Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 595
Filtrar
1.
Rev Alerg Mex ; 71(1): 59, 2024 Feb 01.
Artigo em Espanhol | MEDLINE | ID: mdl-38683077

RESUMO

BACKGROUND: Variants in intracellular calcium transport genes have been associated with syndromic immunodeficiencies with a SCID phenotype. CASE REPORT: Seven-year-old girl of non-consanguineous parents, in Cartagena-Colombia. At two months of age, he presented hematochezia and was diagnosed with alimentary proctolitis without improvement with restriction to milk, wheat and eggs, and malnutrition developed. At eight months, a colon biopsy shows chronic lymphoid hyperplasia, presenting with anemia, eosinophilia, but total and specific IgE to normal foods. After four years, the Immunology Service found her asymptomatic, nutritionally recovered and without allergic sensitization, but eosinophilia and elevated calprotectin persisted, suggesting an early-onset inflammatory bowel disease. Immunoglobulins were normal, lymphocyte populations with CD3, CD4 and CD8 lymphopenia. At six years old, she presented atopic dermatitis, still had elevated calprotectin and was lymphopenic. Immunophenotyping by spectral cytometry using Cytek®cFluor®Immunoprofiling-Kit14 showed lymphopenia and CD4/CD8 inversion. Naïve CD4+ and CD8+ T lymphocytes were decreased, while T-CD8+CD45RA-CCR7- and T-CD8+CD45RA+CCR7- effector memory populations were expanded. Effector and central memory CD4+ T-lymphocytes were also increased1 (Image 1). The exome revealed a heterozygous variant in the ITPR3 gene (carrier father), c.7571G>A, p.(Arg2524His); predictors classify it as having a potential eliminating effect. CONCLUSIONS: The clinical features and immunophenotype of this candidate variant differ from others related to intracellular calcium transport. They are functional studies necessary to validate their causality. A patient with a potentially deleted variant presents an immunophenotype with CD3 lymphopenia and persistent lymphocyte activation.


ANTECEDENTES: Las variantes en genes del transporte de calcio intracelular han sido asociadas a inmunodeficiencias sindrómicas con un fenotipo IDCG. REPORTE DE CASO: Niña de siete años, de padres no consanguíneos, en Cartagena-Colombia. A los dos meses de vida, presenta hematoquecia y se diagnostica con proctolitis alimentaria sin mejoría con restricción a leche, trigo y huevo, desarrollando desnutrición. A los ocho meses, una biopsia de colon muestra hiperplasia linfoide crónica, cursa con anemia, eosinofilia, pero IgE total y específica a alimentos normales. A los cuatro años, el Servicio de Inmunología la encuentra asintomática, recuperada nutricionalmente y sin sensibilización alérgica, pero persiste eosinofilia y calprotectina elevada, sugiriendo una enfermedad inflamatoria intestinal de inicio temprano. Las inmunoglobulinas fueron normales, poblaciones linfocitarias con linfopenia CD3, CD4 y CD8. A los seis años, presenta dermatitis atópica, sigue con calprotectina elevada y linfopénica. El inmunofenotipo por citometría espectral mediante Cytek®cFluor®Immunoprofiling-Kit14, mostró linfopenia e inversión CD4/CD8. Los linfocitos T-vírgenes CD4+ y CD8+ estaban disminuidos, en cambio las poblaciones de memoria efectora T-CD8+CD45RA-CCR7- y T-CD8+CD45RA+CCR7­ estaban expandidas. Los linfocitos T-CD4+ de memoria efectora y central, también estaban aumentados1 (Imagen 1). El exoma reveló una variante heterocigótica en el gen ITPR3 (padre portador), c.7571G>A, p.(Arg2524His); los predictores la clasifican como de potencial efecto deletéreo. CONCLUSIONES: La clínica y el inmunofenotipo de esta variante candidata difiere de otras relacionadas con el transporte del calcio intracelular. Son necesarios estudios funcionales para validar su causalidad. Una paciente con una variante potencialmente deletérea, presenta un inmunofenotipo con linfopenia CD3 y activación persistente de los linfocitos.


Assuntos
Imunofenotipagem , Receptores de Inositol 1,4,5-Trifosfato , Linfopenia , Humanos , Feminino , Criança , Linfopenia/genética , Linfopenia/etiologia , Receptores de Inositol 1,4,5-Trifosfato/genética , Mutação , Citometria de Fluxo , Células T de Memória/imunologia
2.
Front Immunol ; 15: 1329610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361950

RESUMO

Mutations in STK4 (MST1) are implicated in a form of autosomal recessive combined immunodeficiency, resulting in recurrent infections (especially Epstein-Barr virus viremia), autoimmunity, and cardiac malformations. Here we report a patient with an atypically mild presentation of this disease, initially presenting with severe T cell lymphopenia (< 500 per mm3) and intermittent neutropenia, but now surviving well on immunoglobulins and prophylactic antibacterial treatment. She harbors a unique STK4 mutation that lies further downstream than all others reported to date. Unlike other published cases, her mRNA transcript is not vulnerable to nonsense mediated decay (NMD) and yields a truncated protein that is expected to lose only the C-terminal SARAH domain. This domain is critical for autodimerization and autophosphorylation. While exhibiting significant differences from controls, this patient's T cell proliferation defects and susceptibility to apoptosis are not as severe as reported elsewhere. Expression of PD-1 is in line with healthy controls. Similarly, the dysregulation seen in immunophenotyping is not as pronounced as in other published cases. The nature of this mutation, enabling its evasion from NMD, provides a rare glimpse into the clinical and cellular features associated with the absence of a "null" phenotype of this protein.


Assuntos
Infecções por Vírus Epstein-Barr , Linfopenia , Humanos , Feminino , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4 , Mutação , Linfopenia/genética , Linfócitos T , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
3.
J Allergy Clin Immunol ; 153(4): 1113-1124.e7, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38065233

RESUMO

BACKGROUND: Patients with deleterious variants in MYSM1 have an immune deficiency characterized by B-cell lymphopenia, hypogammaglobulinemia, and increased radiosensitivity. MYSM1 is a histone deubiquitinase with established activity in regulating gene expression. MYSM1 also localizes to sites of DNA injury but its function in cellular responses to DNA breaks has not been elucidated. OBJECTIVES: This study sought to determine the activity of MYSM1 in regulating DNA damage responses (DDRs) to DNA double-stranded breaks (DSBs) generated during immunoglobulin receptor gene (Ig) recombination and by ionizing radiation. METHODS: MYSM1-deficient pre- and non-B cells were used to determine the role of MYSM1 in DSB generation, DSB repair, and termination of DDRs. RESULTS: Genetic testing in a newborn with abnormal screen for severe combined immune deficiency, T-cell lymphopenia, and near absence of B cells identified a novel splice variant in MYSM1 that results in nearly absent protein expression. Radiosensitivity testing in patient's peripheral blood lymphocytes showed constitutive γH2AX, a marker of DNA damage, in B cells in the absence of irradiation, suggesting a role for MYSM1 in response to DSBs generated during Ig recombination. Suppression of MYSM1 in pre-B cells did not alter generation or repair of Ig DSBs. Rather, loss of MYSM1 resulted in persistent DNA damage foci and prolonged DDR signaling. Loss of MYSM1 also led to protracted DDRs in U2OS cells with irradiation induced DSBs. CONCLUSIONS: MYSM1 regulates termination of DNA damage responses but does not function in DNA break generation and repair.


Assuntos
Dano ao DNA , Reparo do DNA , Linfopenia , Humanos , Recém-Nascido , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Histonas/genética , Histonas/metabolismo , Linfopenia/genética , Transativadores/genética , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo
4.
J Exp Med ; 221(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962568

RESUMO

Lymphocyte-specific protein tyrosine kinase (LCK) is essential for T cell antigen receptor (TCR)-mediated signal transduction. Here, we report two siblings homozygous for a novel LCK variant (c.1318C>T; P440S) characterized by T cell lymphopenia with skewed memory phenotype, infant-onset recurrent infections, failure to thrive, and protracted diarrhea. The patients' T cells show residual TCR signal transduction and proliferation following anti-CD3/CD28 and phytohemagglutinin (PHA) stimulation. We demonstrate in mouse models that complete (Lck-/-) versus partial (LckP440S/P440S) loss-of-function LCK causes disease with differing phenotypes. While both Lck-/- and LckP440S/P440S mice exhibit arrested thymic T cell development and profound T cell lymphopenia, only LckP440S/P440S mice show residual T cell proliferation, cytokine production, and intestinal inflammation. Furthermore, the intestinal disease in the LckP440S/P440S mice is prevented by CD4+ T cell depletion or regulatory T cell transfer. These findings demonstrate that P440S LCK spares sufficient T cell function to allow the maturation of some conventional T cells but not regulatory T cells-leading to intestinal inflammation.


Assuntos
Síndromes de Imunodeficiência , Linfopenia , Lactente , Humanos , Animais , Camundongos , Antígenos CD28 , Linfócitos T CD4-Positivos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Receptores de Antígenos de Linfócitos T/genética , Inflamação/genética , Linfopenia/genética
5.
Proc Natl Acad Sci U S A ; 120(50): e2314429120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38055739

RESUMO

We detected ENU-induced alleles of Mfsd1 (encoding the major facilitator superfamily domain containing 1 protein) that caused lymphopenia, splenomegaly, progressive liver pathology, and extramedullary hematopoiesis (EMH). MFSD1 is a lysosomal membrane-bound solute carrier protein with no previously described function in immunity. By proteomic analysis, we identified association between MFSD1 and both GLMP (glycosylated lysosomal membrane protein) and GIMAP5 (GTPase of immunity-associated protein 5). Germline knockout alleles of Mfsd1, Glmp, and Gimap5 each caused lymphopenia, liver pathology, EMH, and lipid deposition in the bone marrow and liver. We found that the interactions of MFSD1 and GLMP with GIMAP5 are essential to maintain normal GIMAP5 expression, which in turn is critical to support lymphocyte development and liver homeostasis that suppresses EMH. These findings identify the protein complex MFSD1-GLMP-GIMAP5 operating in hematopoietic and extrahematopoietic tissues to regulate immunity and liver homeostasis.


Assuntos
Proteínas de Ligação ao GTP , Linfopenia , Humanos , Proteínas de Ligação ao GTP/metabolismo , Proteômica , Fígado/metabolismo , Linfócitos/metabolismo , Linfopenia/genética , Homeostase
6.
Signal Transduct Target Ther ; 8(1): 398, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37848421

RESUMO

Unraveling the molecular mechanisms for COVID-19-associated encephalopathy and its immunopathology is crucial for developing effective treatments. Here, we utilized single-cell transcriptomic analysis and integrated clinical observations and laboratory examination to dissect the host immune responses and reveal pathological mechanisms in COVID-19-associated pediatric encephalopathy. We found that lymphopenia was a prominent characteristic of immune perturbation in COVID-19 patients with encephalopathy, especially those with acute necrotizing encephalopathy (AE). This was characterized a marked reduction of various lymphocytes (e.g., CD8+ T and CD4+ T cells) and significant increases in other inflammatory cells (e.g., monocytes). Further analysis revealed activation of multiple cell apoptosis pathways (e.g., granzyme/perforin-, FAS- and TNF-induced apoptosis) may be responsible for lymphopenia. A systemic S100A12 upregulation, primarily from classical monocytes, may have contributed to cytokine storms in patients with AE. A dysregulated type I interferon (IFN) response was observed which may have further exacerbated the S100A12-driven inflammation in patients with AE. In COVID-19 patients with AE, myeloid cells (e.g., monocytic myeloid-derived suppressor cells) were the likely contributors to immune paralysis. Finally, the immune landscape in COVID-19 patients with encephalopathy, especially for AE, were also characterized by NK and T cells with widespread exhaustion, higher cytotoxic scores and inflammatory response as well as a dysregulated B cell-mediated humoral immune response. Taken together, this comprehensive data provides a detailed resource for elucidating immunopathogenesis and will aid development of effective COVID-19-associated pediatric encephalopathy treatments, especially for those with AE.


Assuntos
COVID-19 , Linfopenia , Humanos , Criança , Linfócitos T CD8-Positivos , COVID-19/genética , Proteína S100A12 , Transcriptoma/genética , Linfócitos T CD4-Positivos , Linfopenia/genética
7.
Clin Immunol ; 257: 109813, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37898412

RESUMO

BACKGROUND: RASGRP1-deficiency results in an immune dysregulation and immunodeficiency that manifest as autoimmunity, lymphoproliferation, lymphopenia, defective T cell function, and increased incidence of Epstein-Bar Virus infections and lymphomas. OBJECTIVE: To investigate the mechanism of autoimmune hemolytic anemia and infections in a male patient of consanguineous parents from Lebanon. METHODS: Genetic diagnosis was obtained using next generation and Sanger sequencing. Protein expression and phosphorylation were determined by immunoblotting. T and B cell development and function were studied by flow cytometry. Cytokine and immunoglobulin secretions were quantified by enzyme-linked immunosorbent assay. RESULTS: The patient suffered from severe lymphopenia especially affecting the T cell compartment. Genetic analysis revealed a homozygous insertion of adenine at position 1396_1397 in RASGRP1 that abolished protein expression and downstream Ras signaling. T cells from the patient showed severe activation defects resulting in uncontrolled Epstein-Bar Virus-induced B cell proliferation. B cells from the patient were normal. CONCLUSION: This report expands the spectrum of mutations in patients with RasGRP1 deficiency, and provides evidence for the important role RasGRP1 plays in the ability of T cells to control Epstein-Bar Virus-induced B cell proliferation. CLINICAL IMPLICATIONS: Following diagnosis, the patient will be maintained on oral valganciclovir and monitored regularly for Epstein-Bar Virus infections to avoid the development of Epstein-Bar Virus- induced B cell lymphoma. He is also candidate for hematopoietic stem cell transplantation.


Assuntos
Infecções por Vírus Epstein-Barr , Síndromes de Imunodeficiência , Linfopenia , Humanos , Masculino , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Herpesvirus Humano 4 , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/genética , Linfopenia/complicações , Linfopenia/genética , Mutação
9.
Int J Immunogenet ; 50(4): 177-184, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37308802

RESUMO

Severe combined immunodeficiency (SCID) is an inborn errors of immunity (IEI) disorder characterized by impairment in the development and function of lymphocytes and could be fatal if not treated with hematopoietic stem cell transplant in the first 2 years of life. There are various diagnostic criteria for SCID among different primary immunodeficiency societies. We retrospectively evaluated clinical and laboratory findings of 59 patients followed up with the diagnosis of SCID at our clinic over the past 20 years in order to develop an algorithm that would help diagnosis of SCID for the countries where a high ratio of consanguineous marriage is present because these countries have not launched TREC assay in their newborn screening programs. The mean age at diagnosis was 5.80 ± 4.90 months, and the delay was 3.29 ± 3.99 months. The most common complaint and physical examination findings were cough (29.05%), eczematous rash (63%) and organomegaly (61%). ADA (17%), Artemis (14%), RAG1/2 (15%), MHC Class II (12%) and IL-2R (12%) deficiencies were the most common genetic defects. Lymphopenia (87.5%) was the most frequent abnormal laboratory finding and below 3000/mm3 in 95% of the patients. The CD3+ T cell count was 300/mm3 and below in 83% of the patients. As a result, a combination of low lymphocyte count and CD3 lymphopenia for SCID diagnosis would be more reliable for countries with high rate of consanguineous marriage. Physicians should consider diagnosis of SCID in a patient presenting with severe infections and lymphocyte counts below 3000/mm3 under 2 years of age.


Assuntos
Linfopenia , Imunodeficiência Combinada Severa , Recém-Nascido , Humanos , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Estudos Retrospectivos , Linfopenia/diagnóstico , Linfopenia/genética , Linfócitos , Genes MHC da Classe II
10.
Front Immunol ; 14: 1155883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313400

RESUMO

Introduction: ZAP-70, a protein tyrosine kinase recruited to the T cell receptor (TCR), initiates a TCR signaling cascade upon antigen stimulation. Mutations in the ZAP70 gene cause a combined immunodeficiency characterized by low or absent CD8+ T cells and nonfunctional CD4+ T cells. Most deleterious missense ZAP70 mutations in patients are located in the kinase domain but the impact of mutations in the SH2 domains, regulating ZAP-70 recruitment to the TCR, are not well understood. Methods: Genetic analyses were performed on four patients with CD8 lymphopenia and a high resolution melting screening for ZAP70 mutations was developed. The impact of SH2 domain mutations was evaluated by biochemical and functional analyses as well as by protein modeling. Results and discussion: Genetic characterization of an infant who presented with pneumocystis pneumonia, mycobacterial infection, and an absence of CD8 T cells revealed a novel homozygous mutation in the C-terminal SH2 domain (SH2-C) of the ZAP70 gene (c.C343T, p.R170C). A distantly related second patient was found to be compound heterozygous for the R170C variant and a 13bp deletion in the ZAP70 kinase domain. While the R170C mutant was highly expressed, there was an absence of TCR-induced proliferation, associated with significantly attenuated TCR-induced ZAP-70 phosphorylation and a lack of binding of ZAP-70 to TCR-ζ. Moreover, a homozygous ZAP-70 R192W variant was identified in 2 siblings with combined immunodeficiency and CD8 lymphopenia, confirming the pathogenicity of this mutation. Structural modeling of this region revealed the critical nature of the arginines at positions 170 and 192, in concert with R190, forming a binding pocket for the phosphorylated TCR-ζ chain. Deleterious mutations in the SH2-C domain result in attenuated ZAP-70 function and clinical manifestations of immunodeficiency.


Assuntos
Linfopenia , Doenças da Imunodeficiência Primária , Lactente , Humanos , Domínios de Homologia de src/genética , Proteínas Tirosina Quinases , Arginina , Linfopenia/genética , Proteína-Tirosina Quinase ZAP-70/genética
11.
Iran J Allergy Asthma Immunol ; 22(1): 91-98, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37002634

RESUMO

Some risk causes may be associated with the severity of COVID-19. The central host-pathogen factors might affect infection are human receptor angiotensin-converting enzyme 2 (ACE2), trans-membrane protease serine 2 (TMPRSS2), and SARS-CoV-2 surface spike (S)-protein. The main purpose of this study was to determine the differences in the expression the metalloproteinases-2  (MMP-2), MMP-9, ACE2, and TMPRSS2 genes and their correlation with lymphopenia in the mild and severe types of the COVID-19 patients. Eighty-eight patients, aged 36 to 60 years old with the mild (n=44) and severe (n=44) types of COVID-19 were enrolled. Total RNA was isolated from the peripheral blood mononuclear cells (PBMCs). The changes of MMP-2, MMP-9, ACE2 and TMPRSS2 gene expression in PBMCs from mild and severe COVID-19 patients were examined by the real time-quantitative polymerase chain reaction (RT-qPCR) assay and, compared between the groups. Data were collected from May 2021 to March 2022. The mean age of the patients in both groups was 48 (interquartile range, 36-60), and there were no appreciable differences in age or gender distribution between the two groups. The present study showed that a significant increase in the expression of ACE2, TMPRSS2, MMP-2, and MMP-9 genes in the severe type of the COVID-19 patients compared, to the mild type of the COVID-19 patients. Overall, it suggests the expression levels of these genes on the PBMC surface in the immune system are susceptible to infection by SARS-COV-2 and therefore could potentially predict the patients' outcome.


Assuntos
COVID-19 , Linfopenia , Humanos , Adulto , Pessoa de Meia-Idade , COVID-19/genética , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Leucócitos Mononucleares , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Linfopenia/genética , Serina Endopeptidases/genética
12.
Curr Allergy Asthma Rep ; 23(4): 213-222, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36897497

RESUMO

PURPOSE OF REVIEW: This review focuses on immunologic findings, relationships among immunologic findings and associated conditions of autoimmunity and atopy, and management of immunologic disease in chromosome 22q11.2 deletion syndrome (22q11.2DS, historically known as DiGeorge syndrome). RECENT FINDINGS: The implementation of assessment of T cell receptor excision circles (TRECs) in newborn screening has led to increased detection of 22q11.2 deletion syndrome. While not yet applied in clinical practice, cell-free DNA screening for 22q11.2DS also has the potential to improve early detection, which may benefit prompt evaluation and management. Multiple studies have further elucidated phenotypic features and potential biomarkers associated with immunologic outcomes, including the development of autoimmune disease and atopy. The clinical presentation of 22q11.2DS is highly variable particularly with respect to immunologic manifestations. Time to recovery of immune system abnormalities is not well-defined in current literature. An understanding of the underlying causes of immunologic changes found in 22q11.2DS, and the progression and evolution of immunologic changes over the lifespan have expanded over time and with improved survival. An included case highlights the variability of presentation and potential severity of T cell lymphopenia in partial DiGeorge syndrome and demonstrates successful spontaneous immune reconstitution in partial DiGeorge syndrome despite initial severe T cell lymphopenia.


Assuntos
Síndrome de DiGeorge , Linfopenia , Recém-Nascido , Humanos , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/terapia , Deleção Cromossômica , Triagem Neonatal , Linfopenia/complicações , Linfopenia/genética , Cromossomos
13.
J Allergy Clin Immunol ; 151(4): 911-921, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758836

RESUMO

BACKGROUND: Lymphopenia, particularly when restricted to the T-cell compartment, has been described as one of the major clinical hallmarks in patients with coronavirus disease 2019 (COVID-19) and proposed as an indicator of disease severity. Although several mechanisms fostering COVID-19-related lymphopenia have been described, including cell apoptosis and tissue homing, the underlying causes of the decline in T-cell count and function are still not completely understood. OBJECTIVE: Given that viral infections can directly target thymic microenvironment and impair the process of T-cell generation, we sought to investigate the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on thymic function. METHODS: We performed molecular quantification of T-cell receptor excision circles and κ-deleting recombination excision circles to assess, respectively, T- and B-cell neogenesis in SARS-CoV-2-infected patients. We developed a system for in vitro culture of primary human thymic epithelial cells (TECs) to mechanistically investigate the impact of SARS-CoV-2 on TEC function. RESULTS: We showed that patients with COVID-19 had reduced thymic function that was inversely associated with the severity of the disease. We found that angiotensin-converting enzyme 2, through which SARS-CoV-2 enters the host cells, was expressed by thymic epithelium, and in particular by medullary TECs. We also demonstrated that SARS-CoV-2 can target TECs and downregulate critical genes and pathways associated with epithelial cell adhesion and survival. CONCLUSIONS: Our data demonstrate that the human thymus is a target of SARS-CoV-2 and thymic function is altered following infection. These findings expand our current knowledge of the effects of SARS-CoV-2 infection on T-cell homeostasis and suggest that monitoring thymic activity may be a useful marker to predict disease severity and progression.


Assuntos
COVID-19 , Linfopenia , Humanos , COVID-19/metabolismo , SARS-CoV-2 , Timo , Linfopenia/genética , Gravidade do Paciente
14.
Hum Gene Ther ; 34(7-8): 314-324, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36851898

RESUMO

With efficient transduction across most cell types and larger packaging capacity, Adenovirus 5 (Ad5) makes an attractive choice as a viral vector. However, a reported past mortality and known immunogenicity cast doubt on the safety of its use. An online database search was performed for all clinical trials administering intratumoral injection of gene therapy packaged in Ad5, being conducted in the United States, and using the Common Terminology Criteria for Adverse Events (CTCAE). Studies with unclear adverse events (AE) were excluded. The primary outcome collected was grade ≥3 (AE). Analyses were performed using Fisher's exact test. Thirty-nine prospective clinical trials across a variety of cancers were identified: 14 studies of therapeutic Ad5 alone, 12 with chemotherapy, 16 with radiation, and 11 with surgery. There were 3 mortalities out of 756 patients (0.4%), which were most likely unrelated to Ad5: 1 due to hypoxic encephalopathy, 1 due to splenic vein thrombus, and 1 due to disease progression. In trials that reported total AE (grades 1-5), there were 284 (10.3%) grade ≥3 AE out of 2,745 total AE in 477 patients. The overall life-threatening (grade 4) AE rate was 1.4% (34/2,425 AE in 428 patients). Overall, the most frequent grade ≥3 AE were lymphopenia (20.6% in 14 trials, 209 patients), dyspnea (8.7% in 11 trials, 208 patients), and neutropenia (8.6% in 12 trials, 174 patients). The most frequent grade 4 AE were neutropenia (4.6%), lymphopenia (3.3%), and leukopenia (3.1% in 13 trials, 192 patients). Our analyses demonstrated relative overall safety of Ad5 and warrant re-evaluation for the use of Ad5 as a delivery vector for gene therapy products.


Assuntos
Linfopenia , Neoplasias , Neutropenia , Humanos , Adenoviridae/genética , Genes Neoplásicos , Linfopenia/genética , Neoplasias/genética , Neoplasias/terapia , Neutropenia/genética , Estudos Prospectivos
15.
Am J Hum Genet ; 110(1): 146-160, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608681

RESUMO

Neddylation has been implicated in various cellular pathways and in the pathophysiology of numerous diseases. We identified four individuals with bi-allelic variants in NAE1, which encodes the neddylation E1 enzyme. Pathogenicity was supported by decreased NAE1 abundance and overlapping clinical and cellular phenotypes. To delineate how cellular consequences of NAE1 deficiency would lead to the clinical phenotype, we focused primarily on the rarest phenotypic features, based on the assumption that these would best reflect the pathophysiology at stake. Two of the rarest features, neuronal loss and lymphopenia worsening during infections, suggest that NAE1 is required during cellular stress caused by infections to protect against cell death. In support, we found that stressing the proteasome system with MG132-requiring upregulation of neddylation to restore proteasomal function and proteasomal stress-led to increased cell death in fibroblasts of individuals with NAE1 genetic variants. Additionally, we found decreased lymphocyte counts after CD3/CD28 stimulation and decreased NF-κB translocation in individuals with NAE1 variants. The rarest phenotypic feature-delayed closure of the ischiopubic rami-correlated with significant downregulation of RUN2X and SOX9 expression in transcriptomic data of fibroblasts. Both genes are involved in the pathophysiology of ischiopubic hypoplasia. Thus, we show that NAE1 plays a major role in (skeletal) development and cellular homeostasis during stress. Our approach suggests that a focus on rare phenotypic features is able to provide significant pathophysiological insights in diseases caused by mutations in genes with pleiotropic effects.


Assuntos
Deficiência Intelectual , Linfopenia , Humanos , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Transdução de Sinais/genética , Deficiência Intelectual/genética , NF-kappa B/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Linfopenia/genética
16.
Thorax ; 78(4): 383-393, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35354645

RESUMO

BACKGROUND: One hallmark of sepsis is the reduced number of lymphocytes, termed lymphopenia, that occurs from decreased lymphocyte proliferation or increased cell death contributing to immune suppression. Histone modification enzymes regulate immunity by their epigenetic and non-epigenetic functions; however, the role of these enzymes in lymphopenia remains elusive. METHODS: We used molecular biological approaches to investigate the high expression and function of a chromatin modulator protein arginine N-methyltransferase 4 (PRMT4)/coactivator-associated arginine methyltransferase 1 in human samples from septic patients and cellular and animal septic models. RESULTS: We identified that PRMT4 is elevated systemically in septic patients and experimental sepsis. Gram-negative bacteria and their derived endotoxin lipopolysaccharide (LPS) increased PRMT4 in B and T lymphocytes and THP-1 monocytes. Single-cell RNA sequencing results indicate an increase of PRMT4 gene expression in activated T lymphocytes. Augmented PRMT4 is crucial for inducing lymphocyte apoptosis but not monocyte THP-1 cells. Ectopic expression of PRMT4 protein caused substantial lymphocyte death via caspase 3-mediated cell death signalling, and knockout of PRMT4 abolished LPS-mediated lymphocyte death. PRMT4 inhibition with a small molecule compound attenuated lymphocyte death in complementary models of sepsis. CONCLUSIONS: These findings demonstrate a previously uncharacterised role of a key chromatin modulator in lymphocyte survival that may shed light on devising therapeutic modalities to lessen the severity of septic immunosuppression.


Assuntos
Linfopenia , Proteína-Arginina N-Metiltransferases , Sepse , Animais , Humanos , Arginina/genética , Caspase 3/genética , Caspase 3/imunologia , Cromatina , Lipopolissacarídeos/farmacologia , Linfopenia/etiologia , Linfopenia/genética , Linfopenia/imunologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Sepse/complicações , Sepse/genética , Sepse/imunologia
17.
Clin Immunol ; 245: 109182, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36368643

RESUMO

Newborn screening (NBS) for severe combined immunodeficiency (SCID) can identify infants with non-SCID T cell lymphopenia (TCL). The purpose of this study was to characterize the natural history and genetic findings of infants with non-SCID TCL identified on NBS. We analyzed data from 80 infants with non-SCID TCL in the mid-Atlantic region between 2012 and 2019. 66 patients underwent genetic testing and 41 (51%) had identified genetic variant(s). The most common genetic variants were thymic defects (33%), defects with unknown mechanisms (12%) and bone marrow production defects (5%). The genetic cohort had significantly lower median initial CD3+, CD4+, CD8+ and CD4/CD45RA+ T cell counts compared to the non-genetic cohort. Thirty-six (45%) had either viral, bacterial, or fungal infection; only one patient had an opportunistic infection (vaccine strain VZV infection). Twenty-six (31%) of patients had resolution of TCL during the study period.


Assuntos
Linfopenia , Imunodeficiência Combinada Severa , Lactente , Recém-Nascido , Humanos , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Triagem Neonatal , Testes Genéticos , Linfopenia/genética , Linfopenia/diagnóstico , Linfócitos T
18.
Immunol Lett ; 250: 15-22, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36174769

RESUMO

BACKGROUND: Adoptive transfer of PD-1 knockout T cells mediated by CRISPR/Cas9 technology has been used in various cancers and got satisfactory treatment effectiveness. However, the effectiveness was limited due to the low proliferation ability, antigen recognition ability and short lifetime of T cells in vivo. METHOD: In this study, PD-1 knockout T cells mediated by CRISPR/Cas9 system were transferred into lymphopenic mice after sub-lethal dose of total body irradiation. The antitumor effects of PD-1 knockout T cells were comprehensively analyzed by flow cytometry. Moreover, PD-L1 knockout B16 cells were inoculated subcutaneously in lymphopenic mice receiving infusion of naïve T cells to value the role of PD-1/PD-L1 axis on lymphopenia-induced antitumor immunity RESULT: In this study, we found that the PD-1-knockout T cells underwent several rounds of homeostatic proliferation in vivo when they were transferred into lymphopenic mice. The number of IFN-γ-releasing CTL was significantly increased and the tumor growth was remarkably inhibited in lymphopenic mice receiving infusion of PD-1 knockout T cells. The expression of PD-L1 on tumor cells rose smartly in lymphopenic mice undergoing homeostatic proliferation. PD-L1 gene knockout on B16 melanoma cells could effectively enhance the antitumor immunity mediated by the homeostatic proliferation of T cells and significantly inhibited the growth of tumor CONCLUSION: These findings suggested that lymphopenic condition after total body irradiation might be able to create an environment to promote the PD-1 knockout T cells to recognize tumor antigen and undergo homeostatic proliferation, thus induced a more powerful antitumor immunity than adoptively transferring into immunocompetent hosts.


Assuntos
Linfopenia , Melanoma Experimental , Animais , Antígenos de Neoplasias , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Linfopenia/genética , Melanoma , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/genética , Neoplasias Cutâneas , Linfócitos T , Melanoma Maligno Cutâneo
19.
Front Immunol ; 13: 928252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967429

RESUMO

Newborn screening for severe combined immunodeficiency (SCID) has not only accelerated diagnosis and improved treatment for affected infants, but also led to identification of novel genes required for human T cell development. A male proband had SCID newborn screening showing very low T cell receptor excision circles (TRECs), a biomarker for thymic output of nascent T cells. He had persistent profound T lymphopenia, but normal numbers of B and natural killer (NK) cells. Despite an allogeneic hematopoietic stem cell transplant from his brother, he failed to develop normal T cells. Targeted resequencing excluded known SCID genes; however, whole exome sequencing (WES) of the proband and parents revealed a maternally inherited X-linked missense mutation in MED14 (MED14V763A), a component of the mediator complex. Morpholino (MO)-mediated loss of MED14 function attenuated T cell development in zebrafish. Moreover, this arrest was rescued by ectopic expression of cDNA encoding the wild type human MED14 ortholog, but not by MED14V763A , suggesting that the variant impaired MED14 function. Modeling of the equivalent mutation in mouse (Med14V769A) did not disrupt T cell development at baseline. However, repopulation of peripheral T cells upon competitive bone marrow transplantation was compromised, consistent with the incomplete T cell reconstitution experienced by the proband upon transplantation with bone marrow from his healthy male sibling, who was found to have the same MED14V763A variant. Suspecting that the variable phenotypic expression between the siblings was influenced by further mutation(s), we sought to identify genetic variants present only in the affected proband. Indeed, WES revealed a mutation in the L1 cell adhesion molecule (L1CAMQ498H); however, introducing that mutation in vivo in mice did not disrupt T cell development. Consequently, immunodeficiency in the proband may depend upon additional, unidentified gene variants.


Assuntos
Linfopenia , Imunodeficiência Combinada Severa , Animais , Humanos , Lactente , Recém-Nascido , Linfopenia/genética , Masculino , Camundongos , Triagem Neonatal , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Linfócitos T , Peixe-Zebra
20.
J Immunol ; 209(5): 874-885, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35940635

RESUMO

Phenotypic variations of chromosome 22q11.2 deletion syndrome (22qDS) have unclear explanations. T cell lymphopenia in 22qDS related to varying degrees of thymic hypoplasia contributes to the phenotypic heterogeneity. No phenotype correlation with genotype or deletion size is known for lymphopenia. We investigated gene expression in human T cells of participants with and without 22qDS and T cells of participants with 22qDS with low or normal T cells. Peripheral blood was collected from participants aged 5-8 y. Immune function was checked. RNA sequencing was completed on isolated T cells, and differential gene expression profiles of T cells between 22qDS and healthy control subjects were established. A total of 360 genes were differentially expressed (q < 0.05) between T cells of patients with 22qDS (n = 13) and healthy control subjects (n = 6) (log2 fold change range, -2.0747, 15.6724). We compared gene expression between participants with 22qDS with low (n = 7) and normal T cell counts (n = 6), finding 94 genes that were differentially expressed (q < 0.05) (log2 fold change range, -4.5445, 5.1297). Twenty-nine genes correlated with T cell counts and markers CD3, CD4, CD8, and CD45RA+CD4 (R ≥ 0.8). We found significantly differentially expressed genes in participants with 22qDS compared with healthy control subjects and in participants with 22qDS with low T cell counts compared with those with normal T cell counts. Several enriched pathways suggest a role of T cells in defective communication between T cells and the innate immune system in 22qDS. Among these, the liver X receptor/retinoid X receptor pathway was noted to show several differentially expressed genes affecting participants with 22qDS compared with healthy control subjects and more so those with low T cell counts than in those with normal T cell counts.


Assuntos
Síndrome de DiGeorge , Linfopenia , Cromossomos , Síndrome de DiGeorge/genética , Humanos , Receptores X do Fígado/genética , Linfopenia/genética , Receptores X de Retinoides/genética , Linfócitos T , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA