Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 20(1): 217, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863154

RESUMO

BACKGROUND: Endophytic actinomycetes, as emerging sources of bioactive metabolites, have been paid great attention over the years. Recent reports demonstrated that endophytic streptomycetes could yield compounds with potent anticancer properties that may be developed as chemotherapeutic drugs. RESULTS: Here, a total of 15 actinomycete-like isolates were obtained from the root tissues of Lilium davidii var. unicolor (Hoog) Cotton based on their morphological appearance, mycelia coloration and diffusible pigments. The preliminary screening of antagonistic capabilities of the 15 isolates showed that isolate LRE541 displayed antimicrobial activities against all of the seven tested pathogenic microorganisms. Further in vitro cytotoxicity test of the LRE541 extract revealed that this isolate possesses potent anticancer activities with IC50 values of 0.021, 0.2904, 1.484, 4.861, 6.986, 8.106, 10.87, 12.98, and 16.94 µg/mL against cancer cell lines RKO, 7901, HepG2, CAL-27, MCF-7, K562, Hela, SW1990, and A549, respectively. LRE541 was characterized and identified as belonging to the genus Streptomyces based on the 16S rRNA gene sequence analysis. It produced extensively branched red substrate and vivid pink aerial hyphae that changed into amaranth, with elliptic spores sessile to the aerial mycelia. To further explore the mechanism underlying the decrease of cancer cell viability following the LRE541 extract treatment, cell apoptosis and cell cycle arrest assays were conducted in two cancer cell lines, RKO and 7901. The result demonstrated that LRE541 extract inhibited cell proliferation of RKO and 7901 by causing cell cycle arrest both at the S phase and inducing apoptosis in a dose-dependent manner. The chemical profile of LRE541 extract performed by the UHPLC-MS/MS analysis revealed the presence of thirty-nine antitumor compounds in the extract. Further chemical investigation of the LRE541 extract led to the discovery of one prenylated indole diketopiperazine (DKP) alkaloid, elucidated as neoechinulin A, a known antitumor agent firstly detected in Streptomyces; two anthraquinones 4-deoxy-ε-pyrromycinone (1) and epsilon-pyrromycinone (2) both displaying anticancer activities against RKO, SW1990, A549, and HepG2 with IC50 values of 14.96 ± 2.6 - 20.42 ± 4.24 µg/mL for (1); 12.9 ± 2.13, 19.3 ± 4.32, 16.8 ± 0.75, and 18.6 ± 3.03 µg/mL for (2), respectively. CONCLUSION: Our work evaluated the anticarcinogenic potential of the endophyte, Streptomyces sp. LRE541 and obtained one prenylated indole diketopiperazine alkaloid and two anthraquinones. Neoechinulin A, as a known antitumor agent, was identified for the first time in Streptomyces. Though previously found in Streptomyces, epsilon-pyrromycinone and 4-deoxy-ε-pyrromycinone were firstly shown to possess anticancer activities.


Assuntos
Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Endófitos/química , Lilium/microbiologia , Streptomyces/química , Streptomyces/genética , Actinobacteria , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem
2.
Bioengineered ; 12(2): 10457-10469, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34714714

RESUMO

Lilium regale Wilson (L.regale), originated in the Minjiang River basin in Sichuan, China, has different phenotypic characteristics in different environments. To analyze the correlation between the phenotypes of L.regale and its soil micro-ecological environment, wild habitat soil of L.regale at the two altitudes were selected to analyze the diversity and community structure of microorganisms in soil, and measure the soil physicochemical factors and enzyme activities. The structural composition and diversity of fungal and bacterial communities in hillside and valley soils were significantly different (p< 0.01). Soil available potassium (AK) and soil enzyme activities such as urease (S_UE), sucrase (S_SC), and catalase (S_CAT) differed significantly different between hillsides and valleys (p < 0.01), while organic matter (OM), total phosphorus (TP), and polyphenol oxidase (S_PPO) had no great variances. Correlation analysis was conducted between the common and differential microorganisms and the morphological characteristics, soil physicochemical factors and soil enzyme activities of L.regale in both hillside and valley. The results showed that both of the fungal and bacterial could be clustered into two distinct groups by positive and negative correlations, suggesting that the representative microorganism may have structural characteristics that are directly related to soil physicochemical properties and enzyme activities, which conversely affect the phenotype of Lily. Therefore, the study on the native species of horticultural plants and the local soil microhabitat environment will benefit the conservation of wild Lily and provide theoretical guidance for the domestication and breeding of horticultural plants.


Assuntos
Biodiversidade , Lilium/microbiologia , Microbiota , Microbiologia do Solo , Bactérias/metabolismo , China , Fungos/fisiologia , Fenótipo , Filogenia , Análise de Componente Principal , Estatísticas não Paramétricas
3.
Biomed Res Int ; 2021: 9930210, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395628

RESUMO

The present study was aimed at isolating endophytic fungi from the Asian culinary and medicinal plant Lilium davidii and analyzing its antifungal and plant growth-promoting effects. In this study, the fungal endophyte Acremonium sp. Ld-03 was isolated from the bulbs of L. davidii and identified through morphological and molecular analysis. The molecular and morphological analysis confirmed the endophytic fungal strain as Acremonium sp. Ld-03. Antifungal effects of Ld-03 were observed against Fusarium oxysporum, Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi. The highest growth inhibition, i.e., 78.39 ± 4.21%, was observed for B. dothidea followed by 56.68 ± 4.38%, 43.62 ± 3.81%, and 20.12 ± 2.45% for B. cinerea, F. fujikuroi, and F. oxysporum, respectively. Analysis of the ethyl acetate fraction through UHPLC-LTQ-IT-MS/MS revealed putative secondary metabolites which included xanthurenic acid, valyl aspartic acid, gancidin W, peptides, and cyclic dipeptides such as valylarginine, cyclo-[L-(4-hydroxy-Pro)-L-leu], cyclo(Pro-Phe), and (3S,6S)-3-benzyl-6-(4-hydroxybenzyl)piperazine-2,5-dione. Other metabolites included (S)-3-(4-hydroxyphenyl)-2-((S)-pyrrolidine-2-carboxamido)propanoic acid, dibutyl phthalate (DBP), 9-octadecenamide, D-erythro-C18-Sphingosine, N-palmitoyl sphinganine, and hydroxypalmitoyl sphinganine. The strain Ld-03 showed indole acetic acid (IAA) production with or without the application of exogenous tryptophan. The IAA ranged from 53.12 ± 3.20 µg ml-1 to 167.71 ± 7.12 µg ml-1 under different tryptophan concentrations. The strain was able to produce siderophore, and its production was significantly decreased with increasing Fe(III) citrate concentrations in the medium. The endophytic fungal strain also showed production of organic acids and phosphate solubilization activity. Plant growth-promoting effects of the strain were evaluated on in vitro seedling growth of Allium tuberosum. Application of 40% culture dilution resulted in a significant increase in root and shoot length, i.e., 24.03 ± 2.71 mm and 37.27 ± 1.86 mm, respectively, compared to nontreated control plants. The fungal endophyte Ld-03 demonstrated the potential of conferring disease resistance and plant growth promotion. Therefore, we conclude that the isolated Acremonium sp. Ld-03 should be further investigated before utilization as a biocontrol agent and plant growth stimulator.


Assuntos
Acremonium/química , Antifúngicos/farmacologia , Ascomicetos/crescimento & desenvolvimento , Botrytis/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Lilium/microbiologia , Reguladores de Crescimento de Plantas/farmacologia , Acetatos/química , Acetatos/farmacologia , Acremonium/isolamento & purificação , Acremonium/fisiologia , Antifúngicos/química , Ascomicetos/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Cebolinha-Francesa/efeitos dos fármacos , Cebolinha-Francesa/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Resistência à Doença , Endófitos/isolamento & purificação , Endófitos/fisiologia , Fusarium/efeitos dos fármacos , Ácidos Indolacéticos/química , Ácidos Indolacéticos/isolamento & purificação , Ácidos Indolacéticos/farmacologia , Metabolômica/métodos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/isolamento & purificação , Raízes de Plantas/microbiologia , Metabolismo Secundário , Espectrometria de Massas em Tandem
4.
Phytopathology ; 111(9): 1625-1637, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33576690

RESUMO

The WRKY transcription factors form a plant-specific superfamily important for regulating plant development, stress responses, and hormone signal transduction. In this study, many WRKY genes (LrWRKY1-35) were identified in Lilium regale, which is a wild lily species highly resistant to Fusarium wilt. These WRKY genes were divided into three classes (I to III) based on a phylogenetic analysis. The Class-II WRKY transcription factors were further divided into five subclasses (IIa, IIb, IIc, IId, and IIe). Moreover, the gene expression patterns based on a quantitative real-time PCR analysis revealed the WRKY genes were differentially expressed in the L. regale roots, stems, leaves, and flowers. Additionally, the expression of the WRKY genes was affected by an infection by Fusarium oxysporum as well as by salicylic acid, methyl jasmonate, ethephon, and hydrogen peroxide treatments. Moreover, the LrWRKY1 protein was localized to the nucleus of onion epidermal cells. The recombinant LrWRKY1 protein purified from Escherichia coli bound specifically to DNA fragments containing the W-box sequence, and a yeast one-hybrid assay indicated that LrWRKY1 can activate transcription. A co-expression assay in tobacco (Nicotiana tabacum) confirmed LrWRKY1 regulates the expression of LrPR10-5. Furthermore, the overexpression of LrWRKY1 in tobacco and the Oriental hybrid 'Siberia' (susceptible to F. oxysporum) increased the resistance of the transgenic plants to F. oxysporum. Overall, LrWRKY1 regulates the expression of the resistance gene LrPR10-5 and is involved in the defense response of L. regale to F. oxysporum. This study provides valuable information regarding the expression and functional characteristics of L. regale WRKY genes.


Assuntos
Fusarium , Lilium , Doenças das Plantas , Proteínas de Plantas/genética , Fatores de Transcrição , Resistência à Doença/genética , Fusarium/patogenicidade , Lilium/genética , Lilium/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
5.
Mol Plant Pathol ; 22(3): 361-372, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33497519

RESUMO

Studies on plant-pathogen interactions often involve monitoring disease symptoms or responses of the host plant to pathogen-derived immunogenic patterns, either visually or by staining the plant tissue. Both these methods have limitations with respect to resolution, reproducibility, and the ability to quantify the results. In this study we show that red light detection by the red fluorescent protein (RFP) channel of a multipurpose fluorescence imaging system that is probably available in many laboratories can be used to visualize plant tissue undergoing cell death. Red light emission is the result of chlorophyll fluorescence on thylakoid membrane disassembly during the development of a programmed cell death process. The activation of programmed cell death can occur during either a hypersensitive response to a biotrophic pathogen or an apoptotic cell death triggered by a necrotrophic pathogen. Quantifying the intensity of the red light signal enables the magnitude of programmed cell death to be evaluated and provides a readout of the plant immune response in a faster, safer, and nondestructive manner when compared to previously developed chemical staining methodologies. This application can be implemented to screen for differences in symptom severity in plant-pathogen interactions, and to visualize and quantify in a more sensitive and objective manner the intensity of the plant response on perception of a given immunological pattern. We illustrate the utility and versatility of the method using diverse immunogenic patterns and pathogens.


Assuntos
Apoptose , Arabidopsis/fisiologia , Interações Hospedeiro-Patógeno , Lilium/fisiologia , Nicotiana/fisiologia , Arabidopsis/citologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Luz , Lilium/genética , Lilium/imunologia , Lilium/microbiologia , Imagem Óptica , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/efeitos da radiação , Reprodutibilidade dos Testes , Nicotiana/imunologia , Nicotiana/microbiologia , Nicotiana/efeitos da radiação
6.
Plant Physiol Biochem ; 157: 379-389, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33197727

RESUMO

In plants, genes involved in the Phenylpropanoid/monolignol pathway play important roles in lignin biosynthesis and plant immunity. However, their biological function in Lilium remains poorly characterized. Comparative RNA sequencing of the expression profiles of the monolignol pathway genes from fungi-resistant species Lilium regale after inoculation with Botrytis cinerea was performed. One upregulated caffeoyl-CoA O-methyltransferase gene, LrCCoAOMT, was cloned for functional characterization by reverse genetic methods. LrCCoAOMT encodes a putative protein of 246 amino acids and is highly expressed in stem tissues and responsive to salicylic acid (SA) signaling and B. cinerea infection. LrCCoAOMT was largely directed to the cytoplasm. LrCCoAOMT overexpression in Arabidopsis resulted in an increased lignin deposition in vascular tissues and conferred resistance to B. cinerea infection in transgenic plants. Transient transformation of LrCCoAOMT in nonresistant Lilium sargentiae leaves also identified the defense function to B. cinerea. In addition, transcript levels of genes involved in the monolignol and SA-dependent signaling pathways were altered in transgenic Arabidopsis, suggesting that LrCCoAOMT might play vital roles in the resistance of L. regale to B. cinerea related to the levels of lignin and the regulation of SA signaling. This is the first report to functionally characterize a CCoAOMT gene in Lilium, a potential molecular target for lily molecular improvement.


Assuntos
Botrytis/patogenicidade , Resistência à Doença/genética , Lilium/enzimologia , Metiltransferases/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Lilium/genética , Lilium/microbiologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas
7.
Mol Plant Pathol ; 21(9): 1149-1166, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32662583

RESUMO

Defence-related LsGRP1 is a leaf-specific plant class II glycine-rich protein (GRP) involved in salicylic acid-induced systemic resistance against grey mould caused by necrotrophic Botrytis elliptica in lily (Lilium) cultivar Stargazer. The C-terminal region of LsGRP1 (LsGRP1C ) can inhibit fungal growth in vitro via a mechanism of inducing fungal apoptosis programmed cell death (PCD). In this study, the role of LsGRP1 in induced defence mechanism was investigated using LsGRP1-silenced Stargazer lily and LsGRP1-transgenic Arabidopsis thaliana. LsGRP1 silencing in lily was found to slightly inhibit plant growth and greatly increase the susceptibility to B. elliptica by suppressing callose deposition and early reactive oxygen species (ROS) accumulation. In contrast, LsGRP1-transgenic Arabidopsis showed higher resistance to Botrytis cinerea and also to Pseudomonas syringae pv. tomato DC3000 as compared to the wild type, accompanied with the enhancement of callose deposition and ROS accumulation. Additionally, LsGRP1 silencing increased plant cell death caused by B. elliptica secretion and reduced pathogen-associated molecular pattern (PAMP)-triggered defence activation in Stargazer lily. Consistently, LsGRP1 expression boosted PAMP-triggered defence responses and effector recognition-induced hypersensitive response in Arabidopsis. Moreover, fungal apoptosis PCD triggered by LsGRP1 in an LsGRP1C -dependent manner was demonstrated by leaf infiltration with LsGRP1C -containing recombinant proteins in Stargazer lily. Based on these results, we presume that LsGRP1 plays roles in plant defence via functioning as a pathogen-inducible switch for plant innate immune activation and acting as a fungal apoptosis PCD inducer to combat pathogen attack.


Assuntos
Botrytis/fisiologia , Lilium/genética , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Pseudomonas syringae/fisiologia , Apoptose , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Glicina , Interações Hospedeiro-Patógeno , Lilium/imunologia , Lilium/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética
8.
J Microbiol Biotechnol ; 30(5): 668-680, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32482932

RESUMO

Bacillus velezensis is an important plant growth-promoting rhizobacterium with immense potential in agriculture development. In the present study, Bacillus velezensis Lle-9 was isolated from the bulbs of Lilium leucanthum. The isolated strain showed antifungal activities against plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea and Fusarium fujikuroi. The highest percentage of growth inhibition i.e., 68.56±2.35% was observed against Fusarium oxysporum followed by 63.12 ± 2.83%, 61.67 ± 3.39% and 55.82 ± 2.76% against Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several were identified as antimicrobial agents such as diketopiperazines, cyclo-peptides, linear peptides, latrunculin A, 5α-hydroxy-6-ketocholesterol, (R)-S-lactoylglutathione, triamterene, rubiadin, moxifloxacin, 9-hydroxy-5Z,7E,11Z,14Zeicosatetraenoic acid, D-erythro-C18-Sphingosine, citrinin, and 2- arachidonoyllysophosphatidylcholine. The presence of these antimicrobial compounds in the bacterial culture might have contributed to the antifungal activities of the isolated B. velezensis Lle- 9. The strain showed plant growth-promoting traits such as production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation and phosphate solubilization. IAA production was accelerated with application of exogenous tryptophan concentrations in the medium. Further, the lily plants upon inoculation with Lle-9 exhibited improved vegetative growth, more flowering shoots and longer roots than control plants under greenhouse condition. The isolated B. velezensis strain Lle-9 possessed broad-spectrum antifungal activities and multiple plant growth-promoting traits and thus may play an important role in promoting sustainable agriculture. This strain could be developed and applied in field experiments in order to promote plant growth and control disease pathogens.


Assuntos
Antifúngicos , Bacillus , Endófitos , Lilium/microbiologia , Reguladores de Crescimento de Plantas , Antifúngicos/química , Antifúngicos/farmacologia , Bacillus/química , Bacillus/fisiologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Endófitos/química , Endófitos/fisiologia , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia
9.
Mol Plant Pathol ; 21(6): 749-760, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32319186

RESUMO

Grey mould is one of the most determinative factors of lily growth and plays a major role in limiting lily productivity. MicroRNA159 (miR159) is a highly conserved microRNA in plants, and participates in the regulation of plant development and stress responses. Our previous studies revealed that lre-miR159a participates in the response of Lilium regale to Botrytis elliptica according to deep sequencing analyses; however, the response mechanism remains unknown. Here, lre-miR159a and its target LrGAMYB gene were isolated from L. regale. Transgenic Arabidopsis overexpressing lre-MIR159a exhibited larger leaves and smaller necrotic spots on inoculation with Botrytis than those of wild-type and overexpressing LrGAMYB plants. The lre-MIR159a overexpression also led to repressed expression of two targets of miR159, AtMYB33 and AtMYB65, and enhanced accumulation of hormone-related genes, including AtPR1, AtPR2, AtNPR1, AtPDF1.2, and AtLOX for both the jasmonic acid and salicylic acid pathways. Moreover, lower levels of H2 O2 and O2- were observed in lre-MIR159a transgenic Arabidopsis, which reduced the damage from reactive oxygen species accumulation. Taken together, these results indicate that lre-miR159a positively regulates resistance to grey mould by repressing the expression of its target LrGAMYB gene and activating a defence response.


Assuntos
Botrytis/fisiologia , Resistência à Doença/genética , Lilium/genética , MicroRNAs/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/imunologia , Flores/microbiologia , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Lilium/imunologia , Lilium/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , RNA de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo
10.
Biomed Res Int ; 2020: 8650957, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190683

RESUMO

Paenibacillus polymyxa is a plant growth-promoting rhizobacterium that has immense potential to be used as an environmentally friendly replacement of chemical fertilizers and pesticides. In the present study, Paenibacillus polymyxa SK1 was isolated from bulbs of Lilium lancifolium. The isolated endophytic strain showed antifungal activities against important plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea, and Fusarium fujikuroi. The highest percentage of growth inhibition, i.e., 66.67 ± 2.23%, was observed for SK1 against Botryosphaeria dothidea followed by 61.19 ± 3.12%, 60.71 ± 3.53%, and 55.54 ± 2.89% against Botrytis cinerea, Fusarium fujikuroi, and Fusarium oxysporum, respectively. The metabolite profiling of ethyl acetate fraction was assessed through the UHPLC-LTQ-IT-MS/MS analysis, and putative identification was done with the aid of the GNPS molecular networking workflow. A total of 29 compounds were putatively identified which included dipeptides, tripeptides, cyclopeptides (cyclo-(Leu-Leu), cyclo(Pro-Phe)), 2-heptyl-3-hydroxy 4-quinolone, 6-oxocativic acid, anhydrobrazilic acid, 1-(5-methoxy-1H-indol-3-yl)-2-piperidin-1-ylethane-1,2-dione, octadecenoic acid, pyochelin, 15-hydroxy-5Z,8Z,11Z, 13E-eicosatetraenoic acid, (Z)-7-[(2R,3S)-3-[(2Z,5E)-Undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoic acid, arginylasparagine, cholic acid, sphinganine, elaidic acid, gossypin, L-carnosine, tetrodotoxin, and ursodiol. The high antifungal activity of SK1 might be attributed to the presence of these bioactive compounds. The isolated strain SK1 showed plant growth-promoting traits such as the production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, nitrogen fixation, and phosphate solubilization. IAA production was strongly correlated with the application of exogenous tryptophan concentrations in the medium. Furthermore, inoculation of SK1 enhanced plant growth of two Lilium varieties, Tresor and White Heaven, under greenhouse condition. In the light of these findings, the P. polymyxa SK1 may be utilized as a source of plant growth promotion and disease control in sustainable agriculture.


Assuntos
Ascomicetos/fisiologia , Fusarium/fisiologia , Lilium/microbiologia , Paenibacillus polymyxa/fisiologia , Doenças das Plantas/prevenção & controle , Anti-Infecciosos/metabolismo , Carbono-Carbono Liases/metabolismo , Ácidos Carboxílicos/metabolismo , Endófitos , Ácidos Indolacéticos/metabolismo , Lilium/crescimento & desenvolvimento , Fixação de Nitrogênio , Paenibacillus polymyxa/química , Paenibacillus polymyxa/classificação , Paenibacillus polymyxa/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Sideróforos/metabolismo , Espectrometria de Massas em Tandem
11.
Arch Microbiol ; 202(3): 609-616, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31768560

RESUMO

A novel gram-negative, aerobic, non-spore-forming, rod-shaped and non-nitrogen fixing bacterium named strain 24NRT was isolated from wild Lilium pumilum bulbs in Fuping, Baoding City, Hebei province, PR China. The 16S rRNA gene sequences of strains 24NRT showed the highest similarity to Neorhizobium alkalisoli DSM 21826T (98.5%) and N. galegae HAMBI 540T (98.1%). Phylogenetic analysis based on 16S rRNA genes and multilocus sequence analysis (MLSA) based on the partial sequences of atpD-glnII-glnA-recA-ropD-thrC housekeeping genes both indicated that strain 24NRT is a member of the genus Neorhizobium. The average nucleotide identity between the genome sequence of strain 24NRT and that of the isolate N. alkalisoli DSM 21826T was 83.1%, and the digital DNA-DNA hybridization was 20.1%. The G+C content of strain 24NRT was 60.3 mol %. The major cellular fatty acids were summed feature 8 (C18:1ω7c and/or C18:1ω6c) and C19:0 cyclo ω8c. Based on phenotypic, phylogenetic, and genotypic data, strain 24NRT is considered to represent a novel species of the genus Neorhizobium, for which the name Neorhizobium lilium sp. nov. is proposed. The type strain is 24NRT (= ACCC 61588T = JCM 33731T).


Assuntos
Endófitos/isolamento & purificação , Lilium/microbiologia , Rhizobiaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/genética , Endófitos/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rhizobiaceae/classificação , Rhizobiaceae/genética , Rhizobiaceae/metabolismo , Análise de Sequência de DNA
12.
Plant Physiol Biochem ; 127: 525-536, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29723824

RESUMO

A major constraint in producing lilies is gray mold caused by Botrytis elliptica and B. cinerea. WRKY transcription factors play important roles in plant immune responses. However, limited information is available about the WRKY gene family in lily plants. In this study, 23 LrWRKY genes with complete WRKY domains were identified from the Botrytis-resistant species Lilium regale. The putative WRKY genes were divided into seven subgroups (Group I, IIa-e, and III) according to their structural features. Sequence alignment revealed that LrWRKY proteins have a highly conserved WRKYGQK domain and a variant, the WRKYGKK domain, and these proteins generally contained similar motif compositions throughout the same subgroup. Functional annotation predicted they might be involved in biological processes related to abiotic and biotic stresses. A qRT-PCR analysis confirmed that expression of six LrWRKY genes in L. regale or the susceptible Asian hybrid 'Yale' was induced by B. cinerea infection. Among these genes, LrWRKY4, LrWRKY8 and LrWRKY10 were expressed at a higher level in L. regale than 'Yale', while the expression of LrWRKY6 and LrWRKY12 was lower in L. regale. Furthermore, LrWRKY4 and LrWRKY12 genes, which also respond to salicylic acid (SA) and methyl jasmonate (MeJA) treatments, were isolated from L. regale. Subcellular localization analysis determined that they were targeted to the nucleus. Constitutive expression of LrWRKY4 and LrWRKY12 in Arabidopsis resulted in plants that were more resistant to B. cinerea than wild-type plants. This resistance was coupled with the transcriptional changes of SA and JA-responsive genes. Overall, our study provides valuable information about the structural and functional characterization of LrWRKY genes that will not only deepen our understanding of the molecular mechanisms underlying the defense of lily against B. cinerea but also offer potential targets for cultivar improvement via biotechnology.


Assuntos
Botrytis , Resistência à Doença/fisiologia , Regulação da Expressão Gênica/fisiologia , Lilium/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/biossíntese , Fatores de Transcrição/biossíntese , Lilium/genética , Lilium/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética
13.
Plant Physiol Biochem ; 123: 392-399, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29304484

RESUMO

Gray mold disease, caused by the fungus Botrytis elliptica, is one of the major diseases affecting Lilium species, and it has become a limiting factor in the production of ornamental lilies. To support selecting and breeding Botrytis-resistant cultivars, a total of 50 Lilium cultivars belonging to seven hybrid types were evaluated using a detached leaf technique for resistance to B. elliptica. Through resistance evaluations, Oriental × Trumpet and Oriental hybrid cultivars were classified as resistant lines, while Asiatic and Trumpet hybrids were classified as susceptible lines. A highly resistant (HR) Oriental hybrid, 'Sorbonne', and a highly susceptible (HS) Asiatic hybrid, 'Tresor', were selected for further study of early host-parasite interactions. After infection, B. elliptica grew faster and more easily on the leaves of 'Tresor' than on those of 'Sorbonne' during initial infection; when 'Tresor' leaves were completely infected, only a few lesions were observed on 'Sorbonne' leaves. Biochemical differences between these two cultivars were found following inoculation with B. elliptica, as shown by studies of reactive oxygen species (ROS) and the enzymatic antioxidant system. Rapid accumulation of H2O2 and ·O2- to trigger a defense response was detected in HR 'Sorbonne'. Meanwhile, higher levels of antioxidant activity, including SOD, POD and CAT, were found in HR 'Sorbonne' than in HS 'Tresor' before 48 h post-inoculation, but antioxidant activity was reduced with subsequent infection progress. These large and timely increases in ROS and antioxidant activities could be the main contributors to the high resistance of the 'Sorbonne' cultivar.


Assuntos
Botrytis/metabolismo , Quimera , Resistência à Doença , Lilium , Doenças das Plantas/microbiologia , Antioxidantes/metabolismo , Quimera/metabolismo , Quimera/microbiologia , Peróxido de Hidrogênio/metabolismo , Lilium/metabolismo , Lilium/microbiologia , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Superóxidos/metabolismo
14.
Planta ; 244(6): 1185-1199, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27485641

RESUMO

MAIN CONCLUSION: The L. regale ATP-binding cassette transporter gene, LrABCF1 belonging to GCN subfamily, functions as a positive regulator of plant defense against Cucumber mosaic virus, Tobacco rattle virus , and Botrytis cinerea in petunia. ATP-binding cassette (ABC) transporters are essential for membrane translocation in diverse biological processes, such as plant development and defense response. Here, a general control non-derepressible (GCN)-type ABC transporter gene, designated LrABCF1, was identified from Cucumber mosaic virus (CMV)-induced cDNA library of L. regale. LrABCF1 was up-regulated upon inoculation with CMV and Lily mottle virus (LMoV). Salicylic acid (SA) and ethylene (ET) application and treatments with abiotic stresses such as cold, high salinity, and wounding increased the transcript abundances of LrABCF1. Constitutive overexpression of LrABCF1 in petunia (Petunia × hybrida) resulted in an impairment of plant growth and development. LrABCF1 overexpression conferred reduced susceptibility to CMV, Tobacco rattle virus (TRV), and B. cinerea infection in transgenic petunia plants, accompanying by elevated transcripts of PhGCN2 and a few defense-related genes in SA-signaling pathway. Our data indicate that LrABCF1 positively modulates viral and fungal resistance.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Lilium/fisiologia , Imunidade Vegetal/fisiologia , Botrytis , Cucumovirus , Regulação da Expressão Gênica de Plantas/fisiologia , Lilium/microbiologia , Lilium/virologia , Vírus de Plantas
15.
World J Microbiol Biotechnol ; 32(6): 95, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27116961

RESUMO

Lanzhou lily (Liliumdavidii var. unicolor) is the best edible lily as well as a traditional medicinal plant in China. The microbes associated with plant roots play crucial roles in plant growth and health. However, little is known about the differences of rhizosphere microbes between healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants. The objective of this study was to compare the rhizosphere microbial community and functional diversity of healthy and wilted plants, and to identify potential biocontrol agents with significant effect. Paired end Illumina Mi-Seq sequencing of 16S rRNA and ITS gene amplicons was employed to study the bacterial and fungal communities in the rhizosphere soil of Lanzhou lily plants. BIOLOG technology was adopted to investigate the microbial functional diversity. Our results indicated that there were major differences in the rhizosphere microbial composition and functional diversity of wilted samples compared with healthy samples. Healthy Lanzhou lily plants exhibited lower rhizosphere-associated bacterial diversity than diseased plants, whereas fungi exhibited the opposite trend. The dominant phyla in both the healthy and wilted samples were Proteobacteria and Ascomycota, i.e., 34.45 and 64.01 %, respectively. The microbial functional diversity was suppressed in wilted soil samples. Besides Fusarium, the higher relative abundances of Rhizoctonia, Verticillium, Penicillium, and Ilyonectria (Neonectria) in the wilted samples suggest they may pathogenetic root rot fungi. The high relative abundances of Bacillus in Firmicutes in healthy samples may have significant roles as biological control agents against soilborne pathogens. This is the first study to find evidence of major differences between the microbial communities in the rhizospheric soil of healthy and wilted Lanzhou lily, which may be linked to the health status of plants.


Assuntos
Bactérias/classificação , Fungos/classificação , Lilium/microbiologia , Doenças das Plantas/microbiologia , Microbiologia do Solo , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , China , Fungos/genética , Fungos/isolamento & purificação , Lilium/crescimento & desenvolvimento , Microbiota , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Solo/química
16.
World J Microbiol Biotechnol ; 31(8): 1227-34, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25994089

RESUMO

Continuous monoculture of Lanzhou lily (Lilium davidii var. unicolor Cotton) results in frequent incidence of fusarium wilt caused by Fusarium oxysporum. Phthalic acid (PA), a principal autotoxin from root exudates of Lanzhou lily, is involved in soil sickness by inducing autotoxicity. The aim of this study was to evaluate the direct allelopathic effects of PA on the growth, development and pathogenicity of F. oxysporum in vitro based on an ecologically relevant soil concentration. The results showed that PA slightly but not significantly inhibited the colony growth (mycelial growth) and fungal biomass of F. oxysporum at low concentrations ranging from 0.05 to 0.5 mM, and significantly inhibited the colony growth at the highest concentration (1 mM). None of the PA concentrations tested significantly inhibited the conidial germination and sporulation of F. oxysporum in liquid medium. However, mycotoxin (fusaric acid) yield and pathogenesis-related hydrolytic enzyme (protease, pectinase, cellulase, and amylase) activities were significantly stimulated in liquid cultures of F. oxysporum containing PA at ≥ 0.25 mM. We conclude that PA at a soil level (i.e. 0.25 mM) is involved in plant-pathogen allelopathy as a stimulator of mycotoxin production and hydrolytic enzyme activities in F. oxysporum, which is possibly one of the mechanisms responsible for promoting the wilt disease of lily.


Assuntos
Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Lilium/química , Ácidos Ftálicos/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Fusarium/efeitos dos fármacos , Lilium/metabolismo , Lilium/microbiologia , Ácidos Ftálicos/metabolismo , Doenças das Plantas/microbiologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Esporos Fúngicos/patogenicidade , Virulência/efeitos dos fármacos
17.
PLoS One ; 10(4): e0122917, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25849549

RESUMO

Yeast biosurfactants are important biotechnological products in the food industry, and they have medical and cosmeceutical applications owing to their specific modes of action, low toxicity, and applicability. Thus, we have isolated and examined biosurfactant-producing yeast for various industrial and medical applications. A rapid and simple method was developed to screen biosurfactant-producing yeasts for high production of eco-friendly biosurfactants. Using this method, several potential niches of biosurfactant-producing yeasts, such as wild flowers, were investigated. We successfully selected a yeast strain, L3-GPY, with potent surfactant activity from a tiger lily, Lilium lancifolium Thunb. Here, we report the first identification of strain L3-GPY as the black yeast Aureobasidium pullulans. In addition, we isolated a new low-surface-tension chemical, designated glycerol-liamocin, from the culture supernatant of strain L3-GPY through consecutive chromatography steps, involving an ODS column, solvent partition, silica gel, Sephadex LH-20, and an ODS Sep-Pak cartridge column. The chemical structure of glycerol-liamocin, determined by mass spectrometry and nuclear magnetic resonance spectroscopy, indicates that it is a novel compound with the molecular formula C33H62O12. Furthermore, glycerol-liamocin exhibited potent biosurfactant activity (31 mN/m). These results suggest that glycerol-liamocin is a potential novel biosurfactantfor use in various industrial applications.


Assuntos
Ascomicetos/química , Polissacarídeos Fúngicos/química , Manitol/análogos & derivados , Manitol/química , Tensoativos/química , Configuração de Carboidratos , Polissacarídeos Fúngicos/isolamento & purificação , Lilium/microbiologia , Manitol/isolamento & purificação , Filogenia , Tensoativos/isolamento & purificação
18.
Plant Cell Rep ; 34(7): 1201-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25744417

RESUMO

KEY MESSAGE: Transgenic Lilium lines have been generated by Agrobacterium -mediated transformation that have enhanced resistance to Botrytis cinerea as a consequence of ectopic expression of a rice chitinase gene. The production of ornamentals is an important global industry, with Lilium being one of the six major bulb crops in the world. The international trade in ornamentals is in the order of £60-75 billion and is expected to increase worldwide by 2-4% per annum. The continued success of the floriculture industry depends on the introduction of new species/cultivars with major alterations in key agronomic characteristics, such as resistance to pathogens. Fungal diseases are the cause of reduced yields and marketable quality of cultivated plants, including ornamental species. The fungal pathogen Botrytis causes extreme economic losses to a wide range of crop species, including ornamentals such as Lilium. Agrobacterium-mediated transformation was used to develop Lilium oriental cv. 'Star Gazer' plants that ectopically overexpress the Rice Chitinase 10 gene (RCH10), under control of the CaMV35S promoter. Levels of conferred resistance linked to chitinase expression were evaluated by infection with Botrytis cinerea; sporulation was reduced in an in vitro assay and the relative expression of the RCH10 gene was determined by quantitative reverse transcriptase-PCR. The extent of resistance to Botrytis, compared to that of the wild type plants, showed a direct correlation with the level of chitinase gene expression. Transgenic plants grown to flowering showed no detrimental phenotypic effects associated with transgene expression. This is the first report of Lilium plants with resistance to Botrytis cinerea generated by a transgenic approach.


Assuntos
Botrytis/fisiologia , Quitinases/genética , Resistência à Doença/genética , Genes de Plantas , Lilium/genética , Lilium/microbiologia , Doenças das Plantas/microbiologia , Agrobacterium/fisiologia , Quitinases/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Lilium/crescimento & desenvolvimento , Fenótipo , Doenças das Plantas/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Esporos Fúngicos/fisiologia , Estatísticas não Paramétricas , Transformação Genética
19.
Int J Syst Evol Microbiol ; 65(Pt 5): 1520-1524, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25701847

RESUMO

A novel actinomycete, designated strain NEAU-B-8(T), was isolated from the rhizosphere soil of a peace lily (Spathi phyllum Kochii) collected from Heilongjiang province, north-east China. Key morphological and physiological characteristics as well as chemotaxonomic features of strain NEAU-B-8(T) were congruent with the description of the genus Actinomycetospora , such as the major fatty acids, the whole-cell hydrolysates, the predominant menaquinone and the phospholipid profile. The 16S rRNA gene sequence analysis revealed that strain NEAU-B-8(T) shared the highest sequence similarities with Actinomycetospora lutea JCM 17982(T) (99.3% 16S rRNA gene sequence similarity), Actinomycetospora chlora TT07I-57(T) (98.4 %), Actinomycetospora straminea IY07-55(T) (98.3%) and Actinomycetospora chibensis TT04-21(T) (98.2%); similarities to type strains of other species of this genus were lower than 98%. The phylogenetic tree based on 16S rRNA gene sequences showed that strain NEAU-B-8(T) formed a distinct branch with A. lutea JCM 17982(T) that was supported by a high bootstrap value of 97% in the neighbour-joining tree and was also recovered with the maximum-likelihood algorithm. However, the DNA-DNA relatedness between strain NEAU-B-8(T) and A. lutea JCM 17982(T) was found to be 50.6 ± 1.2%. Meanwhile, strain NEAU-B-8(T) differs from other most closely related strains in phenotypic properties, such as maximum NaCl tolerance, hydrolysis of aesculin and decomposition of urea. On the basis of the morphological, physiological, chemotaxonomic, phylogenetic and DNA-DNA hybridization data, we conclude that strain NEAU-B-8(T) represents a novel species of the genus Actinomycetospora , named Actinomycetospora rhizophila sp. nov. The type strain is NEAU-B-8(T). ( = CGMCC 4.7134(T) =DSM 46673(T)).


Assuntos
Actinomycetales/classificação , Lilium/microbiologia , Filogenia , Rizosfera , Microbiologia do Solo , Actinomycetales/genética , Actinomycetales/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
20.
Phytopathology ; 104(10): 1012-20, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25207480

RESUMO

The defense-related gene LsGRP1 exhibits an increased level of expression in Lilium spp. after being infected by Botrytis elliptica, the fungal pathogen of lily leaf blight. In this study, the expression profile of the LsGRP1 protein (a plant class II glycine-rich protein) was characterized biochemically and its subcellular localization in lily leaves was evaluated using immunohistochemistry, enhanced green fluorescent protein (EGFP) imaging, and protein extraction analysis. Using an LsGRP1-specific antibody, LsGRP1 was found to be most abundant in epidermal cells and phloem tissues. Leaves from lily plants at different growth stages demonstrated similar levels of 14- and 16-kDa LsGRP1 and a decreased amount of 23-kDa LsGRP1 at the senescence stage. LsGRP1-EGFP imaging and protein extraction assays revealed that 14-kDa LsGRP1 was located in the plasma membrane whereas 16- and 23-kDa LsGRP1 was weakly bound to the cell wall. The time course analyses of LsGRP1 expression in response to salicylic acid treatment or B. elliptica infection showed an increased accumulation of 14- and 23-kDa LsGRP1 over time. Because 23-kDa LsGRP1 could be detected by an ubiquitin antibody, conversion of 14-kDa to 23-kDa LsGRP1 via mono-ubiquitination was presumed, which is a phenomenon that has not been reported for a plant class II glycine-rich protein.


Assuntos
Botrytis/fisiologia , Regulação da Expressão Gênica de Plantas , Lilium/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Genes Reporter , Glicina , Lilium/citologia , Lilium/imunologia , Lilium/microbiologia , Dados de Sequência Molecular , Especificidade de Órgãos , Floema/citologia , Floema/imunologia , Floema/metabolismo , Floema/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/citologia , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA