of a vascular tissue memory that may be transmitted through soluble signaling messengers, transferred from humans to healthy recipient animals, and consequently drive the recapitulation of arterial wall thickening and other vascular pathologies. We examined the effects of the intralesional infiltration for 6 days of arteriosclerotic popliteal artery-derived homogenates (100 µg of protein) into rats' full-thickness wounds granulation tissue. Animals infiltrated with normal saline solution or healthy brachial arterial tissue homogenate obtained from traumatic amputation served as controls. The significant thickening of arteriolar walls was the constant outcome in two independent experiments for animals receiving arteriosclerotic tissue homogenates. This material induced other vascular morphological changes including an endothelial cell phenotypic reprogramming that mirrored the donor's vascular histopathology. The immunohistochemical expression pattern of relevant vascular markers appeared to match between the human tissue and the corresponding recipient rats. These changes occurred within days of administration, and with no cross-species limitation. The identification of these "vascular disease drivers" may pave novel research avenues for atherosclerosis pathobiology.


Assuntos
Arteriosclerose/metabolismo , Tecido de Granulação/metabolismo , Artéria Poplítea/lesões , Proteínas/administração & dosagem , Lesões do Sistema Vascular/induzido quimicamente , Idoso , Animais , Arteriosclerose/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Lesões do Sistema Vascular/patologia
3.
Tissue Eng Part C Methods ; 28(2): 83-92, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35114818

RESUMO

Drug-induced vascular injury (DIVI) in preclinical animal models often leads to candidate compound termination during drug development. DIVI has not been documented in human clinical trials with drugs that cause DIVI in preclinical animals. A robust human preclinical assay for DIVI is needed as an early vascular injury screen. A human vascular wall microfluidic tissue chip was developed with a human umbilical vein endothelial cell (HUVEC)-umbilical artery smooth muscle cell (vascular smooth muscle cell, VSMC) bilayer matured under physiological shear stress. Optimized temporal flow profiles produced HUVEC-VSMC bilayers with quiescent endothelial cell (EC) monolayers, EC tight junctions, and contractile VSMC morphology. Dose-response testing (3-30 µM concentration) was conducted with minoxidil and tadalafil vasodilators. Both drugs have demonstrated preclinical DIVI but lack clinical evidence. The permeability of severely damaged engineered bilayers (30 µM tadalafil) was 4.1 times that of the untreated controls. Immunohistochemical protein assays revealed contrasting perspectives on tadalafil and minoxidil-induced damage. Tadalafil impacted the endothelial monolayer with minor injury to the contractile VSMCs, whereas minoxidil demonstrated minor EC barrier injury but damaged VSMCs and activated ECs in a dose-response manner. This proof-of-concept human vascular wall bilayer model of DIVI is a critical step toward developing a preclinical human screening assay for drug development. Impact statement More than 90% of drug candidates fail during clinical trials due to human efficacy and toxicity concerns. Preclinical studies rely heavily on animal models, although animal toxicity and drug metabolism responses often differ from humans. During the drug development process, perfused in vitro human tissue chips could model the clinical drug response and potential toxicity of candidate compounds. Our long-term objective is to develop a human vascular wall tissue chip to screen for drug-induced vascular injury. Its application could ultimately reduce drug development delays and costs, and improve patient safety.


Assuntos
Lesões do Sistema Vascular , Animais , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais , Humanos , Microfluídica , Miócitos de Músculo Liso , Lesões do Sistema Vascular/induzido quimicamente
4.
Cell Death Dis ; 13(1): 29, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013107

RESUMO

Methylglyoxal (MGO) is an active metabolite of glucose and plays a prominent role in the pathogenesis of diabetic vascular complications, including endothelial cell apoptosis induced by oxidative stress. Metformin (MET), a widely prescribed antidiabetic agent, appears to reduce excessive reactive oxygen species (ROS) generation and limit cell apoptosis. However, the molecular mechanisms underlying this process are still not fully elucidated. We reported here that MET prevents MGO-induced apoptosis by suppressing oxidative stress in vitro and in vivo. Protein expression and protein phosphorylation were investigated using western blotting, ELISA, and immunohistochemical staining, respectively. Cell viability and apoptosis were assessed by the MTT assay, TUNEL staining, and Annexin V-FITC and propidium iodide double staining. ROS generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Our results revealed that MET prevented MGO-induced HUVEC apoptosis, inhibited apoptosis-associated biochemical changes such as loss of MMP, the elevation of the Bax/Bcl-2 ratio, and activation of cleaved caspase-3, and attenuated MGO-induced mitochondrial morphological alterations in a dose-dependent manner. MET pretreatment also significantly suppressed MGO-stimulated ROS production, increased signaling through the ROS-mediated PI3K/Akt and Nrf2/HO-1 pathways, and markedly elevated the levels of its downstream antioxidants. Finally, similar results were obtained in vivo, and we demonstrated that MET prevented MGO-induced oxidative damage, apoptosis, and inflammation. As expected, MET reversed MGO-induced downregulation of Nrf2 and p-Akt. In addition, a PI3K inhibitor (LY-294002) and a Nrf2 inhibitor (ML385) observably attenuated the protective effects of MET on MGO-induced apoptosis and ROS generation by inhibiting the Nrf2/HO-1 pathways, while a ROS scavenger (NAC) and a permeability transition pores inhibitor (CsA) completely reversed these effects. Collectively, these findings broaden our understanding of the mechanism by which MET regulates apoptosis induced by MGO under oxidative stress conditions, with important implications regarding the potential application of MET for the treatment of diabetic vascular complications.


Assuntos
Apoptose/efeitos dos fármacos , Metformina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Aldeído Pirúvico/toxicidade , Animais , Heme Oxigenase-1/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Metformina/administração & dosagem , Camundongos , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Aldeído Pirúvico/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Lesões do Sistema Vascular/induzido quimicamente , Lesões do Sistema Vascular/tratamento farmacológico , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia
5.
Cell Signal ; 82: 109969, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33647448

RESUMO

Several categories of chemotherapy confer substantial risk for late-term vascular morbidity and mortality. In the present study, we aimed to investigate the mechanism of acute chemotherapy-induced vascular injury in normal tissues. Specifically, we looked at activation of the acid sphingomyelinase (ASMase)/ceramide pathway, which leads to generation of reactive oxygen species (ROS) and induction of oxidative stress that may result in vascular injury. In particular, we focused on two distinct drugs, doxorubicin (DOX) and cisplatin (CIS) and their effects on normal endothelial cells. In vitro, DOX resulted in increased ASMase activity, intra-cellular ROS production and induction of apoptosis. CIS treatment generated significantly reduced effects in endothelial cells. In-vivo, murine femoral arterial blood flow was measured in real-time, during and after DOX or CIS administration, using fluorescence optical imaging system. While DOX caused constriction of small vessels and disintegration of large vessels' wall, CIS induced minor vascular changes in arterial blood flow, correlating with the in vitro findings. These results demonstrate that DOX induces acute vascular injury by increased ROS production, via activation of ASMase/ceramide pathway, while CIS increases ROS production and its immediate extracellular translocation, without causing detectable acute vascular injury. Our findings may potentially lead to the development of new strategies to prevent long-term cardiovascular morbidity in cancer survivors.


Assuntos
Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Doxorrubicina/efeitos adversos , Células Endoteliais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Lesões do Sistema Vascular/induzido quimicamente , Animais , Bovinos , Linhagem Celular , Camundongos , Espécies Reativas de Oxigênio/metabolismo
6.
J Oleo Sci ; 68(12): 1241-1249, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31735744

RESUMO

Nicotine has been linked to the development of abdominal aortic aneurysms. Isoflavones, a group of polyphenolic compounds, reportedly exhibit antioxidant and anti-inflammatory properties and facilitate cardiovascular protection. However, the effects of isoflavone on nicotine-induced abdominal aortic aneurysms have not yet been elucidated. The objective of the current study was to evaluate the inhibitory effect of isoflavone on nicotine-induced weakening of the aortic wall in mouse models. Nicotine reportedly increases the occurrence of abdominal aortic aneurysms by activating endothelin-1 (ET-1), angiotensinogen and the angiotensin II type 1 (AT1) receptor, leading to an increase in neutrophil elastase, oxidative stress, and matrix metalloproteinase (MMP)-2 expression, which causes vascular wall weakness and damage. Immunohistological analyses have indicated that isoflavone significantly inhibits the activation of ET-1, angiotensinogen and the AT1 receptor in nicotine-administered mice. Additionally, isoflavone suppressed elastic fiber destruction and decreased areas positive for MMP-2, neutrophil elastase, and malondialdehyde in the vascular wall of nicotine-administered mice. Considered together, these findings suggest that isoflavone shows potential for preventing vascular wall injury induced by nicotine administration, and that food containing isoflavone may protect against abdominal aortic aneurysms.


Assuntos
Aorta/efeitos dos fármacos , Isoflavonas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Lesões do Sistema Vascular/prevenção & controle , Administração Oral , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Aorta/patologia , Colágeno/metabolismo , Elastina/metabolismo , Isoflavonas/administração & dosagem , Elastase de Leucócito/metabolismo , Masculino , Malondialdeído/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Nicotina , Receptor de Endotelina A/metabolismo , Receptores de Angiotensina/metabolismo , Lesões do Sistema Vascular/induzido quimicamente
7.
Biomolecules ; 9(8)2019 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-31426470

RESUMO

Pulmonary exposure to cerium oxide nanoparticles (CeO2 NPs) can occur either at the workplace, or due to their release in the environment. Inhaled CeO2 NPs are known to cross the alveolar-capillary barrier and reach various parts of the body, including the vasculature. The anticancer drug cisplatin (CP) causes vascular damage. However, the effects CeO2 NPs on vascular homeostasis in a rat model of CP-induced vascular injury remain unclear. Here, we assessed the impact and underlying mechanism of pulmonary exposure to CeO2 NPs on aorta in rats given a single intraperitoneal injection of cisplatin (CP, 6 mg/kg) to induce vascular damage. Six days later, the rats were intratracheally instilled with either CeO2 NPs (1 mg/kg) or saline (control), and various variables were studied 24 h thereafter in the aortic tissue. The concentration of reduced glutathione and the activity of catalase were significantly increased in the CP + CeO2 NPs group compared with both the CP + saline and the CeO2 NPs groups. The activity of superoxide dismutase was significantly decreased in the CP + CeO2 NPs group compared with both the CP + saline and CeO2 NPs groups. The expression of nuclear factor erythroid-derived 2-like 2 (Nrf2) by the nuclei of smooth muscles and endocardial cells assessed by immunohistochemistry was significantly augmented in CeO2 NPs versus saline, in CP + saline versus saline, and in CP + CeO2 NPs versus CeO2 NPs. Moreover, the concentrations of total nitric oxide, lipid peroxidation and 8-hydroxy-2-deoxyguanosine were significantly elevated in the CP + CeO2 NPs group compared with both the CP + saline and the CeO2 NPs groups. Similarly, compared with both the CP + saline and CeO2 NPs groups, the combination of CP and CeO2 NPs significantly elevated the concentrations of interleukin-6 and tumour necrosis factor-α. Additionally, aortic DNA damage assessed by Comet assay was significantly increased in CeO2 NPs compared with saline, and in CP + saline versus saline, and all these effects were significantly aggravated by the combination of CP and CeO2 NPs. We conclude that pulmonary exposure to CeO2 NPs aggravates vascular toxicity in animal model of vascular injury through mechanisms involving oxidative stress, Nrf2 expression, inflammation and DNA damage.


Assuntos
Doenças da Aorta/induzido quimicamente , Cério/toxicidade , Inflamação/induzido quimicamente , Pneumopatias/induzido quimicamente , Nanopartículas/toxicidade , Lesões do Sistema Vascular/induzido quimicamente , Administração por Inalação , Animais , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Cério/administração & dosagem , Dano ao DNA , Inflamação/metabolismo , Inflamação/patologia , Pneumopatias/metabolismo , Pneumopatias/patologia , Masculino , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia
8.
Med Oncol ; 36(8): 72, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292791

RESUMO

Vascular side effects of standard chemotherapeutic drugs and novel anti-tumor agents complicate treatment cycles, increase non-cancer-related mortality rates, and decrease the quality of life in cancer survivors. Arterial thromboembolic events (ATEE) are associated with most anti-cancer medications. Previous articles have reported a variety of vascular events including ST-segment elevation myocardial infarction as one of the most severe acute arterial attacks. Cardiologists should play an early role in identifying those at high risk for vascular complications and tailor anti-thrombotic therapies in keeping with thromboembolic and bleeding risks. Early preventive steps and individualized chemotherapy may decrease anti-tumor treatment-related vascular events. Here, we aim to provide an extensive review of anti-tumor drug-induced vascular injury (DIVI), pathomechanisms, and risk stratification underlining arterial events. We give a summary of clinical manifestations, treatment options, and possible preventive measures of DIVI. Additionally, the treatment of modifiable risk factors and tailored choice of chemotherapy must be considered in all oncology patients to prevent DIVI. We propose a complex tool for ATEE risk stratification which is warranted for early prediction leading to less frequent complications in cancer patients.


Assuntos
Antineoplásicos/efeitos adversos , Lesões do Sistema Vascular/induzido quimicamente , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Humanos
9.
Circ Res ; 125(5): 507-519, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31248335

RESUMO

RATIONALE: PAD4 (peptidylarginine deiminase type IV), an enzyme essential for neutrophil extracellular trap formation (NETosis), is released together with neutrophil extracellular traps into the extracellular milieu. It citrullinates histones and holds the potential to citrullinate other protein targets. While NETosis is implicated in thrombosis, the impact of the released PAD4 is unknown. OBJECTIVE: This study tests the hypothesis that extracellular PAD4, released during inflammatory responses, citrullinates plasma proteins, thus affecting thrombus formation. METHODS AND RESULTS: Here, we show that injection of r-huPAD4 in vivo induces the formation of VWF (von Willebrand factor)-platelet strings in mesenteric venules and that this is dependent on PAD4 enzymatic activity. VWF-platelet strings are naturally cleaved by ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type-1 motif-13). We detected a reduction of endogenous ADAMTS13 activity in the plasma of wild-type mice injected with r-huPAD4. Using mass spectrometry and in vitro studies, we found that r-huPAD4 citrullinates ADAMTS13 on specific arginine residues and that this modification dramatically inhibits ADAMTS13 enzymatic activity. Elevated citrullination of ADAMTS13 was observed in plasma samples of patients with sepsis or noninfected patients who were elderly (eg, age >65 years) and had underlying comorbidities (eg, diabetes mellitus and hypertension) as compared with healthy donors. This shows that ADAMTS13 is citrullinated in vivo. VWF-platelet strings that form on venules of Adamts13-/- mice were immediately cleared after injection of r-huADAMTS13, while they persisted in vessels of mice injected with citrullinated r-huADAMTS13. Next, we assessed the effect of extracellular PAD4 on platelet-plug formation after ferric chloride-induced injury of mesenteric venules. Administration of r-huPAD4 decreased time to vessel occlusion and significantly reduced thrombus embolization. CONCLUSIONS: Our data indicate that PAD4 in circulation reduces VWF-platelet string clearance and accelerates the formation of a stable platelet plug after vessel injury. We propose that this effect is, at least in part, due to ADAMTS13 inhibition.


Assuntos
Plaquetas/metabolismo , Proteína-Arginina Desiminase do Tipo 4/sangue , Trombose/sangue , Lesões do Sistema Vascular/sangue , Fator de von Willebrand/metabolismo , Idoso , Animais , Plaquetas/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína-Arginina Desiminase do Tipo 4/toxicidade , Trombose/induzido quimicamente , Lesões do Sistema Vascular/induzido quimicamente , Adulto Jovem
10.
Hypertension ; 73(5): 1007-1017, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30929512

RESUMO

Vascular injury is an early manifestation in hypertension and a cause of end-organ damage. MicroRNAs play an important role in cardiovascular disease, but their implication in vascular injury in hypertension remains unclear. This study revealed using an unbiased approach, microRNA and mRNA sequencing with molecular interaction analysis, a microRNA-transcription factor coregulatory network involved in vascular injury in mice made hypertensive by 14-day Ang II (angiotensin II) infusion. A candidate gene approach identified upregulated miR-431-5p encoded in the conserved 12qF1 (14q32 in humans) microRNA cluster, whose expression correlated with blood pressure, and which has been shown to be upregulated in human atherosclerosis, as a potential key regulator in Ang II-induced vascular injury. Gain- and loss-of-function in human vascular smooth muscle cells demonstrated that miR-431-5p regulates in part gene expression by targeting ETS homologous factor. In vivo miR-431-5p knockdown delayed Ang II-induced blood pressure elevation and reduced vascular injury in mice, which demonstrated its potential as a target for treatment of hypertension and vascular injury.


Assuntos
Regulação da Expressão Gênica , Hipertensão/genética , MicroRNAs/genética , RNA/genética , Lesões do Sistema Vascular/genética , Angiotensina II/toxicidade , Animais , Células Cultivadas , Modelos Animais de Doenças , Hipertensão/induzido quimicamente , Hipertensão/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/biossíntese , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Lesões do Sistema Vascular/induzido quimicamente , Lesões do Sistema Vascular/prevenção & controle
12.
Antioxid Redox Signal ; 30(7): 927-944, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390191

RESUMO

AIMS: Protein tyrosine phosphatase-1B (PTP1B) is a negative regulator of receptor tyrosine kinase signaling. In this study, we determined the importance of PTP1B expressed in endothelial cells for the vascular response to arterial injury in obesity. RESULTS: Morphometric analysis of vascular lesions generated by 10% ferric chloride (FeCl3) revealed that tamoxifen-inducible endothelial PTP1B deletion (Tie2.ERT2-Cre × PTP1Bfl/fl; End.PTP1B knockout, KO) significantly increased neointima formation, and reduced numbers of (endothelial lectin-positive) luminal cells in End.PTP1B-KO mice suggested impaired lesion re-endothelialization. Significantly higher numbers of proliferating cell nuclear antigen (PCNA)-positive proliferating cells as well as smooth muscle actin (SMA)-positive or vascular cell adhesion molecule-1 (VCAM1)-positive activated smooth muscle cells or vimentin-positive myofibroblasts were detected in neointimal lesions of End.PTP1B-KO mice, whereas F4/80-positive macrophage numbers did not differ. Activated receptor tyrosine kinase and transforming growth factor-beta (TGFß) signaling and oxidative stress markers were also significantly more abundant in End.PTP1B-KO mouse lesions. Genetic knockdown or pharmacological inhibition of PTP1B in endothelial cells resulted in increased expression of caveolin-1 and oxidative stress, and distinct morphological changes, elevated numbers of senescence-associated ß-galactosidase-positive cells, and increased expression of tumor suppressor protein 53 (p53) or the cell cycle inhibitor cyclin-dependent kinase inhibitor-2A (p16INK4A) suggested senescence, all of which could be attenuated by small interfering RNA (siRNA)-mediated downregulation of caveolin-1. In vitro, senescence could be prevented and impaired re-endothelialization restored by preincubation with the antioxidant Trolox. INNOVATION: Our results reveal a previously unknown role of PTP1B in endothelial cells and provide mechanistic insights how PTP1B deletion or inhibition may promote endothelial senescence. CONCLUSION: Absence of PTP1B in endothelial cells impairs re-endothelialization, and the failure to induce smooth muscle cell quiescence or to protect from circulating growth factors may result in neointimal hyperplasia.


Assuntos
Músculo Liso Vascular/citologia , Neointima/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Lesões do Sistema Vascular/patologia , Animais , Apoptose , Linhagem Celular , Cloretos/efeitos adversos , Cromanos/farmacologia , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Compostos Férricos/efeitos adversos , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Obesos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Reepitelização/efeitos dos fármacos , Tamoxifeno/farmacologia , Lesões do Sistema Vascular/induzido quimicamente , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/metabolismo , Cicatrização
13.
J Vis Exp ; (139)2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30247470

RESUMO

Occlusive arterial thrombosis leading to cerebral ischemic stroke and myocardial infarction contributes to ~13 million deaths every year globally. Here, we have translated a vascular injury model from a small animal into a large animal (canine), with slight modifications that can be used for pre-clinical screening of prophylactic and thrombolytic agents. In addition to the surgical methods, the modified protocol describes the step-by-step methods to assess carotid artery canalization by angiography, detailed instructions to process both the brain and carotid artery for histological analysis to verify carotid canalization and cerebral hemorrhage, and specific parameters to complete an assessment of downstream thromboembolic events by utilizing magnetic resonance imaging (MRI). In addition, specific procedural changes from the previously well-established small animal model necessary to translate into a large animal (canine) vascular injury are discussed.


Assuntos
Trombose das Artérias Carótidas/induzido quimicamente , Cloretos/efeitos adversos , Compostos Férricos/efeitos adversos , Lesões do Sistema Vascular/induzido quimicamente , Animais , Modelos Animais de Doenças , Cães , Humanos , Masculino
14.
Thromb Res ; 169: 64-72, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30015230

RESUMO

Vascular endothelial injury (VEI) triggers pathological processes in various cardiovascular diseases, such as coronary heart disease and hypertension. To further elucidate the in vivo pathological mechanisms of VEI, many animal models have been established. For the easiness of genetic manipulation and feeding, murine models become most commonly applied for investigating VEI. Subsequently, countless valuable information concerning pathogenesis has been obtained and therapeutic strategies for VEI have been developed. This review will highlight some typical murine VEI models from the perspectives of pharmacological intervention, surgery and genetic manipulation. The techniques, pathophysiology, advantages, disadvantages and the experimental purpose of each model will also be discussed.


Assuntos
Modelos Animais de Doenças , Endotélio Vascular/lesões , Endotélio Vascular/fisiopatologia , Lesões do Sistema Vascular/etiologia , Lesões do Sistema Vascular/fisiopatologia , Animais , Endotélio Vascular/efeitos dos fármacos , Deleção de Genes , Humanos , Camundongos , Ratos , Recombinação Genética , Transgenes , Procedimentos Cirúrgicos Vasculares/efeitos adversos , Lesões do Sistema Vascular/induzido quimicamente , Lesões do Sistema Vascular/genética
15.
Biochem Biophys Res Commun ; 497(4): 1068-1075, 2018 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-29481801

RESUMO

Skin mesenchymal stem cells (S-MSCs) revealed an important immunomodulatory activity to markedly suppress the formation of the atherosclerosis (AS) plaque by modulating macrophages, and also inhibit the development of experimental autoimmune encephalomyelitis (EAE) by regulating T helper 17 (Th17) cell differentiation. Macrophages and Th17 cells play important roles in hypertension. However, it remains unclear whether S-MSCs are capable of improving angiotensin (AngII)-induced hypertension by acting on inflammatory cells. Therefore, we studied a direct effect of S-MSC treatment on an AngII-induced hypertensive mouse model. Twenty-seven C57BL/6 (WT) mice were divided into three groups: Control group (WT-NC), AngII-infused group (WT-AngII), and S-MSC treatment group (WT-AngII + S-MSCs). In contrast to WT-AngII group, systolic blood pressure (SBP) and vascular damage were strikingly attenuated after tail-vein injection of S-MSCs. Numbers of Th17 cells in mouse peripheral blood of S-MSC treated group were significantly decreased, and IL-17 mRNA and protein levels were also reduced in the aorta and serum compared with WT-AngII group. Furthermore, macrophages in S-MSC treated group were switched to a regulatory profile characterized by a low ability to produce pro-inflammatory cytokine TNF-α and a high ability to produce anti-inflammatory cytokines Arg1 and IL-10. Mechanistically, we found that S-MSCs inhibited Th17 cell differentiation and induced M2 polarization. Moreover, we found proliferation and migration of S-MSCs were elevated, and expression of CXCR4, the receptor for Stromal derivated factor -1(SDF-1), was markedly increased in lipopolysaccharide (LPS)- stimulated S-MSCs. Given that SDF-1 expression was increased in the serum and aorta in AngII- induced hypertensive mice, the immunomodulatory effects exerted by S-MSCs involved the CXCR4/SDF-1 signaling. Collectively, our data demonstrated that S-MSCs attenuated AngII-induced hypertension by inhibiting Th17 cell differentiation and by modulating macrophage M2 polarization, suggesting that S-MSCs potentially have a role in stem cell based therapy for hypertension.


Assuntos
Angiotensina II/efeitos adversos , Hipertensão/terapia , Transplante de Células-Tronco Mesenquimais , Lesões do Sistema Vascular/terapia , Animais , Diferenciação Celular , Hipertensão/induzido quimicamente , Hipertensão/prevenção & controle , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células Th17/citologia , Lesões do Sistema Vascular/induzido quimicamente , Lesões do Sistema Vascular/prevenção & controle
16.
Cardiovasc Res ; 113(14): 1753-1762, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016715

RESUMO

AIMS: Matrix metalloproteinases (MMPs) have been implicated in the development of hypertension in animal models and humans. Mmp2 deletion did not change Ang II-induced blood pressure (BP) rise. However, whether Mmp2 knockout affects angiotensin (Ang) II-induced vascular injury has not been tested. We sought to determine whether Mmp2 knockout will prevent Ang II-induced vascular injury. METHODS AND RESULTS: A fourteen-day Ang II infusion (1000 ng/kg/min, SC) increased systolic BP, decreased vasodilatory responses to acetylcholine, induced mesenteric artery (MA) hypertrophic remodelling, and enhanced MA stiffness in wild-type (WT) mice. Ang II enhanced aortic media and perivascular reactive oxygen species generation, aortic vascular cell adhesion molecule-1 and monocyte chemotactic protein-1 expression, perivascular monocyte/macrophage and T cell infiltration, and the fraction of spleen activated CD4+CD69+ and CD8+CD69+ T cells, and Ly-6Chi monocytes. Study of intracellular signalling showed that Ang II increased phosphorylation of epidermal growth factor receptor and extracellular-signal-regulated kinase 1/2 in vascular smooth muscle cells isolated from WT mice. All these effects were reduced or prevented by Mmp2 knockout, except for systolic BP elevation. Ang II increased Mmp2 expression in immune cells infiltrating the aorta and perivascular fat. Bone marrow (BM) transplantation experiments revealed that in absence of MMP2 in immune cells, Ang II-induced BP elevation was decreased, and that when MMP2 was deficient in either immune or vascular cells, Ang II-induced endothelial dysfunction was blunted. CONCLUSIONS: Mmp2 knockout impaired Ang II-induced vascular injury but not BP elevation. BM transplantation revealed a role for immune cells in Ang II-induced BP elevation, and for both vascular and immune cell MMP2 in Ang II-induced endothelial dysfunction.


Assuntos
Angiotensina II/farmacologia , Hipertensão/genética , Metaloproteinase 2 da Matriz/genética , Lesões do Sistema Vascular/induzido quimicamente , Lesões do Sistema Vascular/genética , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Endotélio Vascular/metabolismo , Hipertensão/fisiopatologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo/genética , Lesões do Sistema Vascular/metabolismo
17.
Toxicol Sci ; 159(1): 42-49, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28903491

RESUMO

Drug-induced vascular injury (DIVI) in preclinical studies can delay, if not terminate, a drug development program. Clinical detection of DIVI can be very difficult as there are no definitive biomarkers known to reliably detect this disorder in all instances. The preclinical identification of DIVI requires detailed microscopic examination of a wide range of tissues although one of the most commonly affected areas in rats is the mesenteric vasculature. The reason for this predisposition of mesenteric arteries in rats as well as the exact mechanism and cell types involved in the initial development of these lesions have not been fully elucidated. We hypothesized that by using a mixed culture of cells from rat mesenteric tissue, we would be able to identify an RNA expression signature that could predict the invivo development of DIVI. Five compounds designed to inhibit Phosphodiesterase 4 activity (PDE4i) were chosen as positive controls. PDE4i's are well known to induce DIVI in the mesenteric vasculature of rats and there is microscopic evidence that this is associated, at least in part, with a proinflammatory mechanism. We surveyed, by qRT-PCR, the expression of 96 genes known to be involved in inflammation and using a Random-Forest model, identified 12 genes predictive of invivo DIVI outcomes in rats. Using these genes, we were able to cross-validate the ability of the Random-Forest modeling to predict the concentration at which PDE4i caused DIVI invivo.


Assuntos
Artérias Mesentéricas/citologia , Inibidores da Fosfodiesterase 4/toxicidade , Lesões do Sistema Vascular/induzido quimicamente , Animais , Masculino , Ratos , Ratos Sprague-Dawley
18.
Toxicol Pathol ; 45(5): 633-648, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28830331

RESUMO

Lack of biomarkers specific to and either predictive or diagnostic of drug-induced vascular injury (DIVI) continues to be a major obstacle during drug development. Biomarkers derived from physiologic responses to vessel injury, such as inflammation and vascular remodeling, could make good candidates; however, they characteristically lack specificity for vasculature. We evaluated whether vascular remodeling-associated protease activity, as well as changes to vessel permeability resulting from DIVI, could be visualized ex vivo in affected vessels, thereby allowing for visual monitoring of the pathology to address specificity. We found that visualization of matrix metalloproteinase activation accompanied by increased vascular leakage in the mesentery of rats treated with agents known to induce vascular injury correlated well with incidence and severity of histopathological findings and associated inflammation as well as with circulating levels of tissue inhibitors of metalloproteinase 1 and neutrophil gelatinase-associated lipocalin. The weight of evidence approach reported here shows promise as a composite DIVI preclinical tool by means of complementing noninvasive monitoring of circulating biomarkers of inflammation with direct imaging of affected vasculature and thus lending specificity to its interpretation. These findings are supportive of a potential strategy that relies on translational imaging tools in conjunction with circulating biomarker data for high-specificity monitoring of VI both preclinically and clinically.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Metaloproteinases da Matriz/metabolismo , Imagem Óptica/métodos , Lesões do Sistema Vascular/induzido quimicamente , Lesões do Sistema Vascular/diagnóstico por imagem , Animais , Biomarcadores/análise , Cães , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Imuno-Histoquímica , Masculino , Metaloproteinases da Matriz/química , Artérias Mesentéricas/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley
19.
Circulation ; 135(22): 2155-2162, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28330983

RESUMO

BACKGROUND: Innate antigen-presenting cells and adaptive immune T cells have been implicated in the development of hypertension. However, the T-lymphocyte subsets involved in the pathophysiology of hypertension remain unclear. A small subset of innate-like T cells expressing the γδ T cell receptor (TCR) rather than the αß TCR could play a role in the initiation of the immune response in hypertension. We aimed to determine whether angiotensin (Ang) II caused kinetic changes in γδ T cells; deficiency in γδ T cells blunted Ang II-induced hypertension, vascular injury, and T-cell activation; and γδ T cells are associated with human hypertension. METHODS: Male C57BL/6 wild-type and Tcrδ-/- mice, which are devoid of γδ T cells, or wild-type mice injected IP with control isotype IgG or γδ T cell-depleting antibodies, were infused or not with Ang II for 3, 7, or 14 days. T-cell profiling was determined by flow cytometry, systolic blood pressure (SBP) by telemetry, and mesentery artery endothelial function by pressurized myography. TCR γ constant region gene expression levels and clinical data of a whole blood gene expression microarray study, including normotensive and hypertensive subjects, were used to demonstrate an association between γδ T cells and SBP. RESULTS: Seven- and 14-day Ang II infusion increased γδ T-cell numbers and activation in the spleen of wild-type mice (P<0.05). Fourteen days of Ang II infusion increased SBP (P<0.01) and decreased mesenteric artery endothelial function (P<0.01) in wild-type mice, both of which were abrogated in Tcrδ-/- mice (P<0.01). Anti-TCRγδ antibody-induced γδ T-cell depletion blunted Ang II-induced SBP rise and endothelial dysfunction (P<0.05), compared with isotype antibody-treated Ang II-infused mice. Ang II-induced T-cell activation in the spleen and perivascular adipose tissue was blunted in Tcrδ-/- mice (P<0.01). In humans, the association between SBP and γδ T cells was demonstrated by a multiple linear regression model integrating whole blood TCR γ constant region gene expression levels and age and sex (R2=0.12, P<1×10-6). CONCLUSIONS: γδ T cells mediate Ang II-induced SBP elevation, vascular injury, and T-cell activation in mice. γδ T cells might contribute to the development of hypertension in humans.


Assuntos
Angiotensina II/toxicidade , Hipertensão/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/deficiência , Linfócitos T/metabolismo , Lesões do Sistema Vascular/metabolismo , Animais , Humanos , Hipertensão/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/efeitos dos fármacos , Lesões do Sistema Vascular/induzido quimicamente
20.
J Oral Maxillofac Surg ; 74(8): 1630-6, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27067061

RESUMO

Minimally invasive facial cosmetic surgery procedures have seen an exponential increase in numbers over the past decade. The most commonly performed procedures are neuromodulator and soft tissue filler procedures. Although soft tissue fillers have a high safety and predictability profile, these procedures recently have been associated with serious and dire adverse events. This article will discuss some of the vascular complications associated with facial soft tissue fillers. Management and prevention of these adverse events also will be discussed.


Assuntos
Preenchedores Dérmicos/efeitos adversos , Face/irrigação sanguínea , Lesões do Sistema Vascular/induzido quimicamente , Materiais Biocompatíveis/efeitos adversos , Técnicas Cosméticas/efeitos adversos , Humanos , Injeções Intradérmicas , Necrose/induzido quimicamente , Necrose/prevenção & controle , Segurança do Paciente , Fatores de Risco , Lesões do Sistema Vascular/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA