Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
1.
Sci Adv ; 10(28): eado1453, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985862

RESUMO

The interplay between humans and their microbiome is crucial for various physiological processes, including nutrient absorption, immune defense, and maintaining homeostasis. Microbiome alterations can directly contribute to diseases or heighten their likelihood. This relationship extends beyond humans; microbiota play vital roles in other organisms, including eukaryotic pathogens causing severe diseases. Notably, Wolbachia, a bacterial microbiota, is essential for parasitic worms responsible for lymphatic filariasis and onchocerciasis, devastating human illnesses. Given the lack of rapid cures for these infections and the limitations of current treatments, new drugs are imperative. Here, we disrupt Wolbachia's symbiosis with pathogens using boron-based compounds targeting an unprecedented Wolbachia enzyme, leucyl-tRNA synthetase (LeuRS), effectively inhibiting its growth. Through a compound demonstrating anti-Wolbachia efficacy in infected cells, we use biophysical experiments and x-ray crystallography to elucidate the mechanism behind Wolbachia LeuRS inhibition. We reveal that these compounds form adenosine-based adducts inhibiting protein synthesis. Overall, our study underscores the potential of disrupting key microbiota to control infections.


Assuntos
Microbiota , Wolbachia , Wolbachia/efeitos dos fármacos , Humanos , Animais , Leucina-tRNA Ligase/metabolismo , Leucina-tRNA Ligase/antagonistas & inibidores , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Cristalografia por Raios X , Compostos de Boro/farmacologia , Compostos de Boro/química , Simbiose , Modelos Moleculares
2.
Biomolecules ; 14(6)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38927114

RESUMO

Incidences of drug-resistant tuberculosis have become common and are rising at an alarming rate. Aminoacyl t-RNA synthetase has been validated as a newer target against Mycobacterium tuberculosis. Leucyl t-RNA synthetase (LeuRS) is ubiquitously found in all organisms and regulates transcription, protein synthesis, mitochondrial RNA cleavage, and proofreading of matured t-RNA. Leucyl t-RNA synthetase promotes growth and development and is the key enzyme needed for biofilm formation in Mycobacterium. Inhibition of this enzyme could restrict the growth and development of the mycobacterial population. A database consisting of 2734 drug-like molecules was screened against leucyl t-RNA synthetase enzymes through virtual screening. Based on the docking scores and MMGBSA energy values, the top three compounds were selected for molecular dynamics simulation. The druggable nature of the top three hits was confirmed by predicting their pharmacokinetic parameters. The top three hits-compounds 1035 (ZINC000001543916), 1054 (ZINC000001554197), and 2077 (ZINC000008214483)-were evaluated for their binding affinity toward leucyl t-RNA synthetase by an isothermal titration calorimetry study. The inhibitory activity of these compounds was tested against antimycobacterial activity, biofilm formation, and LeuRS gene expression potential. Compound 1054 (Macimorelin) was found to be the most potent molecule, with better antimycobacterial activity, enzyme binding affinity, and significant inhibition of biofilm formation, as well as inhibition of the LeuRS gene expression. Compound 1054, the top hit compound, has the potential to be used as a lead to develop successful leucyl t-RNA synthetase inhibitors.


Assuntos
Antituberculosos , Inibidores Enzimáticos , Leucina-tRNA Ligase , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Ligantes , Antituberculosos/farmacologia , Antituberculosos/química , Leucina-tRNA Ligase/antagonistas & inibidores , Leucina-tRNA Ligase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Calorimetria , Simulação de Dinâmica Molecular , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Simulação por Computador , Ligação Proteica , Humanos
3.
ACS Synth Biol ; 13(7): 2141-2149, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38904157

RESUMO

The Escherichia coli leucyl-tRNA synthetase (EcLeuRS)/tRNAEcLeu pair has been engineered to genetically encode a structurally diverse group of enabling noncanonical amino acids (ncAAs) in eukaryotes, including those with bioconjugation handles, environment-sensitive fluorophores, photocaged amino acids, and native post-translational modifications. However, the scope of this toolbox in mammalian cells is limited by the poor activity of tRNAEcLeu. Here, we overcome this limitation by evolving tRNAEcLeu directly in mammalian cells by using a virus-assisted selection scheme. This directed evolution platform was optimized for higher throughput such that the entire acceptor stem of tRNAEcLeu could be simultaneously engineered, which resulted in the identification of several variants with remarkably improved efficiency for incorporating a wide range of ncAAs. The advantage of the evolved leucyl tRNAs was demonstrated by expressing ncAA mutants in mammalian cells that were challenging to express before using the wild-type tRNAEcLeu, by creating viral vectors that facilitated ncAA mutagenesis at a significantly lower dose and by creating more efficient mammalian cell lines stably expressing the ncAA-incorporation machinery.


Assuntos
Aminoácidos , Evolução Molecular Direcionada , Escherichia coli , Mutagênese , Evolução Molecular Direcionada/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Aminoácidos/genética , Aminoácidos/metabolismo , Células HEK293 , Leucina-tRNA Ligase/genética , Leucina-tRNA Ligase/metabolismo
4.
Am J Pathol ; 194(8): 1571-1580, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38762116

RESUMO

Duchenne muscular dystrophy (DMD), caused by loss-of-function mutations in the dystrophin gene, results in progressive muscle weakness and early fatality. Impaired autophagy is one of the cellular hallmarks of DMD, contributing to the disease progression. Molecular mechanisms underlying the inhibition of autophagy in DMD are not well understood. In the current study, the DMD mouse model mdx was used for the investigation of signaling pathways leading to suppression of autophagy. Mammalian target of rapamycin complex 1 (mTORC1) was hyperactive in the DMD muscles, accompanying muscle weakness and autophagy impairment. Surprisingly, Akt, a well-known upstream regulator of mTORC1, was not responsible for mTORC1 activation or the dystrophic muscle phenotypes. Instead, leucyl-tRNA synthetase (LeuRS) was overexpressed in mdx muscles compared with the wild type. LeuRS activates mTORC1 in a noncanonical mechanism that involves interaction with RagD, an activator of mTORC1. Disrupting LeuRS interaction with RagD by the small-molecule inhibitor BC-LI-0186 reduced mTORC1 activity, restored autophagy, and ameliorated myofiber damage in the mdx muscles. Furthermore, inhibition of LeuRS by BC-LI-0186 improved dystrophic muscle strength in an autophagy-dependent manner. Taken together, our findings uncovered a noncanonical function of the housekeeping protein LeuRS as a potential therapeutic target in the treatment of DMD.


Assuntos
Autofagia , Modelos Animais de Doenças , Leucina-tRNA Ligase , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos mdx , Debilidade Muscular , Distrofia Muscular de Duchenne , Animais , Masculino , Camundongos , Leucina-tRNA Ligase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/metabolismo , Transdução de Sinais
5.
Nucleic Acids Res ; 52(12): 7096-7111, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38783009

RESUMO

Aminoacyl-tRNA synthetases (AARS) and tRNAs translate the genetic code in all living cells. Little is known about how their molecular ancestors began to enforce the coding rules for the expression of their own genes. Schimmel et al. proposed in 1993 that AARS catalytic domains began by reading an 'operational' code in the acceptor stems of tRNA minihelices. We show here that the enzymology of an AARS urzyme•TΨC-minihelix cognate pair is a rich in vitro realization of that idea. The TΨC-minihelixLeu is a very poor substrate for full-length Leucyl-tRNA synthetase. It is a superior RNA substrate for the corresponding urzyme, LeuAC. LeuAC active-site mutations shift the choice of both amino acid and RNA substrates. AARS urzyme•minihelix cognate pairs are thus small, pliant models for the ancestral decoding hardware. They are thus an ideal platform for detailed experimental study of the operational RNA code.


Assuntos
Aminoacil-tRNA Sintetases , Conformação de Ácido Nucleico , RNA de Transferência , RNA de Transferência/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Domínio Catalítico , Código Genético , RNA Catalítico/química , RNA Catalítico/metabolismo , Especificidade por Substrato , Leucina-tRNA Ligase/metabolismo , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/genética
6.
Nucleic Acids Res ; 51(15): 8070-8084, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37470821

RESUMO

Leucyl-tRNA synthetase (LeuRS) is a Class I aminoacyl-tRNA synthetase (aaRS) that synthesizes leucyl-tRNAleu for codon-directed protein synthesis. Two signature sequences, HxGH and KMSKS help stabilize transition-states for amino acid activation and tRNA aminoacylation by all Class I aaRS. Separate alanine mutants of each signature, together with the double mutant, behave in opposite ways in Pyrococcus horikoshii LeuRS and the 129-residue urzyme ancestral model generated from it (LeuAC). Free energy coupling terms, Δ(ΔG‡), for both reactions are large and favourable for LeuRS, but unfavourable for LeuAC. Single turnover assays with 32Pα-ATP show correspondingly different internal products. These results implicate domain motion in catalysis by full-length LeuRS. The distributed thermodynamic cycle of mutational changes authenticates LeuAC urzyme catalysis far more convincingly than do single point mutations. Most importantly, the evolutionary gain of function induced by acquiring the anticodon-binding (ABD) and multiple insertion modules in the catalytic domain appears to be to coordinate the catalytic function of the HxGH and KMSKS signature sequences. The implication that backbone elements of secondary structures achieve a major portion of the overall transition-state stabilization by LeuAC is also consistent with coevolution of the genetic code and metabolic pathways necessary to produce histidine and lysine sidechains.


Assuntos
Aminoacil-tRNA Sintetases , Leucina-tRNA Ligase , Aminoacil-tRNA Sintetases/metabolismo , Anticódon , Aminoacilação de RNA de Transferência , Código Genético , Leucina-tRNA Ligase/metabolismo , Catálise
7.
Commun Biol ; 5(1): 883, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038645

RESUMO

To correctly aminoacylate tRNALeu, leucyl-tRNA synthetase (LeuRS) catalyzes three reactions: activation of leucine by ATP to form leucyl-adenylate (Leu-AMP), transfer of this amino acid to tRNALeu and post-transfer editing of any mischarged product. Although LeuRS has been well characterized biochemically, detailed structural information is currently only available for the latter two stages of catalysis. We have solved crystal structures for all enzymatic states of Neisseria gonorrhoeae LeuRS during Leu-AMP formation. These show a cycle of dramatic conformational changes, involving multiple domains, and correlate with an energetically unfavorable peptide-plane flip observed in the active site of the pre-transition state structure. Biochemical analyses, combined with mutant structural studies, reveal that this backbone distortion acts as a trigger, temporally compartmentalizing the first two catalytic steps. These results unveil the remarkable effect of this small structural alteration on the global dynamics and activity of the enzyme.


Assuntos
Leucina-tRNA Ligase , RNA de Transferência de Leucina , Catálise , Domínio Catalítico , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/genética , Leucina-tRNA Ligase/metabolismo , Peptídeos , RNA de Transferência de Leucina/metabolismo
8.
Nat Commun ; 13(1): 2904, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614056

RESUMO

All living organisms have the ability to sense nutrient levels to coordinate cellular metabolism. Despite the importance of nutrient-sensing pathways that detect the levels of amino acids and glucose, how the availability of these two types of nutrients is integrated is unclear. Here, we show that glucose availability regulates the central nutrient effector mTORC1 through intracellular leucine sensor leucyl-tRNA synthetase 1 (LARS1). Glucose starvation results in O-GlcNAcylation of LARS1 on residue S1042. This modification inhibits the interaction of LARS1 with RagD GTPase and reduces the affinity of LARS1 for leucine by promoting phosphorylation of its leucine-binding site by the autophagy-activating kinase ULK1, decreasing mTORC1 activity. The lack of LARS1 O-GlcNAcylation constitutively activates mTORC1, supporting its ability to sense leucine, and deregulates protein synthesis and leucine catabolism under glucose starvation. This work demonstrates that LARS1 integrates leucine and glucose availability to regulate mTORC1 and the metabolic fate of leucine.


Assuntos
Acetilglucosamina , Glucose , Leucina-tRNA Ligase , Leucina , Alvo Mecanístico do Complexo 1 de Rapamicina , Acetilglucosamina/metabolismo , Autofagia , Glucose/metabolismo , Humanos , Leucina/metabolismo , Leucina-tRNA Ligase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
9.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457045

RESUMO

Aminoacyl-tRNA synthetase (aaRS)/tRNA cognate pairs translate the genetic code by synthesizing specific aminoacyl-tRNAs that are assembled on messenger RNA by the ribosome. Deconstruction of the two distinct aaRS superfamilies (Classes) has provided conceptual and experimental models for their early evolution. Urzymes, containing ~120-130 amino acids excerpted from regions where genetic coding sequence complementarities have been identified, are key experimental models motivated by the proposal of a single bidirectional ancestral gene. Previous reports that Class I and Class II urzymes accelerate both amino acid activation and tRNA aminoacylation have not been extended to other synthetases. We describe a third urzyme (LeuAC) prepared from the Class IA Pyrococcus horikoshii leucyl-tRNA synthetase. We adduce multiple lines of evidence for the authenticity of its catalysis of both canonical reactions, amino acid activation and tRNALeu aminoacylation. Mutation of the three active-site lysine residues to alanine causes significant, but modest reduction in both amino acid activation and aminoacylation. LeuAC also catalyzes production of ADP, a non-canonical enzymatic function that has been overlooked since it first was described for several full-length aaRS in the 1970s. Structural data suggest that the LeuAC active site accommodates two ATP conformations that are prominent in water but rarely seen bound to proteins, accounting for successive, in situ phosphorylation of the bound leucyl-5'AMP phosphate, accounting for ADP production. This unusual ATP consumption regenerates the transition state for amino acid activation and suggests, in turn, that in the absence of the editing and anticodon-binding domains, LeuAC releases leu-5'AMP unusually slowly, relative to the two phosphorylation reactions.


Assuntos
Aminoacil-tRNA Sintetases , Leucina-tRNA Ligase , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Leucina-tRNA Ligase/genética , Leucina-tRNA Ligase/metabolismo , Fosforilação
10.
Nat Cell Biol ; 24(3): 307-315, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35288656

RESUMO

Tumourigenesis and cancer progression require enhanced global protein translation1-3. Such enhanced translation is caused by oncogenic and tumour-suppressive events that drive the synthesis and activity of translational machinery4,5. Here we report the surprising observation that leucyl-tRNA synthetase (LARS) becomes repressed during mammary cell transformation and in human breast cancer. Monoallelic genetic deletion of LARS in mouse mammary glands enhanced breast cancer tumour formation and proliferation. LARS repression reduced the abundance of select leucine tRNA isoacceptors, leading to impaired leucine codon-dependent translation of growth suppressive genes, including epithelial membrane protein 3 (EMP3) and gamma-glutamyltransferase 5 (GGT5). Our findings uncover a tumour-suppressive tRNA synthetase and reveal that dynamic repression of a specific tRNA synthetase-along with its downstream cognate tRNAs-elicits a downstream codon-biased translational gene network response that enhances breast tumour formation and growth.


Assuntos
Aminoacil-tRNA Sintetases , Neoplasias da Mama , Leucina-tRNA Ligase , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Animais , Neoplasias da Mama/genética , Códon/genética , Feminino , Humanos , Leucina-tRNA Ligase/metabolismo , Glicoproteínas de Membrana , Camundongos , RNA de Transferência/metabolismo
11.
J Biol Chem ; 298(4): 101757, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202654

RESUMO

The aminoacyl-tRNA synthetases are an ancient and ubiquitous component of all life. Many eukaryotic synthetases balance their essential function, preparing aminoacyl-tRNA for use in mRNA translation, with diverse roles in cell signaling. Herein, we use long-read sequencing to discover a leukocyte-specific exon skipping event in human leucyl-tRNA synthetase (LARS). We show that this highly expressed splice variant, LSV3, is regulated by serine-arginine-rich splicing factor 1 (SRSF1) in a cell-type-specific manner. LSV3 has a 71 amino acid deletion in the catalytic domain and lacks any tRNA leucylation activity in vitro. However, we demonstrate that this LARS splice variant retains its role as a leucine sensor and signal transducer for the proliferation-promoting mTOR kinase. This is despite the exon deletion in LSV3 including a portion of the previously mapped Vps34-binding domain used for one of two distinct pathways from LARS to mTOR. In conclusion, alternative splicing of LARS has separated the ancient catalytic activity of this housekeeping enzyme from its more recent evolutionary role in cell signaling, providing an opportunity for functional specificity in human immune cells.


Assuntos
Processamento Alternativo , Leucina-tRNA Ligase , Humanos , Leucina-tRNA Ligase/genética , Leucina-tRNA Ligase/metabolismo , RNA de Transferência/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
12.
J Biosci Bioeng ; 133(5): 436-443, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35216933

RESUMO

Isoleucyl-tRNA synthetase (IleRS), leucyl-tRNA synthetase (LeuRS), and valyl-tRNA synthetase (ValRS) are enzymes that have potential for the determination of l-isoleucine, l-leucine, and l-valine in food products and plasma. However, the disadvantages of these enzymes are their specificity and sensitivity. Here, we examined the substrate specificity of IleRS, LeuRS, and ValRS under various conditions of pyrophosphate amplification to improve their specificity and sensitivity. The amount of pyrophosphate produced in IleRS, LeuRS, and ValRS reactions was amplified after the addition of excess adenosine-5'-triphosphate and magnesium ions, and was approximately 9-, 8-, and 7-fold higher, respectively, for each of the initial l-amino acid substrates (50 µM). However, in addition to their target amino acids, IleRS, LeuRS, and ValRS also reacted with l-valine, l-lysine, and l-threonine, respectively. This substrate misrecognition was overcome by making the reaction pH more acidic and by increasing the magnesium ion concentration. The pyrophosphate amplification in IleRS, LeuRS, and ValRS reactions resulted in the production of p1, p4-di (adenosine) 5'-tetraphosphate. We also observed a strong positive correlation (R = 0.99) between the amount of pyrophosphate produced and the initial concentration of l-amino acid with 5 and 50 µM l-isoleucine, l-leucine, and l-valine. Our results suggest that amino acid assays using IleRS, LeuRS, and ValRS are promising methods to accurately measure l-valine, l-isoleucine, and l-leucine in food products and plasma.


Assuntos
Aminoacil-tRNA Sintetases , Leucina-tRNA Ligase , Adenosina/metabolismo , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Difosfatos , Escherichia coli/metabolismo , Isoleucina , Leucina/metabolismo , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/genética , Leucina-tRNA Ligase/metabolismo , Magnésio/metabolismo , RNA de Transferência , Especificidade por Substrato , Valina/metabolismo , Valina-tRNA Ligase/química , Valina-tRNA Ligase/genética , Valina-tRNA Ligase/metabolismo
13.
STAR Protoc ; 2(3): 100642, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34258600

RESUMO

Leucyl-tRNA synthetase 1 (LARS1) synthesizes Leu-tRNALeu for protein synthesis and plays an important role in mTORC1 activation by sensing intracellular leucine concentrations. Here, we describe a protocol for the purification, reductive methylation, binding affinity measurement by microscale thermophoresis, T i value measurement by Tycho, and post-crystallization soaking and cooling in cryoprotectants to improve crystallization of LARS1. Collectively, this allowed us to build the RagD binding domain, which was shown to be a dynamic region of LARS1 refractory to crystallization. For complete details on the use and execution of this protocol, please refer to Kim et al. (2021).


Assuntos
Temperatura Baixa , Crioprotetores/química , Cristalografia por Raios X/métodos , Leucina-tRNA Ligase/química , Cristalização , Leucina-tRNA Ligase/metabolismo , Metilação , Ligação Proteica
14.
Biochem Biophys Res Commun ; 571: 159-166, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34325132

RESUMO

Uncontrolled cell proliferation associated with cancer depends on the functional abrogation of at least one of tumor suppressor. In response to nutrient cue, tuberous sclerosis complex (TSC) works as a tumor suppressor which inhibits cell growth via negative regulation of the mammalian target of rapamycin complex (mTORC1). However, the regulation mechanism of nutrient-dependent cell proliferation in TSC-null cells remains unclear. Here, we demonstrate that leucine is required for cell proliferation through the activation of leucyl-tRNA synthetase (LARS1)-mTORC1 pathway in TSC-null cells. Cell proliferation and survival were attenuated by LARS1 knock-down or inhibitors in TSC-null cells. In addition, either rapamycin or LARS1 inhibitors significantly decreased colony formation ability while their combined treatment drastically attenuated it. Taken together, we suggest that LARS1 inhibitors might considered as novel tools for the regression of tumor growth and proliferation in TSC-null tumor cells which regrow upon discontinuation of the mTORC1 inhibition.


Assuntos
Leucina-tRNA Ligase/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Camundongos , Camundongos Nus , Proteína 1 do Complexo Esclerose Tuberosa/deficiência , Proteína 2 do Complexo Esclerose Tuberosa/deficiência , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
15.
Bioorg Chem ; 112: 104907, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33979735

RESUMO

The enzyme leucyl-tRNA synthetase (LRS) and the amino acid leucine regulate the mechanistic target of rapamycin (mTOR) signaling pathway. Leucine-dependent mTORC1 activation depends on GTPase activating protein events mediated by LRS. In a prior study, compound BC-LI-0186 was discovered and shown to interfere with the mTORC1 signaling pathway by inhibiting the LRS-RagD interaction. However, BC-LI-0186 exhibited poor solubility and was metabolized by human liver microsomes. In this study, in silico physicochemical properties and metabolite analysis of BC-LI-0186 are used to investigate the addition of functional groups to improve solubility and microsomal stability. In vitro experiments demonstrated that 7b and 8a had improved chemical properties while still maintaining inhibitory activity against mTORC1. The results suggest a new strategy for the discovery of novel drug candidates and the treatment of diverse mTORC1-related diseases.


Assuntos
Inibidores Enzimáticos/farmacologia , Leucina-tRNA Ligase/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Proteínas Monoméricas de Ligação ao GTP/antagonistas & inibidores , Pirazolonas/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Leucina-tRNA Ligase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Estrutura Molecular , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Pirazolonas/síntese química , Pirazolonas/química , Relação Estrutura-Atividade
16.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916944

RESUMO

Aminoacyl-tRNA synthetases (AaRS) charge tRNAs with amino acids for protein translation. In plants, cytoplasmic, mitochondrial, and chloroplast AaRS exist that are all coded for by nuclear genes and must be imported from the cytosol. In addition, only a few of the mitochondrial tRNAs needed for translation are encoded in mitochondrial DNA. Despite considerable progress made over the last few years, still little is known how the bulk of cytosolic AaRS and respective tRNAs are transported into mitochondria. Here, we report the identification of a protein complex that ties AaRS and tRNA import into the mitochondria of Arabidopsis thaliana. Using leucyl-tRNA synthetase 2 (LeuRS2) as a model for a mitochondrial signal peptide (MSP)-less precursor, a ≈30 kDa protein was identified that interacts with LeuRS2 during import. The protein identified is identical with a previously characterized mitochondrial protein designated HP30-2 (encoded by At3g49560) that contains a sterile alpha motif (SAM) similar to that found in RNA binding proteins. HP30-2 is part of a larger protein complex that contains with TIM22, TIM8, TIM9 and TIM10 four previously identified components of the translocase for MSP-less precursors. Lack of HP30-2 perturbed mitochondrial biogenesis and function and caused seedling lethality during greening, suggesting an essential role of HP30-2 in planta.


Assuntos
Arabidopsis/fisiologia , Leucina-tRNA Ligase/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA de Transferência/genética , Transporte Biológico , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Biogênese de Organelas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , RNA de Transferência/metabolismo
17.
Cell Rep ; 35(4): 109031, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33910001

RESUMO

Leucyl-tRNA synthetase 1 (LARS1) mediates activation of leucine-dependent mechanistic target of rapamycin complex 1 (mTORC1) as well as ligation of leucine to its cognate tRNAs, yet its mechanism of leucine sensing is poorly understood. Here we describe leucine binding-induced conformational changes of LARS1. We determine different crystal structures of LARS1 complexed with leucine, ATP, and a reaction intermediate analog, leucyl-sulfamoyl-adenylate (Leu-AMS), and find two distinct functional states of LARS1 for mTORC1 activation. Upon leucine binding to the synthetic site, H251 and R517 in the connective polypeptide and 50FPYPY54 in the catalytic domain change the hydrogen bond network, leading to conformational change in the C-terminal domain, correlating with RagD association. Leucine binding to LARS1 is increased in the presence of ATP, further augmenting leucine-dependent interaction of LARS1 and RagD. Thus, this work unveils the structural basis for leucine-dependent long-range communication between the catalytic and RagD-binding domains of LARS1 for mTORC1 activation.


Assuntos
Leucina-tRNA Ligase/metabolismo , Leucina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Humanos , Modelos Moleculares , Transdução de Sinais
18.
Eur J Med Chem ; 217: 113319, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33725631

RESUMO

The protozoan parasite Trypanosoma brucei (T. brucei) causes human African trypanosomiasis (HAT), which is a fatal and neglected disease in the tropic areas, and new treatments are urgently needed. Leucyl-tRNA synthetase (LeuRS) is an attractive target for the development of antimicrobial agents. In this work, starting from the hit compound thiourea ZCL539, we designed and synthesized a series of amides as effective T. brucei LeuRS (TbLeuRS) synthetic site inhibitors. The most potent compounds 74 and 91 showed IC50 of 0.24 and 0.25 µM, which were about 700-fold more potent than the starting hit compound. The structure-activity relationship was also discussed. These compounds provided a new scaffold and lead compounds for further development of antitrypanosomal agents.


Assuntos
Amidas/farmacologia , Antiprotozoários/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Leucina-tRNA Ligase/antagonistas & inibidores , Trypanosoma brucei brucei/efeitos dos fármacos , Amidas/síntese química , Amidas/química , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Leucina-tRNA Ligase/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Trypanosoma brucei brucei/enzimologia
20.
Eur J Med Chem ; 211: 113021, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33248851

RESUMO

Leucyl-tRNA synthetase (LeuRS) is a clinically validated target for the development of antimicrobials. This enzyme catalyzes the formation of charged tRNALeu molecules, an essential substrate for protein translation. In the first step of catalysis LeuRS activates leucine using ATP, forming a leucyl-adenylate intermediate. Bi-substrate inhibitors that mimic this chemically labile phosphoanhydride-linked nucleoside have proven to be potent inhibitors of different members of the aminoacyl-tRNA synthetase family but, to date, they have demonstrated poor antibacterial activity. We synthesized a small series of 1,5-anhydrohexitol-based analogues coupled to a variety of triazoles and performed detailed structure-activity relationship studies with bacterial LeuRS. In an in vitro assay, Kiapp values in the nanomolar range were demonstrated. Inhibitory activity differences between the compounds revealed that the polarity and size of the triazole substituents affect binding. X-ray crystallographic studies of N. gonorrhoeae LeuRS in complex with all the inhibitors highlighted the crucial interactions defining their relative enzyme inhibitory activities. We further examined their in vitro antimicrobial properties by screening against several bacterial and yeast strains. While only weak antibacterial activity against M. tuberculosis was detected, the extensive structural data which were obtained could make these LeuRS inhibitors a suitable starting point towards further antibiotic development.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Inibidores Enzimáticos/farmacologia , Leucina-tRNA Ligase/antagonistas & inibidores , Álcoois Açúcares/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Candida albicans/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Leucina-tRNA Ligase/isolamento & purificação , Leucina-tRNA Ligase/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Neisseria gonorrhoeae/enzimologia , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Álcoois Açúcares/síntese química , Álcoois Açúcares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA