Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(39): 21690-21701, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39292642

RESUMO

Polyols, or sugar alcohols, are widely used in the industry as sweeteners and food formulation ingredients, aiming to combat the incidence of diet-related Non-Communicable Diseases. Given the attractive use of Generally Regarded As Safe (GRAS) enzymes in both academia and industry, this study reports on an optimized process to achieve polyols transglucosylation using a dextransucrase enzyme derived from Leuconostoc mesenteroides. These enzyme modifications could lead to the creation of a new generation of glucosylated polyols with isomalto-oligosaccharides (IMOS) structures, potentially offering added functionalities such as prebiotic effects. These reactions were guided by a design of experiment framework, aimed at maximizing the yields of potential new sweeteners. Under the optimized conditions, dextransucrase first cleared the glycosidic bond of sucrose, releasing fructose with the formation of an enzyme-glucosyl covalent intermediate complex. Then, the acceptor substrate (i.e., polyols) is bound to the enzyme-glucosyl intermediate, resulting in the transfer of glucosyl unit to the tested polyols. Structural insights into the reaction products were obtained through nuclear maneic resonance (NMR) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analyses, which revealed the presence of linear α(1 → 6) glycosidic linkages attached to the polyols, yielding oligosaccharide structures containing from 4 to 10 glucose residues. These new polyols-based oligosaccharides hold promise as innovative prebiotic sweeteners, potentially offering valuable health benefits.


Assuntos
Glucosiltransferases , Leuconostoc mesenteroides , Oligossacarídeos , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Leuconostoc mesenteroides/enzimologia , Leuconostoc mesenteroides/química , Leuconostoc mesenteroides/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Polímeros/química , Polímeros/metabolismo , Biocatálise , Edulcorantes/química , Edulcorantes/metabolismo , Glicosilação
2.
Arch Dermatol Res ; 316(8): 548, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162738

RESUMO

The skin, being the body's largest organ, primarily functions as a formidable defense mechanism against potential microbial infections. The skin's microbiota, consisting of a complex assembly of microorganisms, exerts a pivotal influence on skin homeostasis by modulating keratinocytes and their cytokine secretion, thereby playing an integral role in promoting optimal cutaneous health. Leuconostoc mesenteroides finds extensive application in the production of fermented foods and bacteriocins. Empirical studies validate the effectiveness of L. mesenteroides treatments in enhancing immune function and demonstrating notable antioxidant characteristics. This study investigates the potential of L. mesenteroides in improving skin health and wound healing. It also aims to comprehend their impact on wound healing markers, cytokine production, and cell cycle regulation compared to ferulic acid, known for its wound healing effects. Our findings indicate that L. mesenteroides lysate possesses antibacterial properties against Staphylococcus aureus and Pseudomonas aeruginosa, along with the ability to mitigate their toxic effects in a pathogen-simulating model employing HaCaT keratinocyte cells. Additionally, the lysate demonstrated noteworthy wound closure after a 24-hour treatment, along with a significant reduction in interleukin-6 levels and oxidative stress index. Modulation of the cell cycle is evident by decreasing G0/G1 phases and increasing S and G2/M phases and enhanced expression of wound healing marker genes and proteins CDH1. In conclusion, L. mesenteroides lysate exhibits immune-modulating and antibacterial properties, offering potential alternatives to conventional treatments for various skin conditions. These findings contribute to the exploration of innovative approaches to enhancing human life through skin health and wound healing.


Assuntos
Células HaCaT , Queratinócitos , Leuconostoc mesenteroides , Pseudomonas aeruginosa , Staphylococcus aureus , Cicatrização , Queratinócitos/imunologia , Humanos , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/fisiologia , Leuconostoc mesenteroides/imunologia , Leuconostoc mesenteroides/metabolismo , Pseudomonas aeruginosa/imunologia , Antibacterianos/farmacologia , Pele/imunologia , Pele/microbiologia , Pele/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Ciclo Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Linhagem Celular , Citocinas/metabolismo , Interleucina-6/metabolismo
3.
World J Microbiol Biotechnol ; 40(7): 204, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755413

RESUMO

Globally colorectal cancer ranks as the third most widespread disease and the third leading cause of cancer-associated mortality. Immunotherapy treatments like PD-L1 blockade have been used to inhibit the PD-L1 legend, which boosts the activity of cytotoxic T lymphocytes. Recently, studies suggest that some probiotics could potentially enhance the effectiveness of immunotherapy treatments for cancer patients. We found that in Caco-2 and HT-29 cells, the live Leuconostoc mesenteroides treatment resulted an increase in the PD-L1 expression and this treatment stimulated interferon-gamma (IFN-γ) production in Jurkat T-cells. Due to the well-established ability of IFN-γ to enhance PD-L1 expression, the combination of IFN-γ and L. mesenteroides was used in colon cancer cell lines and a resulting remarkable increase of over tenfold in PD-L1 expression was obtained. Interestingly, when L. mesenteroides and IFN-γ are present, the blockage of PD-L1 using PD-L1 antibodies not only improved the viability of Jurkat T-cells but also significantly boosted the levels of IFN-γ and IL-2, the T-cells activation marker cytokines. In addition to upregulating PD-L1, L. mesenteroides also activated Toll-like receptors (TLRs) and NOD-like receptors (NODs) pathways, specifically through TLR2 and NOD2, while also exerting a suppressive effect on autophagy in colon cancer cell lines. In conclusion, our findings demonstrate a significant upregulation of PD-L1 expression in colon cancer cells upon co-culturing with L. mesenteroides. Moreover, the presence of PD-L1 antibodies during co-culturing activates Jurkat T cells. The observed enhancement in PD-L1 expression may be attributed to the inhibition of the Autophagy pathway or activation of the hippo pathway. KEY POINTS: Co-culturing L. mesenteroides increases PD-L1 gene and protein transaction in colon cancer. L. mesenteroides existing enhances T cells viability and activity. GPCR41/42 is a possible link between L. mesenteroides, YAP-1 and PD-L1.


Assuntos
Antígeno B7-H1 , Neoplasias do Colo , Interferon gama , Leuconostoc mesenteroides , Linfócitos T , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Células CACO-2/microbiologia , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Neoplasias do Colo/microbiologia , Células HT29/microbiologia , Interferon gama/metabolismo , Interleucina-2/metabolismo , Células Jurkat , Leuconostoc mesenteroides/metabolismo , Leuconostoc mesenteroides/genética , Ativação Linfocitária , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Probióticos/farmacologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/microbiologia , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Regulação para Cima
4.
Microb Pathog ; 192: 106680, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729380

RESUMO

Biocontrol of phytopathogens involving the use of bioactive compounds produced by lactic acid bacteria (LAB), is a promising approach to manage many diseases in agriculture. In this study, a lactic acid bacterium designated YB1 was isolated from fermented olives and selected for its antagonistic activity against Verticillium dahliae (V. dahliae) and Agrobacterium tumefaciens (A. tumefaciens). Based on the 16S rRNA gene nucleotide sequence analysis (1565 pb, accession number: OR714267), the new isolate YB1 bacterium was assigned as Leuconostoc mesenteroides YB1 (OR714267) strain. This bacterium produces an active peptide "bacteriocin" called BacYB1, which was purified in four steps. Matrix-assisted lasers desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) based approach was performed to identify and characterize BacYB1. The exact mass was 5470.75 Da, and the analysis of the N-terminal sequence (VTRASGASTPPGTASPFKTL) of BacYB1 revealed no significant similarity to currently available antimicrobial peptides. The BacYB1 displayed a bactericidal mode of action against A. tumefaciens. The potentiel role of BacYB1 to supress the growth of A. tumefaciens was confirmed by live-dead cells viability assay. In pot experiments, the biocontrol efficacy of BacYB1 against V. dahliae wilt on young olive trees was studied. The percentage of dead plants (PDP) and the final mean symptomes severity (FMS) of plants articifialy infected by V. dahliae and treated with the pre-purified peptide BacYB1 (preventive and curative treatments) were significantly inferior to untreated plants. Biochemical analysis of leaves of the plants has shown that polyophenols contents were highly detected in plants infected by V. dahliae and the highest contents of chlorophyl a, b and total chlorophyll were recorded in plants treated with the combination of BacYB1 with the biofertilisant Humivital. BacYB1 presents a promising alternative for the control of Verticillium wilt and crown gall diseases.


Assuntos
Agrobacterium tumefaciens , Bacteriocinas , Leuconostoc mesenteroides , Olea , Doenças das Plantas , RNA Ribossômico 16S , Agrobacterium tumefaciens/metabolismo , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Olea/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , RNA Ribossômico 16S/genética , Leuconostoc mesenteroides/metabolismo , Leuconostoc mesenteroides/genética , Agentes de Controle Biológico/metabolismo , Agentes de Controle Biológico/farmacologia , Verticillium/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Antibiose , Filogenia , Antibacterianos/farmacologia , Antibacterianos/metabolismo
5.
Int J Food Microbiol ; 418: 110743, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38749262

RESUMO

Spicy cabbage is a popular fermented vegetable food. The study aimed to determine the physicochemical properties, volatile flavor components, sensory evaluation, and microbial diversity of spicy cabbage prepared using different methods. Three methods were used: single-bacteria fermentation with Lactiplantibacillus plantarum YB-106 and Leuconostoc mesenteroides YB-23, mixed fermentation (LMP) using both strains, and natural fermentation as the blank control (CON). The LMP group has the best quality of spicy cabbage and the highest sensory score. Esters and alkenes were the main volatile flavor components of the spicy cabbage by GC-MS. The fermentation time of LMP group was shorter, and the nitrite degradation rate was >60 %, which was significantly higher than that of other groups (p < 0.05). From the perspective of microbial diversity, the dominant bacteria genera in each group were Lactobacillus, Pantoea, Enterococcus and Pseudomonas. However, mixed fermentation decreased the abundance of pathogenic bacteria, of which the abundance of Serratia was <0.1 %. In conclusion, mixed fermentation can significantly improve the quality of spicy cabbage and shorten the fermentation time. These findings laid the theoretical foundation for the industrial production of high-quality spicy cabbage.


Assuntos
Brassica , Fermentação , Alimentos Fermentados , Microbiologia de Alimentos , Leuconostoc mesenteroides , Brassica/microbiologia , Leuconostoc mesenteroides/metabolismo , Alimentos Fermentados/microbiologia , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/classificação , Paladar , Biodiversidade
6.
Sci Total Environ ; 908: 168290, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939934

RESUMO

Microcystis aeruginosa is ubiquitously found in various water bodies and can produce microcystins (MCs), which threaten the health of aquatic animals and human beings. The elimination of excessive M. aeruginosa is beneficial for the protection of the ecosystems and public health. In this regard, algae-lysing bacteria have been extensively studied as an effective measure for their eradication. However, the active substances generated by algae-lysing bacteria are limited. For this study, we reveal that the phenyllactic acid (PLA) produced by Leuconostoc mesenteroides DH exhibits high efficacy for the removal of M. aeruginosa, and explore the elimination mechanism of strain DH on M. aeruginosa. It was found that a cell-free supernatant of strain DH possessed high removal activities against M. aeruginosa. Abundant reactive oxygen species were induced in algal cells following exposure to strain DH supernatant, as well as superoxide dismutase and catalase responses. Furthermore, the integrity of algal cell membranes and photosynthesis was seriously damaged. Interestingly, added exogenous eugenol significantly inhibited the synthesis of active substance produced by strain DH, which further identified that PLA is one of the active substances that contribute to the eradication of M. aeruginosa on the basis of metabolomics analysis. Our finding demonstrated, for the first time, that PLA (as an anti-cyanobacterial compound) can be used for the removal of M. aeruginosa, which provides a theoretical basis for the control of M. aeruginosa.


Assuntos
Cianobactérias , Leuconostoc mesenteroides , Microcystis , Animais , Humanos , Microcystis/fisiologia , Leuconostoc mesenteroides/metabolismo , Ecossistema , Cianobactérias/metabolismo , Plantas/metabolismo , Microcistinas/metabolismo , Poliésteres
7.
Food Res Int ; 175: 113731, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128991

RESUMO

Lactic acid bacteria (LAB) are currently being investigated for their potential use as probiotics and starter cultures. Researchers have developed powdering processes for the commercialization of LAB. Previous studies have focused on identifying innovative cryoprotective agents and freeze-drying (FD) techniques to enhance the stability of LAB. In this study, adaptive laboratory evolution (ALE) was employed to develop a strain with high FD tolerance and enhanced storage stability. Leuconostoc mesenteroids WiKim33 was subjected to heterotypic shock (heat and osmosis shock) to induce the desired phenotype and genotype. An FD-tolerant enhanced Leu. mesenteroides WiKim33 strain (ALE50) was obtained, which harbored a modified fatty acid composition and cell envelope characteristics. Specifically, ALE50 showed a lower unsaturated fatty acid (UFA)/saturated fatty acid (SFA) ratio and a higher cyclic fatty acid (CFA) composition. Moreover, the exopolysaccharide (EPS) thickness increased significantly by 331% compared to that of the wild type (WT). FD tolerance, which was evaluated using viability testing after FD, was enhanced by 33.4%. Overall, we demonstrated the feasibility of ALE to achieve desirable characteristics and provided insights into the mechanisms underlying increased FD tolerance.


Assuntos
Lactobacillales , Leuconostoc mesenteroides , Leuconostoc mesenteroides/genética , Leuconostoc mesenteroides/metabolismo , Liofilização/métodos , Ácidos Graxos/metabolismo , Congelamento , Lactobacillales/genética , Lactobacillales/metabolismo
8.
Food Chem ; 428: 136751, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37453392

RESUMO

The Leuconostoc mesenteroides subsp. IMAU:80679 (LM) was chosen for its superior capability in enhancing redness, and was incubated in a broth system containing metmyoglobin (MetMb) to investigate its mechanisms for color improvement. The a* value of LM group reached its highest level of 52.75 ± 1.04 at 24 h, significantly higher than control of 19.75 ± 0.6 (p < 0.05). The addition of LM could inhibit myoglobin oxidation to some extent. Meanwhile, higher content of nitrosylmyoglobin (NOMb) and Zn-protoporphyrin (Znpp) were observed in LM samples during the whole incubation period. Furthermore, enzymatic activity and encoded genes related to MetMb reduction and pigment formation were determined to explain its possible mechanism on color enhancement. Finally, by extracting crude enzymes and adding them to meat batters, the redness of crude enzyme group was comparable to that achieved with 20 ppm nitrite, providing a potential method on compensating for nitrite/nitrate substitution in meat products.


Assuntos
Leuconostoc mesenteroides , Mioglobina , Mioglobina/metabolismo , Leuconostoc mesenteroides/genética , Leuconostoc mesenteroides/metabolismo , Nitritos , Carne , Metamioglobina , Oxirredução , Cor
9.
Int J Biol Macromol ; 246: 125599, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385309

RESUMO

This paper describes the structural elucidation of Leuconostoc mesenteroides P35 exopolysaccharide (EPS-LM). Ln. mesenteroides P35 strain was isolated from a French goat cheese for its capacity to produce EPS increasing the viscosity of a whey-based fermentation medium. The chemical structure of EPS-LM analysis was elucidated by determination of optical rotation degree, macromolecular characterization, sugar units and methylation analyses, FT-IR, 1D NMR spectroscopy (1H and 13C NMR), 2D NMR spectroscopy (1H1H COSY, HSQC and HMBC). EPS-LM was a high molecular weight (ranging from 6.7 × 106 Da to 9.9 × 106 Da) dextran that is composed of only d-glucose units containing α (1 â†’ 6) linkages and paltry α (1 â†’ 3) branches. Since polysaccharide-protein interactions can be exploited to control and design food matrices, EPS-LM interactions with bovine serum albumin (the main constituent of bovine plasma) were investigated by surface plasmon resonance (SPR). Kinetic properties of EPS-LM binding with immobilized BSA via showed an increase of EPS-LM affinity (equilibrium constant (Kd)) for BSA from (2.50 ± 0.01) × 10-5 M-1 at 298 K to (9.21 ± 0.05) × 10-6 M-1 at to 310 K. The thermodynamic parameters revealed that van der Waals and hydrogen binding forces play a major role in the interaction of EPS-LM with BSA. However, EPS-LM-BSA interaction was non-spontaneous, entropy driven and an EPS-LM - BSA binding process was endothermic (ΔG > 0). The structural findings suggested that Ln. mesenteroides P35 α-D-glucan might find widespread technological applications in the biopolymer, medical and food industries.


Assuntos
Leuconostoc mesenteroides , Ressonância de Plasmônio de Superfície , Leuconostoc mesenteroides/metabolismo , Soroalbumina Bovina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Leuconostoc/metabolismo
10.
Bioresour Technol ; 385: 129399, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37380039

RESUMO

2-O-α-D-glucopyranosyl-sn-glycerol (2-αGG) is a high value product with wide applications. Here, an efficient, safe and sustainable bioprocesses for 2-αGG production was designed. A novel sucrose phosphorylase (SPase) was firstly identified from Leuconostoc mesenteroides ATCC 8293. Subsequently, SPase mutations were processed with computer-aided engineering, of which the activity of SPaseK138C was 160% higher than that of the wild-type. Structural analysis revealed that K138C was a key functional residue moderating substrate binding pocket and thus influences catalytic activity. Furthermore, Corynebacterium glutamicum was employed to construct microbial cell factories along with ribosome binding site (RBS) fine-tuning and a two-stage substrate feeding control strategy. The maximum production of 2-αGG by these combined strategies reached 351.8 g·L-1 with 98% conversion rate from 1.4 M sucrose and 3.5 M glycerol in a 5-L bioreactor. This was one of the best performance reported in single-cell biosynthesis of 2-αGG, which paved effective ways for industrial-scale preparation of 2-αGG.


Assuntos
Leuconostoc mesenteroides , Leuconostoc mesenteroides/metabolismo , Glicerol , Sacarose/metabolismo , Biotransformação , Leuconostoc/genética , Leuconostoc/metabolismo
11.
Arch Microbiol ; 204(11): 670, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241916

RESUMO

Bacteria capable of producing electricity in intestinal microbiota have been discovered. However, no studies have explored butyric acid which generated by electrogenic bacteria on the host organism have significant physiological impacts on certain organs. We found that the capacity for electrical current generation by the commensal gut Leuconostoc mesenteroides EH-1 (L. mesenteroides EH-1) during glucose fermentation. The electricity production was essential for the gut colonization of L. mesenteroides EH-1 since the inhibition of electricity production by cyclophilin A inhibitor (TMN355) significantly diminished the number of bacteria attached to the human gut epithelial cell surface. The adipocyte differentiation contributes to the increased 4-hydroxy-2-nonenal (4-HNE), considered as a biomarker of reactive oxygen species (ROS). The effect of intestinal electrogenic microbiota in the high-fat diet (HFD)-induced 4-HNE and abdominal fat accumulation in mice was investigated in this study. The oral administration of glucose with a butyric acid-producing L. mesenteroides EH-1 bacterium attenuated the expression of 4-HNE and abdominal fat. The level of 4-HNE and abdominal fat depot were markedly increased in mice administered with cyclophilin A inhibitor-pretreated bacteria or GLPG-0974, an antagonist of free fatty acid receptor 2 (Ffar2). Our studies suggest a novel means by which the probiotic bacteria can modulate fat mass deposition and oxidative stress via the cyclophilin A-mediated electron production and the butyric acid-activated Ffar2 pathway.


Assuntos
Leuconostoc mesenteroides , Gordura Abdominal/metabolismo , Animais , Bactérias/metabolismo , Ácido Butírico , Ciclofilina A/metabolismo , Dieta Hiperlipídica/efeitos adversos , Eletricidade , Ácidos Graxos não Esterificados/metabolismo , Fermentação , Glucose/metabolismo , Humanos , Leuconostoc mesenteroides/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo
12.
Nutrients ; 14(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807773

RESUMO

Probiotics, active microorganisms benefiting human health, currently serve as nutritional supplements and clinical treatments. Periodontitis, a chronic infectious oral disease caused by Porphyromonas gingivalis (P. gingivalis), activates the host immune response to release numerous proinflammatory cytokines. Here, we aimed to clarify Leuconostoc mesenterica (L. mesenteroides) LVBH107 probiotic effects based on the inhibition of P. gingivalis activities while also evaluating the effectiveness of an in vitro P. gingivalis lipopolysaccharide-stimulated RAW 264.7 cell-based inflammation mode. L. mesenteroides LVBH107 survived at acid, bile salts, lysozyme, and hydrogen peroxide conditions, auto-aggregated and co-aggregated with P. gingivalis, exhibited strong hydrophobicity and electrostatic action, and strongly adhered to gingival epithelial and HT-29 cells (thus exhibiting oral tissue adherence and colonization abilities). Moreover, L. mesenteroides LVBH107 exhibited sensitivity to antibiotics erythromycin, doxycycline, minocycline, ampicillin, and others (thus indicating it lacked antibiotic resistance plasmids), effectively inhibited P. gingivalis biofilm formation and inflammation (in vitro inflammation model), reduced the secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1ß) and inflammatory mediators (NO and PGE2), and decreased the expression levels of inflammation related genes. Thus, L. mesenterica LVBH107 holds promise as a probiotic that can inhibit P. gingivalis biofilm formation and exert anti-inflammatory activity to maintain oral health.


Assuntos
Leuconostoc mesenteroides , Porphyromonas gingivalis , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Humanos , Inflamação , Leuconostoc mesenteroides/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Células RAW 264.7
13.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163289

RESUMO

Sugar beet crown and root rot caused by Rhizoctonia solani is a major yield constraint. Root rot is highly increased when R. solani and Leuconostoc mesenteroides co-infect roots. We hypothesized that the absence of plant cell-wall-degrading enzymes in L. mesenteroides and their supply by R. solani during close contact, causes increased damage. In planta root inoculation with or without cell-wall-degrading enzymes showed greater rot when L. mesenteroides was combined with cellulase (22 mm rot), polygalacturonase (47 mm), and pectin lyase (57 mm) versus these enzymes (0-26 mm), R. solani (20 mm), and L. mesenteroides (13 mm) individually. Carbohydrate analysis revealed increased simpler carbohydrates (namely glucose + galactose, and fructose) in the infected roots versus mock control, possibly due to the degradation of complex cell wall carbohydrates. Expression of R. solani cellulase, polygalacturonase, and pectin lyase genes during root infection corroborated well with the enzyme data. Global mRNAseq analysis identified candidate genes and highly co-expressed gene modules in all three organisms that might be critical in host plant defense and pathogenesis. Targeting R. solani cell-wall-degrading enzymes in the future could be an effective strategy to mitigate root damage during its interaction with L. mesenteroides.


Assuntos
Beta vulgaris/microbiologia , Leuconostoc mesenteroides/metabolismo , Rhizoctonia/enzimologia , Beta vulgaris/crescimento & desenvolvimento , Beta vulgaris/metabolismo , Parede Celular/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Leuconostoc mesenteroides/patogenicidade , Defesa das Plantas contra Herbivoria/imunologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rhizoctonia/patogenicidade
14.
Food Funct ; 13(3): 1256-1267, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35023534

RESUMO

The aim of this study was to investigate the prebiotic activities of dextran (LM742) produced by Leuconostoc mesenteroides SPCL742 in the aspect of the human gut microbial ecosystem focusing on microbiome and metabolome changes in in vitro colonic fermentation. LM742 dextran had a medium-chain structure with the molecular weight of 1394.87 kDa (DP = 7759.22) and α-1,6 and α-1,3 linkages with a 26.11 : 1 ratio. The LM742 dextran was resistent to digestive enzymes in the human gastrointestinal conditions. The individual cultivation of 30 intestinal bacteria with LM742 dextran showed the growth of Bacteroides spp., whereas in vitro human fecal fermentation with LM742 exhibited the symbiotic growth of Bacteroides spp. and beneficial bacteria such as Bifidobacterium spp. Further co-cultivation of Bacteroides xylanisolvens and several probiotics indicated that B. xylanisolvens provides a cross-feeding of dextran to probiotics. In fecal fermentation, LM742 dextran resulted in increased concentrations of short-chain fatty acids, valerate and pantothenate, but it rarely affected the conversion of betaine to trimethylamine. Lastly, LM742 dextran inhibited the adhesion of pathogenic E. coli to human epithelial cells. Taken together, these results demonstrate the prebiotic potential of LM742 dextran as a health-beneficial polysaccharide in the human intestine.


Assuntos
Dextranos/metabolismo , Microbioma Gastrointestinal , Leuconostoc mesenteroides/metabolismo , Prebióticos/microbiologia , Humanos
15.
ScientificWorldJournal ; 2021: 6664636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421400

RESUMO

Recently, the interest in donkey milk has increased considerably because it proved high nutritive and functional values of their ingredients. Its chemical composition is widely studied, but its microbiota, especially lactic acid bacteria, remains less studied. This study focuses on analyzing, isolating, and identifying lactic acid bacteria and evaluating their capacity to produce biomolecules with antibacterial activity. Among 44 strains identified, 43 are Gram-positive, and most are catalase-negative and cocci-shaped. Five strains were selected to evaluate their antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli. Different induction methods allowed to amplify the antibacterial effects against these pathogenic strains.


Assuntos
Aerococcus/isolamento & purificação , Antibacterianos/farmacologia , Meios de Cultivo Condicionados/farmacologia , Enterococcus faecalis/isolamento & purificação , Enterococcus/isolamento & purificação , Leuconostoc mesenteroides/isolamento & purificação , Aerococcus/química , Aerococcus/metabolismo , Animais , Indústria de Laticínios/métodos , Enterococcus/química , Enterococcus/metabolismo , Enterococcus faecalis/química , Enterococcus faecalis/metabolismo , Equidae , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/patogenicidade , Feminino , Microbiologia de Alimentos , Lactação/fisiologia , Leuconostoc mesenteroides/química , Leuconostoc mesenteroides/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/patogenicidade , Testes de Sensibilidade Microbiana , Leite/microbiologia , Marrocos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade
16.
Biotechnol Bioeng ; 118(10): 4028-4040, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34232503

RESUMO

Mechanism-based kinetic models are rigorous tools to analyze enzymatic reactions, but their extension to actual conditions of the biocatalytic synthesis can be difficult. Here, we demonstrate (mechanistic-empirical) hybrid modeling for systematic optimization of the sucrose phosphorylase-catalyzed glycosylation of glycerol from sucrose, to synthesize the cosmetic ingredient α-glucosyl glycerol (GG). The empirical model part was developed to capture nonspecific effects of high sucrose concentrations (up to 1.5 M) on microscopic steps of the enzymatic trans-glycosylation mechanism. Based on verified predictions of the enzyme performance under initial rate conditions (Level 1), the hybrid model was expanded by microscopic terms of the reverse reaction to account for the full-time course of GG synthesis (Level 2). Lastly (Level 3), the application of the hybrid model for comprehensive window-of-operation analysis and constrained optimization of the GG production (~250 g/L) was demonstrated. Using two candidate sucrose phosphorylases (from Leuconostoc mesenteroides and Bifidobacterium adolescentis), we reveal the hybrid model as a powerful tool of "process decision making" to guide rational selection of the best-suited enzyme catalyst. Our study exemplifies a closing of the gap between enzyme kinetic models considered for mechanistic research and applicable in technologically relevant reaction conditions; and it highlights the important benefit thus realizable for biocatalytic process development.


Assuntos
Bifidobacterium adolescentis/metabolismo , Biocatálise , Glucosídeos/metabolismo , Leuconostoc mesenteroides/metabolismo , Modelos Biológicos , Sacarose/metabolismo
17.
Gut Microbes ; 13(1): 1949097, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34288820

RESUMO

Leuconostoc mesenteroides strain NTM048 produces an exopolysaccharide (EPS; glucose polymers 94% and fructose polymers 6%) with adjuvanticity for mucosal vaccination. Strain NTM048 includes three putative EPS-synthesizing genes, gtf1 and gtf2 for synthesizing glucose polymers, and lvnS for synthesizing fructose polymer. To elucidate the key polymer structure for adjuvanticity, two genes, gtf1 and gtf2, which were annotated as glycoside hydrolase family 70 enzyme genes, were expressed in Escherichia coli. Glycosyl-linkage composition analysis and NMR analysis showed that the recombinant enzyme Gtf1 produced a soluble form of α-1,6-glucan, whereas the recombinant enzyme Gtf2 produced glucans with approximately equal percentages of α-1,6- and α-1,3-glucose residues both in the supernatant (S-glucan) and as a precipitate (P-glucan). Comparison of polysaccharides synthesized by Gtf1, Gtf2, and LvnS revealed that Gtf2-S-glucan, which was produced in the supernatant by Gtf2 and formed particles of 7.8 µm, possessed 1.8-fold higher ability to stimulate IgA production from murine Peyer's patch cells than native NTM048 EPS. Evaluation of adjuvanticity by intranasal administration of mice with an antigen (ovalbumin) and Gtf2-S-glucan or NTM048 EPS showed that Gtf2-S-glucan induced the production of higher antigen-specific antibodies in the airway mucosa and plasma, suggesting a pivotal role of Gtf2-S-glucan in the adjuvanticity of NTM048 EPS.


Assuntos
Formação de Anticorpos/efeitos dos fármacos , Infecções Bacterianas/imunologia , Imunoglobulina A/biossíntese , Imunoglobulina A/efeitos dos fármacos , Leuconostoc mesenteroides/genética , Leuconostoc mesenteroides/metabolismo , Polissacarídeos/metabolismo , Probióticos/metabolismo , Animais , Modelos Animais de Doenças , Variação Genética , Genótipo , Camundongos , Polissacarídeos/genética
18.
J Food Sci ; 86(2): 334-342, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33483957

RESUMO

Consumption of nutrient-rich seaweeds and fermented nondairy foods represent fast growing trends among health-minded consumers. Assessment of lacto-fermented seaweed was performed to address these trends, and to offer shelf-life extension and product diversification for fresh kelps. The objectives were to evaluate the effects of kelp species and inclusion level on fermentation kinetics, physicochemical quality, safety, shelf-life, and consumer acceptability of a seaweed sauerkraut-style product. Six formulations with different inclusion levels (25, 50, and 75%) of shredded kelp (sugar kelp, SK or winged kelp, WK) were mixed with cabbage, 2% salt, and inoculated with Lactobacillus plantarum (approximately 106 CFU/g) and Leuconostoc mesenteroides (approximately 101 CFU/g). Products were processed in triplicate, fermented until a target pH of ≤4.6 was achieved, and sampled periodically for 60 days. Kelp species and inclusion level significantly affected most variables tested. The most rapid fermentation (3 days), as evidenced by pH decrease, lactic acid bacteria counts, and lactic acid levels, was noted in WK formulations. Some SK formulations took up to 14 days to achieve the target pH, and coliforms persisted to a greater extent in the SK formulations. Higher levels of kelp decreased the fermentation rate and concentration of fermentable sugars in the brine, but increased the total phenolic content and antioxidant activity of the sauerkrauts. Despite differences in instrumental color (L* a* b* ) and texture (shear force) among formulations, overall liking as rated by a consumer panel was not significantly affected by species or inclusion level. Results support the use of lacto-fermentation in the production of refrigeration-stable seaweed sauerkraut-style product. PRACTICAL APPLICATION: Health-conscious consumers are becoming increasingly interested in plant-based diets and fermented foods, and the development of novel seaweed sauerkraut-style products can help to meet these needs. This study demonstrated the successful production of a sauerkraut-style product formulated with up to 50% farm-raised kelp. Physical, chemical, microbiological, and consumer acceptability testing established lactic acid fermentation as a viable method for shelf life extension and value addition of fresh kelps. These results provide science-based information on an alternative processing method for cultivated seaweeds and can assist the industry in product diversification efforts.


Assuntos
Brassica/microbiologia , Fermentação , Kelp/microbiologia , Ácido Láctico/metabolismo , Sensação , Antioxidantes , Brassica/química , Fenômenos Químicos , Comportamento do Consumidor , Alimentos Fermentados/análise , Alimentos Fermentados/microbiologia , Microbiologia de Alimentos , Humanos , Concentração de Íons de Hidrogênio , Kelp/química , Lactobacillus plantarum/metabolismo , Leuconostoc mesenteroides/metabolismo , Sais
19.
Sci Rep ; 10(1): 21916, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318546

RESUMO

Although several electrogenic bacteria have been identified, the physiological effect of electricity generated by bacteria on host health remains elusive. We found that probiotic Leuconostoc mesenteroides (L. mesenteroides) can metabolize linoleic acid to yield electricity via an intracellular cyclophilin A-dependent pathway. Inhibition of cyclophilin A significantly abolished bacterial electricity and lowered the adhesion of L. mesenteroides to the human gut epithelial cell line. Butyrate from L. mesenteroides in the presence of linoleic acid were detectable and mediated free fatty acid receptor 2 (Ffar2) to reduce the lipid contents in differentiating 3T3-L1 adipocytes. Oral administration of L. mesenteroides plus linoleic acid remarkably reduced high-fat-diet (HFD)-induced formation of 4-hydroxy-2-nonenal (4-HNE), a reactive oxygen species (ROS) biomarker, and decreased abdominal fat mass in mice. The reduction of 4-HNE and abdominal fat mass was reversed when cyclophilin A inhibitor-pretreated bacteria were administered to mice. Our studies present a novel mechanism of reducing abdominal fat mass by electrogenic L. mesenteroides which may yield electrons to enhance colonization and sustain high amounts of butyrate to limit ROS during adipocyte differentiation.


Assuntos
Gordura Abdominal/metabolismo , Butiratos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal , Leuconostoc mesenteroides/metabolismo , Ácido Linoleico/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Células 3T3-L1 , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos ICR
20.
Biochem Biophys Res Commun ; 533(4): 651-656, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33008603

RESUMO

Electrogenic bacteria can mediate electron transfer to conserve energy and promote growth. To examine bacterial electrogenicity, an L. mesenteroides EH-1 strain was cultured in rich media in the presence and absence of 2% glucose. After 12 h incubation, glucose triggered fermentation of L. mesenteroides EH-1 to produce >10 mmol/l acetate and elicit electricity measured by voltage changes. The electricity production was mediated by glucose fermentation since pre-treatment of L. mesenteroides EH-1 with furfural, a fermentation inhibitor, completely diminished the voltage increases. The deficiency of furfural pre-treated L. mesenteroides EH-1 in electricity production can be restored by the external addition of acetate into the bacterial culture, suggesting the function of acetate as an electron donor. Oral administration of HFD-fed mice with L. mesenteroides EH-1 in the presence or absence of glucose significantly attenuated the high level of pro-inflammatory IL-6 cytokine in blood. Bacterial electricity can be elicited by fermentation. Supplementation of fermenting and electrogenic L. mesenteroides EH-1 may provide a novel approach for the reduction of pro-inflammatory IL-6 cytokine that increased in chronic inflammation, autoimmune diseases, cancers, and infections.


Assuntos
Eletricidade , Fermentação/fisiologia , Microbiologia de Alimentos/métodos , Glucose/metabolismo , Interleucina-6/sangue , Leuconostoc mesenteroides/metabolismo , Leuconostoc mesenteroides/fisiologia , Acetatos/farmacologia , Administração Oral , Animais , Dieta Hiperlipídica , Feminino , Furaldeído/farmacologia , Leuconostoc mesenteroides/efeitos dos fármacos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA