Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.216
Filtrar
1.
BMC Plant Biol ; 24(1): 623, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951751

RESUMO

BACKGROUND: Ideally, the barrier properties of a fruit's cuticle persist throughout its development. This presents a challenge for strawberry fruit, with their rapid development and thin cuticles. The objective was to establish the developmental time course of cuticle deposition in strawberry fruit. RESULTS: Fruit mass and surface area increase rapidly, with peak growth rate coinciding with the onset of ripening. On a whole-fruit basis, the masses of cutin and wax increase but on a unit surface-area basis, they decrease. The decrease is associated with marked increases in elastic strain. The expressions of cuticle-associated genes involved in transcriptional regulation (FaSHN1, FaSHN2, FaSHN3), synthesis of cutin (FaLACS2, FaGPAT3) and wax (FaCER1, FaKCS10, FaKCR1), and those involved in transport of cutin monomers and wax constituents (FaABCG11, FaABCG32) decreased until maturity. The only exceptions were FaLACS6 and FaGPAT6 that are presumably involved in cutin synthesis, and FaCER1 involved in wax synthesis. This result was consistent across five strawberry cultivars. Strawberry cutin consists mainly of C16 and C18 monomers, plus minor amounts of C19, C20, C22 and C24 monomers, ω-hydroxy acids, dihydroxy acids, epoxy acids, primary alcohols, carboxylic acids and dicarboxylic acids. The most abundant monomer is 10,16-dihydroxyhexadecanoic acid. Waxes comprise mainly long-chain fatty acids C29 to C46, with smaller amounts of C16 to C28. Wax constituents are carboxylic acids, primary alcohols, alkanes, aldehydes, sterols and esters. CONCLUSION: The downregulation of cuticle deposition during development accounts for the marked cuticular strain, for the associated microcracking, and for their high susceptibility to the disorders of water soaking and cracking.


Assuntos
Fragaria , Frutas , Lipídeos de Membrana , Ceras , Fragaria/crescimento & desenvolvimento , Fragaria/genética , Fragaria/metabolismo , Fragaria/enzimologia , Frutas/crescimento & desenvolvimento , Frutas/genética , Frutas/metabolismo , Ceras/metabolismo , Lipídeos de Membrana/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
Methods Enzymol ; 700: 189-216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971600

RESUMO

We describe a method for investigating lateral membrane heterogeneity using cryogenic electron microscopy (cryo-EM) images of liposomes. The method takes advantage of differences in the thickness and molecular density of ordered and disordered phases that are resolvable in phase contrast cryo-EM. Compared to biophysical techniques like FRET or neutron scattering that yield ensemble-averaged information, cryo-EM provides direct visualization of individual vesicles and can therefore reveal variability that would otherwise be obscured by averaging. Moreover, because the contrast mechanism involves inherent properties of the lipid phases themselves, no extrinsic probes are required. We explain and discuss various complementary analyses of spatially resolved thickness and intensity measurements that enable an assessment of the membrane's phase state. The method opens a window to nanodomain structure in synthetic and biological membranes that should lead to an improved understanding of lipid raft phenomena.


Assuntos
Microscopia Crioeletrônica , Lipossomos , Microscopia Crioeletrônica/métodos , Lipossomos/química , Bicamadas Lipídicas/química , Microdomínios da Membrana/ultraestrutura , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Lipídeos de Membrana/química , Separação de Fases
3.
Methods Enzymol ; 700: 349-383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971607

RESUMO

Small-angle X-ray and neutron scattering (SAXS/SANS) techniques excel in unveiling intricate details of the internal structure of lipid membranes under physiologically relevant temperature and buffer conditions, all without the need to resort to bulky labels. By concurrently conducting and analyzing neutron and X-ray data, these methods harness the complete spectrum of contrast and resolution from various components constituting lipid membranes. Despite this, the literature exhibits only a sparse presence of applications compared to other techniques in membrane biophysics. This chapter serves as a primer for conducting joint SAXS/SANS analyses on symmetric and asymmetric large unilamellar vesicles, elucidating fundamental elements of the analysis process. Specifically, we introduce the basics of interactions of X-rays and neutrons with matter that lead to the scattering contrast and a description of membrane structure in terms of scattering length density profiles. These profiles allow fitting of the experimentally observed scattering intensity. We further integrate practical insights, unveiling strategies for successful data acquisition and providing a comprehensive assessment of the technique's advantages and drawbacks. By amalgamating theoretical underpinnings with practical considerations, this chapter aims to dismantle barriers hindering the adoption of joint SAXS/SANS approaches, thereby encouraging an influx of studies in this domain.


Assuntos
Difração de Nêutrons , Espalhamento a Baixo Ângulo , Difração de Raios X , Difração de Nêutrons/métodos , Difração de Raios X/métodos , Lipídeos de Membrana/química , Lipossomas Unilamelares/química , Bicamadas Lipídicas/química
4.
Methods Enzymol ; 700: 49-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971612

RESUMO

High pressure is both an environmental challenge to which deep sea biology has to adapt, and a highly sensitive thermodynamic tool that can be used to trigger structural changes in biological molecules and assemblies. Lipid membranes are amongst the most pressure sensitive biological assemblies and pressure can have a large influence on their structure and properties. In this chapter, we will explore the use of high pressure small angle X-ray diffraction and high pressure microscopy to measure and quantify changes in the lateral structure of lipid membranes under both equilibrium high pressure conditions and in response to pressure jumps.


Assuntos
Pressão Hidrostática , Bicamadas Lipídicas , Difração de Raios X , Difração de Raios X/métodos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Espalhamento a Baixo Ângulo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Termodinâmica
5.
Methods Enzymol ; 700: 485-507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971611

RESUMO

Signaling receptors on the plasma membrane, such as insulin receptor, can have their activity modulated to some extent by their surrounding lipids. Studying the contribution of membrane lipid properties such as presence of ordered lipid domains or bilayer thickness on the activity of receptors has been a challenging objective in living cells. Using methyl-alpha cyclodextrin-mediated lipid exchange, we are able to alter the lipids of the outer leaflet plasma membrane of mammalian cells to investigate the effect of the properties of the exchanged lipid upon receptor function in live cells. In this article, we describe the technique of lipid exchange in detail and how it can be applied to better understand lipid-mediated regulation of insulin receptor activity in cells.


Assuntos
Membrana Celular , Lipídeos de Membrana , Receptor de Insulina , Receptor de Insulina/metabolismo , Membrana Celular/metabolismo , Humanos , Animais , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química
6.
Methods Enzymol ; 700: 455-483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971610

RESUMO

Over the years, it has become more and more obvious that lipid membranes show a very complex behavior. This behavior arises in part from the large number of different kinds of lipids and proteins and how they dynamically interact with each other. In vitro studies using artificial membrane systems have shed light on the heterogeneity based on lipid-lipid interactions in multicomponent bilayer mixtures. Inspired by the raft hypothesis, the coexistence of liquid-disordered (ld) and liquid-ordered (lo) phases has drawn much attention. It was shown that ternary lipid mixtures containing low- and high-melting temperature lipids and cholesterol can phase separate into a lo phase enriched in the high-melting lipids and cholesterol and a ld phase enriched in the low-melting lipids. Depending on the model membrane system under investigation, different domain sizes, shapes, and mobilities have been found. Here, we describe how to generate phase-separated lo/ld phases in model membrane systems termed pore-spanning membranes (PSMs). These PSMs are prepared on porous silicon substrates with pore sizes in the micrometer regime. A proper functionalization of the top surface of the substrates is required to achieve the spreading of giant unilamellar vesicles (GUVs) to obtain PSMs. Starting with lo/ld phase-separated GUVs lead to membrane heterogeneities in the PSMs. Depending on the functionalization strategy of the top surface of the silicon substrate, different membrane heterogeneities are observed in the PSMs employing fluorescence microscopy. A quantitative analysis of the heterogeneity as well as the dynamics of the lipid domains is described.


Assuntos
Bicamadas Lipídicas , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Porosidade , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Colesterol/química
7.
Biointerphases ; 19(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38922634

RESUMO

Lipid membranes and proteins, which are part of us throughout our lives, have been studied for decades. However, every year, new discoveries show how little we know about them. In a reader-friendly manner for people not involved in the field, this paper tries to serve as a bridge between physicists and biologists and new young researchers diving into the field to show its relevance, pointing out just some of the plethora of lines of research yet to be unraveled. It illustrates how new ways, from experimental to theoretical approaches, are needed in order to understand the structures and interactions that take place in a single lipid, protein, or multicomponent system, as we are still only scratching the surface.


Assuntos
Lipídeos de Membrana , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química , Proteínas/metabolismo , Proteínas/química , Lipídeos/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Humanos , Membrana Celular/metabolismo , Membrana Celular/química
8.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38928107

RESUMO

Aß peptides are known to bind neural plasma membranes in a process leading to the deposit of Aß-enriched plaques. These extracellular structures are characteristic of Alzheimer's disease, the major cause of late-age dementia. The mechanisms of Aß plaque formation and deposition are far from being understood. A vast number of studies in the literature describe the efforts to analyze those mechanisms using a variety of tools. The present review focuses on biophysical studies mostly carried out with model membranes or with computational tools. This review starts by describing basic physical aspects of lipid phases and commonly used model membranes (monolayers and bilayers). This is followed by a discussion of the biophysical techniques applied to these systems, mainly but not exclusively Langmuir monolayers, isothermal calorimetry, density-gradient ultracentrifugation, and molecular dynamics. The Methodological Section is followed by the core of the review, which includes a summary of important results obtained with each technique. The last section is devoted to an overall reflection and an effort to understand Aß-bilayer binding. Concepts such as Aß peptide membrane binding, adsorption, and insertion are defined and differentiated. The roles of membrane lipid order, nanodomain formation, and electrostatic forces in Aß-membrane interaction are separately identified and discussed.


Assuntos
Peptídeos beta-Amiloides , Bicamadas Lipídicas , Lipídeos de Membrana , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Humanos , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química , Ligação Proteica , Membrana Celular/metabolismo , Doença de Alzheimer/metabolismo , Animais , Fenômenos Biofísicos , Simulação de Dinâmica Molecular
9.
Clin Exp Metastasis ; 41(3): 199-217, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879842

RESUMO

Cancer-related fatigue, pain, gastrointestinal and other symptoms are among the most familiar complaints in practically every type and stage of cancer, especially metastatic cancers. Such symptoms are also related to cancer oxidative stress and the damage instigated by cancer cytotoxic therapies to cellular membranes, especially mitochondrial membranes. Cancer cytotoxic therapies (chemotherapy and radiotherapy) often cause adverse symptoms and induce patients to terminate their anti-neoplastic regimens. Cancer-related fatigue, pain and other symptoms and the adverse effects of cancer cytotoxic therapies can be safely moderated with oral Membrane Lipid Replacement (MLR) glycerolphospholipids and mitochondrial cofactors, such as coenzyme Q10. MLR provides essential membrane lipids and precursors to maintain mitochondrial and other cellular membrane functions and reduces fatigue, pain, gastrointestinal, inflammation and other symptoms. In addition, patients with a variety of chronic symptoms benefit from MLR supplements, and MLR also has the ability to enhance the bioavailability of nutrients and slowly remove toxic, hydrophobic molecules from cells and tissues.


Assuntos
Fadiga , Lipídeos de Membrana , Mitocôndrias , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/complicações , Mitocôndrias/efeitos dos fármacos , Fadiga/etiologia , Fadiga/induzido quimicamente , Lipídeos de Membrana/metabolismo , Antineoplásicos/efeitos adversos , Ubiquinona/análogos & derivados , Ubiquinona/uso terapêutico , Dor do Câncer/tratamento farmacológico , Dor do Câncer/etiologia
10.
Sci Total Environ ; 945: 174120, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901598

RESUMO

Isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs), characteristic membrane lipids of archaea, are widely used in ecological and geochemical studies, especially for paleoenvironmental reconstruction. Glycerol monoalkyl glycerol tetraethers (GMGTs, also known as H-GDGTs), a unique variant of GDGTs, have covalent bonds linking the two alkyl chains. Despite some studies suggesting a link between GMGTs and high temperatures, the reliability and mechanisms remain unclear. Using molecular dynamics simulations, we elucidated the mechanism connecting GMGTs to high temperatures. Our findings show that H-bridging linkages reduce the distance between alkyl chains, leading to thicker and denser membranes with lower fluidity and permeability. The diffusion coefficient of GMGTs decreased by approximately 35 % compared to GDGTs, indicating their role as a archaeal high-temperature adaptation. This study provides a mechanistic basis for using archaeal GMGTs in geochemical studies and enhances confidence in their use for paleotemperature reconstruction.


Assuntos
Archaea , Temperatura Alta , Simulação de Dinâmica Molecular , Éteres de Glicerila/química , Lipídeos de Membrana/química
11.
J Oleo Sci ; 73(7): 991-999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945927

RESUMO

In this study, we evaluated the cancer cell killing activity of koji mold-derived extracts using several solvents. The koji mold lipid extract (KML) exhibited potent cytotoxicity against a human leukemia cell line. Fractionation of the KML via silica gel chromatography revealed the presence of active components in fraction (Fr.) 6. Cytotoxic effects of Fr. 6 were inhibited by the ferroptosis inhibitors, ferrostatin-1 and SRS11-92, and the iron chelator, deferoxamine. Interestingly, ferroptosis inhibitors failed to prevent the KML-induced cell death. Fr. 6 decreased the expression of glutathione peroxidase 4 (GPx4) and increased the level of peroxidized plasma membrane lipids. Furthermore, Fr. 6 decreased the intracellular glutathione levels. Overall, our results suggest that Fr. 6 included in KML induces ferroptosis in HL-60 cells.


Assuntos
Ferroptose , Glutationa , Peroxidação de Lipídeos , Oxirredução , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Humanos , Células HL-60 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ferroptose/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Glutationa/metabolismo , Oxirredução/efeitos dos fármacos , Desferroxamina/farmacologia , Cicloexilaminas/farmacologia , Lipídeos , Fenilenodiaminas/farmacologia , Lipídeos de Membrana/metabolismo , Quelantes de Ferro/farmacologia
12.
Sci Rep ; 14(1): 14003, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890460

RESUMO

Mesoscale physics bridges the gap between the microscopic degrees of freedom of a system and its large-scale continuous behavior and highlights the role of a few key quantities in complex and multiscale phenomena, like dynamin-driven fission of lipid membranes. The dynamin protein wraps the neck formed during clathrin-mediated endocytosis, for instance, and constricts it until severing occurs. Although ubiquitous and fundamental for life, the cooperation between the GTP-consuming conformational changes within the protein and the full-scale response of the underlying lipid substrate is yet to be unraveled. In this work, we build an effective mesoscopic model from constriction to fission of lipid tubules based on continuum membrane elasticity and implicitly accounting for ratchet-like power strokes of dynamins. Localization of the fission event, the overall geometry, and the energy expenditure we predict comply with the major experimental findings. This bolsters the idea that a continuous picture emerges soon enough to relate dynamin polymerization length and membrane rigidity and tension with the optimal pathway to fission. We therefore suggest that dynamins found in in vivo processes may optimize their structure accordingly. Ultimately, we shed light on real-time conductance measurements available in literature and predict the fission time dependency on elastic parameters.


Assuntos
Dinaminas , Elasticidade , Dinaminas/metabolismo , Dinaminas/química , Endocitose , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química
13.
J Chem Inf Model ; 64(13): 5242-5252, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38912752

RESUMO

Biological membranes play key roles in cellular compartmentalization, structure, and its signaling pathways. At varying temperatures, individual membrane lipids sample from different configurations, a process that frequently leads to higher-order phase behavior and phenomena. Here, we present a persistent homology (PH)-based method for quantifying the structural features of individual and bulk lipids, providing local and contextual information on lipid tail organization. Our method leverages the mathematical machinery of algebraic topology and machine learning to infer temperature-dependent structural information on lipids from static coordinates. To train our model, we generated multiple molecular dynamics trajectories of dipalmitoyl-phosphatidylcholine membranes at varying temperatures. A fingerprint was then constructed for each set of lipid coordinates by PH filtration, in which interaction spheres were grown around the lipid atoms while tracking their intersections. The sphere filtration formed a simplicial complex that captures enduring key topological features of the configuration landscape using homology, yielding persistence data. Following fingerprint extraction for physiologically relevant temperatures, the persistence data were used to train an attention-based neural network for assignment of effective temperature values to selected membrane regions. Our persistence homology-based method captures the local structural effects, via effective temperature, of lipids adjacent to other membrane constituents, e.g., sterols and proteins. This topological learning approach can predict lipid effective temperatures from static coordinates across multiple spatial resolutions. The tool, called MembTDA, can be accessed at https://github.com/hyunp2/Memb-TDA.


Assuntos
Membrana Celular , Aprendizado de Máquina , Simulação de Dinâmica Molecular , Membrana Celular/metabolismo , Membrana Celular/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Temperatura , Redes Neurais de Computação , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química
14.
Proc Natl Acad Sci U S A ; 121(26): e2318761121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38885389

RESUMO

Archaea produce unique membrane-spanning lipids (MSLs), termed glycerol dialkyl glycerol tetraethers (GDGTs), which aid in adaptive responses to various environmental challenges. GDGTs can be modified through cyclization, cross-linking, methylation, hydroxylation, and desaturation, resulting in structurally distinct GDGT lipids. Here, we report the identification of radical SAM proteins responsible for two of these modifications-a glycerol monoalkyl glycerol tetraether (GMGT) synthase (Gms), responsible for covalently cross-linking the two hydrocarbon tails of a GDGT to produce GMGTs, and a GMGT methylase (Gmm), capable of methylating the core hydrocarbon tail. Heterologous expression of Gms proteins from various archaea in Thermococcus kodakarensis results in the production of GMGTs in two isomeric forms. Further, coexpression of Gms and Gmm produces mono- and dimethylated GMGTs and minor amounts of trimethylated GMGTs with only trace GDGT methylation. Phylogenetic analyses reveal the presence of Gms homologs in diverse archaeal genomes spanning all four archaeal superphyla and in multiple bacterial phyla with the genetic potential to synthesize fatty acid-based MSLs, demonstrating that GMGT production may be more widespread than previously appreciated. We demonstrate GMGT production in three Gms-encoding archaea, identifying an increase in GMGTs in response to elevated temperature in two Archaeoglobus species and the production of GMGTs with up to six rings in Vulcanisaeta distributa. The occurrence of such highly cyclized GMGTs has been limited to environmental samples and their detection in culture demonstrates the utility of combining genetic, bioinformatic, and lipid analyses to identify producers of distinct archaeal membrane lipids.


Assuntos
Archaea , Proteínas Arqueais , Filogenia , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Archaea/metabolismo , Archaea/genética , Thermococcus/metabolismo , Thermococcus/genética , Éteres de Glicerila/metabolismo , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/biossíntese
15.
J Chem Phys ; 160(21)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38842495

RESUMO

Within cell plasma membranes, unsaturated lipids are asymmetrically distributed over the inner and outer leaflets, offering an attractive local structural feature. However, the mechanism to keep lipid transmembrane asymmetry and the closely related transmembrane movement (flip-flop) for unsaturated lipids remain poorly understood. Here, we applied sum frequency generation vibrational spectroscopy to investigate this lipid transmembrane asymmetry upon mimicking the cell membrane homeostatic processes. On the one hand, unsaturated lipids were found to hinder the flip-flop process and preserve lipid transmembrane asymmetry in model cell membranes, owing to the steric hindrance caused by their bent tails. On the other hand, local unsaturated lipids in the mixed unsaturated/saturated lipid bilayer were conducive to the formation of the local asymmetry. Therefore, lipid unsaturation can be recognized as an intrinsic key factor to form and maintain lipid transmembrane asymmetry in cell membranes.


Assuntos
Membrana Celular , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Membrana Celular/química , Membrana Celular/metabolismo , Lipídeos de Membrana/química
16.
Neuroimage ; 296: 120666, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830440

RESUMO

Direct imaging of semi-solid lipids, such as myelin, is of great interest as a noninvasive biomarker of neurodegenerative diseases. Yet, the short T2 relaxation times of semi-solid lipid protons hamper direct detection through conventional magnetic resonance imaging (MRI) pulse sequences. In this study, we examined whether a three-dimensional ultrashort echo time (3D UTE) sequence can directly acquire signals from membrane lipids. Membrane lipids from red blood cells (RBC) were collected from commercially available blood as a general model of the myelin lipid bilayer and subjected to D2O exchange and freeze-drying for complete water removal. Sufficiently high MR signals were detected with the 3D UTE sequence, which showed an ultrashort T2* of ∼77-271 µs and a short T1 of ∼189 ms for semi-solid RBC membrane lipids. These measurements can guide designing UTE-based sequences for direct in vivo imaging of membrane lipids.


Assuntos
Membrana Eritrocítica , Imageamento por Ressonância Magnética , Lipídeos de Membrana , Bainha de Mielina , Humanos , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/química , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Lipídeos de Membrana/química , Liofilização , Eritrócitos/metabolismo
17.
Colloids Surf B Biointerfaces ; 239: 113933, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729019

RESUMO

Lipopeptides produced by beneficial bacilli present promising alternatives to chemical pesticides for plant biocontrol purposes. Our research explores the distinct plant biocontrol activities of lipopeptides surfactin (SRF) and fengycin (FGC) by examining their interactions with lipid membranes. Our study shows that FGC exhibits a direct antagonistic activity against Botrytis cinerea and no marked immune-eliciting activity in Arabidopsis thaliana while SRF only demonstrates an ability to stimulate plant immunity. It also reveals that SRF and FGC exhibit diverse effects on membrane integrity and lipid packing. SRF primarily influences membrane physical state without significant membrane permeabilization, while FGC permeabilizes membranes without significantly affecting lipid packing. From our results, we can suggest that the direct antagonistic activity of lipopeptides is linked to their capacity to permeabilize lipid membrane while the stimulation of plant immunity is more likely the result of their ability to alter the mechanical properties of the membrane. Our work also explores how membrane lipid composition modulates the activities of SRF and FGC. Sterols negatively impact both lipopeptides' activities while sphingolipids mitigate the effects on membrane lipid packing but enhance membrane leakage. In conclusion, our findings emphasize the importance of considering both membrane lipid packing and leakage mechanisms in predicting the biological effects of lipopeptides. It also sheds light on the intricate interplay between the membrane composition and the effectiveness of the lipopeptides, providing insights for targeted biocontrol agent design.


Assuntos
Botrytis , Lipopeptídeos , Lipídeos de Membrana , Peptídeos Cíclicos , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química , Botrytis/efeitos dos fármacos , Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Antifúngicos/farmacologia , Antifúngicos/química
18.
Biochim Biophys Acta Biomembr ; 1866(6): 184338, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763269

RESUMO

The molecular structures of the various intrinsic lipids in membranes regulate lipid-protein interactions. These different lipid structures with unique volumes produce different lipid molecular packing stresses/lateral stresses in lipid membranes. Most studies examining lipid packing effects have used phosphatidylcholine and phosphatidylethanolamine (PE), which are the main phospholipids of eukaryotic cell membranes. In contrast, Gram-negative or Gram-positive bacterial membranes are composed primarily of phosphatidylglycerol (PG) and PE, and the physical and thermodynamic properties of each acyl chain in PG at the molecular level remain unresolved. In this study, we used 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG, 16:0-18:1 PG) and 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (PAPG, 16:0-20:4 PG) to prepare lipid bilayers (liposome) with the rod-type fluorescence probe DPH. We measured the lipid packing conditions by determining the rotational freedom of DPH in POPG or PAPG bilayers. Furthermore, we investigated the effect of different monoacyl chains on a K+ channel (KcsA) structure when embedded in POPG or PAPG membranes. The results revealed that differences in the number of double bonds and carbon chain length in the monoacyl chain at sn-2 affected the physicochemical properties of the membrane and the structure and orientation of KcsA.


Assuntos
Proteínas de Bactérias , Bicamadas Lipídicas , Fosfatidilgliceróis , Canais de Potássio , Bicamadas Lipídicas/química , Canais de Potássio/química , Canais de Potássio/metabolismo , Fosfatidilgliceróis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fosfatidiletanolaminas/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Membrana Celular/química , Termodinâmica , Lipossomos/química , Fosfatidilcolinas/química
19.
Chem Phys Lipids ; 262: 105397, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38740276

RESUMO

Amantadine, a small amphilphic organic compound that consists of an adamantane backbone and an amino group, was first recognized as an antiviral in 1963 and received approval for prophylaxis against the type A influenza virus in 1976. Since then, it has also been used to treat Parkinson's disease-related dyskinesia and is being considered as a treatment for corona viruses. Since amantadine usually targets membrane-bound proteins, its interactions with the membrane are also thought to be important. Biological membranes are now widely understood to be laterally heterogeneous and certain proteins are known to preferentially co-localize within specific lipid domains. Does amantadine, therefore, preferentially localize in certain lipid composition domains? To address this question, we studied amantadine's interactions with phase separating membranes composed of cholesterol, DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine), POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine), and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), as well as single-phase DPhPC (1,2-diphytanoyl-sn-glycero-3-phos-phocholine) membranes. From Langmuir trough and differential scanning calorimetry (DSC) measurements, we determined, respectively, that amantadine preferentially binds to disordered lipids, such as POPC, and lowers the phase transition temperature of POPC/DSPC/cholesterol mixtures, implying that amantadine increases membrane disorder. Further, using droplet interface bilayers (DIBs), we observed that amantadine disrupts DPhPC membranes, consistent with its disordering properties. Finally, we carried out molecular dynamics (MD) simulations on POPC/DSPC/cholesterol membranes with varying amounts of amantadine. Consistent with experiment, MD simulations showed that amantadine prefers to associate with disordered POPC-rich domains, domain boundaries, and lipid glycerol backbones. Since different proteins co-localize with different lipid domains, our results have possible implications as to which classes of proteins may be better targets for amantadine.


Assuntos
Amantadina , Amantadina/química , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Colesterol/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo
20.
ACS Chem Neurosci ; 15(12): 2408-2419, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38752226

RESUMO

Huntington's disease is a neurodegenerative disorder caused by an expanded polyglutamine stretch near the N-terminus of the huntingtin (HTT) protein, rendering the protein more prone to aggregate. The first 17 residues in HTT (Nt17) interact with lipid membranes and harbor multiple post-translational modifications (PTMs) that can modulate HTT conformation and aggregation. In this study, we used a combination of biophysical studies and molecular simulations to investigate the effect of PTMs on the helicity of Nt17 in the presence of various lipid membranes. We demonstrate that anionic lipids such as PI4P, PI(4,5)P2, and GM1 significantly enhance the helical structure of unmodified Nt17. This effect is attenuated by single acetylation events at K6, K9, or K15, whereas tri-acetylation at these sites abolishes Nt17-membrane interaction. Similarly, single phosphorylation at S13 and S16 decreased but did not abolish the POPG and PIP2-induced helicity, while dual phosphorylation at these sites markedly diminished Nt17 helicity, regardless of lipid composition. The helicity of Nt17 with phosphorylation at T3 is insensitive to the membrane environment. Oxidation at M8 variably affects membrane-induced helicity, highlighting a lipid-dependent modulation of the Nt17 structure. Altogether, our findings reveal differential effects of PTMs and crosstalks between PTMs on membrane interaction and conformation of HTT. Intriguingly, the effects of phosphorylation at T3 or single acetylation at K6, K9, and K15 on Nt17 conformation in the presence of certain membranes do not mirror that observed in the absence of membranes. Our studies provide novel insights into the complex relationship between Nt17 structure, PTMs, and membrane binding.


Assuntos
Proteína Huntingtina , Processamento de Proteína Pós-Traducional , Processamento de Proteína Pós-Traducional/fisiologia , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Humanos , Fosforilação/fisiologia , Acetilação , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Lipídeos de Membrana/metabolismo , Doença de Huntington/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA