Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
1.
BMC Microbiol ; 23(1): 396, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087203

RESUMO

Malaria is a persistent illness that is still a public health issue. On the other hand, marine organisms are considered a rich source of anti­infective drugs and other medically significant compounds. Herein, we reported the isolation of the actinomycete associated with the Red Sea sponge Callyspongia siphonella. Using "one strain many compounds" (OSMAC) approach, a suitable strain was identified and then sub-cultured in three different media (M1, ISP2 and OLIGO). The extracts were evaluated for their in-vitro antimalarial activity against Plasmodium falciparum strain and subsequently analyzed by Liquid chromatography coupled with high-resolution mass spectrometry (LC-HR-MS). In addition, MetaboAnalyst 5.0 was used to statistically analyze the LC-MS data. Finally, Molecular docking was carried out for the dereplicated metabolites against lysyl-tRNA synthetase (PfKRS1). The phylogenetic study of the 16S rRNA sequence of the actinomycete isolate revealed its affiliation to Streptomyces genus. Antimalarial screening revealed that ISP2 media is the most active against Plasmodium falciparum strain. Based on LC-HR-MS based metabolomics and multivariate analyses, the static cultures of the media, ISP2 (ISP2-S) and M1 (M1-S), are the optimal media for metabolites production. OPLS-DA suggested that quinone derivatives are abundant in the extracts with the highest antimalarial activity. Fifteen compounds were identified where eight of these metabolites were correlated to the observed antimalarial activity of the active extracts. According to molecular docking experiments, saframycin Y3 and juglomycin E showed the greatest binding energy scores (-6.2 and -5.13) to lysyl-tRNA synthetase (PfKRS1), respectively. Using metabolomics and molecular docking investigation, the quinones, saframycin Y3 (5) and juglomycin E (1) were identified as promising antimalarial therapeutic candidates. Our approach can be used as a first evaluation stage in natural product drug development, facilitating the separation of chosen metabolites, particularly biologically active ones.


Assuntos
Actinobacteria , Antimaláricos , Callyspongia , Lisina-tRNA Ligase , Animais , Antimaláricos/farmacologia , Actinobacteria/genética , Actinobacteria/química , Callyspongia/química , Actinomyces/genética , Oceano Índico , Filogenia , RNA Ribossômico 16S/genética , Simulação de Acoplamento Molecular , Lisina-tRNA Ligase/genética , Plasmodium falciparum
2.
Nucleic Acids Res ; 51(22): 12111-12123, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37933844

RESUMO

Human lysyl-tRNA synthetase (LysRS) was previously shown to be re-localized from its normal cytoplasmic location in a multi-aminoacyl-tRNA synthetase complex (MSC) to the nucleus of HIV-1 infected cells. Nuclear localization depends on S207 phosphorylation but the nuclear function of pS207-LysRS in the HIV-1 lifecycle is unknown. Here, we show that HIV-1 replication was severely reduced in a S207A-LysRS knock-in cell line generated by CRISPR/Cas9; this effect was rescued by S207D-LysRS. LysRS phosphorylation up-regulated HIV-1 transcription, as did direct transfection of Ap4A, an upstream transcription factor 2 (USF2) activator that is synthesized by pS207-LysRS. Overexpressing an MSC-derived peptide known to stabilize LysRS MSC binding inhibited HIV-1 replication. Transcription of HIV-1 proviral DNA and other USF2 target genes was reduced in peptide-expressing cells. We propose that nuclear pS207-LysRS generates Ap4A, leading to activation of HIV-1 transcription. Our results suggest a new role for nuclear LysRS in facilitating HIV-1 replication and new avenues for antiviral therapy.


Assuntos
Núcleo Celular , HIV-1 , Lisina-tRNA Ligase , Humanos , DNA/metabolismo , HIV-1/fisiologia , Lisina-tRNA Ligase/metabolismo , Peptídeos/metabolismo , Fosforilação , Provírus/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Replicação Viral
3.
J Clin Immunol ; 43(8): 2115-2125, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770806

RESUMO

Biallelic KARS1 mutations cause KARS-related diseases, a rare syndromic condition encompassing central and peripheral nervous system impairment, heart and liver disease, and deafness. KARS1 encodes the t-RNA synthase of lysine, an aminoacyl-tRNA synthetase, involved in different physiological mechanisms (such as angiogenesis, post-translational modifications, translation initiation, autophagy and mitochondrial function). Although patients with immune-hematological abnormalities have been individually described, results have not been collectively discussed and functional studies investigating how KARS1 mutations affect B cells have not been performed. Here, we describe one patient with severe developmental delay, sensoneurinal deafness, acute disseminated encephalomyelitis, hypogammaglobulinemia and recurrent infections. Pathogenic biallelic KARS1 variants (Phe291Val/ Pro499Leu) were associated with impaired B cell metabolism (decreased mitochondrial numbers and activity). All published cases of KARS-related diseases were identified. The corresponding authors and researchers involved in the diagnosis of inborn errors of immunity or genetic syndromes were contacted to obtain up-to-date clinical and immunological information. Seventeen patients with KARS-related diseases were identified. Recurrent/severe infections (9/17) and B cell abnormalities (either B cell lymphopenia [3/9], hypogammaglobulinemia [either IgG, IgA or IgM; 6/15] or impaired vaccine responses [4/7]) were frequently reported. Immunoglobulin replacement therapy was given in five patients. Full immunological assessment is warranted in these patients, who may require detailed investigation and specific supportive treatment.


Assuntos
Agamaglobulinemia , Aminoacil-tRNA Sintetases , Lisina-tRNA Ligase , Doenças da Imunodeficiência Primária , Humanos , Agamaglobulinemia/diagnóstico , Agamaglobulinemia/genética , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Surdez/genética , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Mutação/genética , Doenças da Imunodeficiência Primária/genética
4.
Front Cell Infect Microbiol ; 13: 1236814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600947

RESUMO

Introduction: Cryptosporidiosis is a leading cause of diarrheal-associated morbidity and mortality, predominantly affecting children under 5 years old in low-and-middle-income countries. There is no effective treatment and no vaccine. New therapeutics are emerging from drug discovery efforts. It is critical that mode of action studies are performed alongside drug discovery to ensure the best clinical outcomes. Unfortunately, technology to identify and validate drug targets for Cryptosporidium is severely lacking. Methods: We used C. parvum lysyl-tRNA synthetase (CpKRS) and DDD01510706 as a target-compound pair to develop both chemical and genetic tools for mode of action studies for Cryptosporidium. We adapted thermal proteome profiling (TPP) for Cryptosporidium, an unbiased approach for target identification. Results: Using TPP we identified the molecular target of DDD01510706 and confirm that it is CpKRS. Genetic tools confirm that CpKRS is expressed throughout the life cycle and that this target is essential for parasite survival. Parasites genetically modified to over-express CpKRS or parasites with a mutation at the compound-binding site are resistant to treatment with DDD01510706. We leveraged these mutations to generate a second drug selection marker for genetic modification of Cryptosporidium, KRSR. This second selection marker is interchangeable with the original selection marker, NeoR, and expands the range of reverse genetic approaches available to study parasite biology. Due to the sexual nature of the Cryptosporidium life cycle, parental strains containing different drug selection markers can be crossed in vivo. Discussion: Selection with both drug markers produces highly efficient genetic crosses (>99% hybrid progeny), paving the way for forward genetics approaches in Cryptosporidium.


Assuntos
Criptosporidiose , Cryptosporidium , Lisina-tRNA Ligase , Criança , Humanos , Pré-Escolar , Cryptosporidium/genética , Criptosporidiose/tratamento farmacológico , Lisina-tRNA Ligase/genética , Sítios de Ligação , Diarreia , Propionibacterium acnes
5.
Chembiochem ; 24(12): e202300154, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37158666

RESUMO

Cladosporin, a unique natural product from the fungus Cladosporium cladosporioides, exhibits nanomolar inhibitory activity against Plasmodium falciparum by targeting its cytosolic lysyl-tRNA synthetase (PfKRS) to inhibit protein biosynthesis. Due to its exquisite selectivity towards pathogenic parasites, cladosporin has become a very promising lead compound for developing antiparasitic drugs to treat drug-resistant malaria and cryptosporidiosis infections. Here we review the recent research progress of cladosporin covering aspects of the chemical synthesis, biosynthesis, bioactivity, cellular target and structure-activity relationship.


Assuntos
Antimaláricos , Lisina-tRNA Ligase , Malária Falciparum , Malária , Humanos , Isocumarinas/metabolismo , Plasmodium falciparum/metabolismo , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antimaláricos/metabolismo , Malária Falciparum/tratamento farmacológico
6.
Front Immunol ; 14: 1154108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234172

RESUMO

MRGPRX2, a G-protein-coupled-seven transmembrane domain receptor, is mainly expressed in mast cells and neurons and is involved in skin immunity and pain. It is implicated in the pathophysiology of non-IgE-mediated immediate hypersensitivity and has been related to adverse drug reactions. Moreover, a role has been proposed in asthma, atopic dermatitis, contact dermatitis, and chronic spontaneous urticaria. Although it has a prominent role in disease, its signaling transduction is poorly understood. This study shows that MRGPRX2 activation with substance P increased Lysyl t-RNA synthetase (LysRS) translocation to the nucleus. LysRS is a moonlighting protein with a dual role in protein translation and IgE signaling in mast cells. Upon allergen- IgE-FcεRI crosslinking, LysRS is translocated to the nucleus and activates microphthalmia-associated transcription factor (MITF) activity. In this study, we found that MRGPRX2 triggering led to MITF phosphorylation and increased MITF activity. Therefore, overexpression of LysRS increased MITF activity after MRGPRX2 activation. MITF silencing reduced MRGPRX2-dependent calcium influx and mast cell degranulation. Furthermore, a MITF pathway inhibitor, ML329, impaired MITF expression, calcium influx, and mast cell degranulation. Moreover, drugs such as atracurium, vancomycin, and morphine, reported to induce MRGPRX2-dependent degranulation, increased MITF activity. Altogether, our data show that MRGPRX2 signaling enhances MITF activity, and its abrogation by silencing or inhibition resulted in defective MRGPRX2 degranulation. We conclude that MRGPRX2 signaling involves the LysRS and MITF pathway. Thus, MITF and MITF-dependent targets may be considered therapeutic approaches to treat pathologies where MRGPRX2 is implicated.


Assuntos
Lisina-tRNA Ligase , Lisina-tRNA Ligase/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Cálcio/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Transdução de Sinais , Mastócitos
7.
Nat Commun ; 13(1): 5992, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220877

RESUMO

Tuberculosis is a major global cause of both mortality and financial burden mainly in low and middle-income countries. Given the significant and ongoing rise of drug-resistant strains of Mycobacterium tuberculosis within the clinical setting, there is an urgent need for the development of new, safe and effective treatments. Here the development of a drug-like series based on a fused dihydropyrrolidino-pyrimidine scaffold is described. The series has been developed against M. tuberculosis lysyl-tRNA synthetase (LysRS) and cellular studies support this mechanism of action. DDD02049209, the lead compound, is efficacious in mouse models of acute and chronic tuberculosis and has suitable physicochemical, pharmacokinetic properties and an in vitro safety profile that supports further development. Importantly, preliminary analysis using clinical resistant strains shows no pre-existing clinical resistance towards this scaffold.


Assuntos
Lisina-tRNA Ligase , Mycobacterium tuberculosis , Tuberculose , Animais , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/farmacologia , Camundongos , Mycobacterium tuberculosis/genética , Tuberculose/tratamento farmacológico
8.
ACS Infect Dis ; 8(9): 1962-1974, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36037410

RESUMO

There is a pressing need for new medicines to prevent and treat malaria. Most antimalarial drug discovery is reliant upon phenotypic screening. However, with the development of improved target validation strategies, target-focused approaches are now being utilized. Here, we describe the development of a toolkit to support the therapeutic exploitation of a promising target, lysyl tRNA synthetase (PfKRS). The toolkit includes resistant mutants to probe resistance mechanisms and on-target engagement for specific chemotypes; a hybrid KRS protein capable of producing crystals suitable for ligand soaking, thus providing high-resolution structural information to guide compound optimization; chemical probes to facilitate pulldown studies aimed at revealing the full range of specifically interacting proteins and thermal proteome profiling (TPP); as well as streamlined isothermal TPP methods to provide unbiased confirmation of on-target engagement within a biologically relevant milieu. This combination of tools and methodologies acts as a template for the development of future target-enabling packages.


Assuntos
Antimaláricos , Lisina-tRNA Ligase , Malária , Antimaláricos/química , Antimaláricos/farmacologia , Descoberta de Drogas , Humanos , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Plasmodium falciparum/metabolismo
9.
Cancer Biomark ; 35(1): 99-109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912727

RESUMO

BACKGROUND: Although lysyl-tRNA synthetase (KARS1) is predominantly located in the cytosol, it is also present in the plasma membrane where it stabilizes the 67-kDa laminin receptor (67LR). This physical interaction is strongly increased under metastatic conditions. However, the dynamic interaction of these two proteins and the turnover of KARS1 in the plasma membrane has not previously been investigated. OBJECTIVE: Our objective in this study was to identify the membranous location of KARS1 and 67LR and investigate if this changes with the developmental stage of epithelial ovarian cancer (EOC) and treatment with the inhibitor BC-K01. In addition, we evaluated the therapeutic efficacy of BC-K01 in combination with paclitaxel, as the latter is frequently used to treat patients with EOC. METHODS: Overall survival and prognostic significance were determined in EOC patients according to KARS1 and 67LR expression levels as determined by immunohistochemistry. Changes in the location and expression of KARS1 and 67LR were investigated in vitro after BC-K01 treatment. The effects of this compound on tumor growth and apoptosis were evaluated both in vitro and in vivo. RESULTS: EOC patients with high KARS1 and high 67LR expression had lower progression-free survival rates than those with low expression levels of these two markers. BC-K01 reduced cell viability and increased apoptosis in combination with paclitaxel in EOC cell xenograft mouse models. BC-K01 decreased membranous KARS1 expression, causing a reduction in 67LR membrane expression in EOC cell lines. BC-K01 significantly decreased in vivo tumor weight and number of nodules, especially when used in combination with paclitaxel. CONCLUSIONS: Co-localization of KARS1 and 67LR in the plasma membrane contributes to EOC progression. Inhibition of the KARS1-67LR interaction by BC-K01 suppresses metastasis in EOC.


Assuntos
Lisina-tRNA Ligase , Neoplasias Ovarianas , Animais , Carcinoma Epitelial do Ovário/tratamento farmacológico , Moléculas de Adesão Celular , Feminino , Humanos , Lisina-tRNA Ligase/metabolismo , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Proteínas Ribossômicas/genética
10.
Viruses ; 14(7)2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35891536

RESUMO

Interactions between lysyl-tRNA synthetase (LysRS) and HIV-1 Gag facilitate selective packaging of the HIV-1 reverse transcription primer, tRNALys3. During HIV-1 infection, LysRS is phosphorylated at S207, released from a multi-aminoacyl-tRNA synthetase complex and packaged into progeny virions. LysRS is critical for proper targeting of tRNALys3 to the primer-binding site (PBS) by specifically binding a PBS-adjacent tRNA-like element (TLE), which promotes release of the tRNA proximal to the PBS. However, whether LysRS phosphorylation plays a role in this process remains unknown. Here, we used a combination of binding assays, RNA chemical probing, and small-angle X-ray scattering to show that both wild-type (WT) and a phosphomimetic S207D LysRS mutant bind similarly to the HIV-1 genomic RNA (gRNA) 5'UTR via direct interactions with the TLE and stem loop 1 (SL1) and have a modest preference for binding dimeric gRNA. Unlike WT, S207D LysRS bound in an open conformation and increased the dynamics of both the PBS region and SL1. A new working model is proposed wherein a dimeric phosphorylated LysRS/tRNA complex binds to a gRNA dimer to facilitate tRNA primer release and placement onto the PBS. Future anti-viral strategies that prevent this host factor-gRNA interaction are envisioned.


Assuntos
Soropositividade para HIV , HIV-1 , Lisina-tRNA Ligase , Regiões 5' não Traduzidas , Soropositividade para HIV/genética , HIV-1/genética , HIV-1/metabolismo , Humanos , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/genética , Conformação de Ácido Nucleico , RNA Guia de Cinetoplastídeos , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA Viral/genética , RNA Viral/metabolismo
11.
Cell Mol Life Sci ; 79(2): 128, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133502

RESUMO

The evolutionary necessity of aminoacyl-tRNA synthetases being associated into complex is unknown. Human lysyl-tRNA synthetase (LysRS) is one component of the multi-tRNA synthetase complex (MSC), which is not only critical for protein translation but also involved in multiple cellular pathways such as immune response, cell migration, etc. Here, combined with crystallography, CRISPR/Cas9-based genome editing, biochemistry, and cell biology analyses, we show that the structures of LysRSs from metazoan are more dynamic than those from single-celled organisms. Without the presence of MSC scaffold proteins, such as aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2), human LysRS is free from the MSC. The interaction with AIMP2 stabilizes the closed conformation of LysRS, thereby protects the essential aminoacylation activity under stressed conditions. Deleting AIMP2 from the human embryonic kidney 293 cells leads to retardation in cell growth in nutrient deficient mediums. Together, these results suggest that the evolutionary emergence of the MSC in metazoan might be to protect the aminoacyl-tRNA synthetase components from being modified or recruited for use in other cellular pathways.


Assuntos
Lisina-tRNA Ligase/metabolismo , Proteínas Nucleares/metabolismo , Aminoacilação , Células HEK293 , Humanos , Ligação Proteica , Biossíntese de Proteínas
12.
Neuropediatrics ; 53(1): 65-68, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34448181

RESUMO

KARS encodes lysyl-tRNA synthetase, which is essential for protein translation. KARS mutations sometimes cause impairment of cytoplasmic and mitochondrial protein synthesis, and sometimes lead to progressive leukodystrophies with mitochondrial signature and psychomotor regression, and follow a rapid regressive course to premature death. There has been no disease-modifying therapy beyond supportive treatment. We present a 5-year-old male patient with an asymmetrical leukodystrophy who showed overt evidence of mitochondrial dysfunction, including elevation of lactate on brain MR spectroscopy and low oxygen consumption rate in fibroblasts. We diagnosed this patient's condition as KARS-related leukodystrophy with cerebral calcification, congenital deafness, and evidence of mitochondrial dysfunction. We employed a ketogenic diet as well as multiple vitamin supplementation with the intention to alleviate mitochondrial dysfunction. The patient showed alleviation of his psychomotor regression and even partial restoration of his abilities within 4 months. This is an early report of a potential disease-modifying therapy for KARS-related progressive leukodystrophy without appreciable adverse effects.


Assuntos
Surdez , Dieta Cetogênica , Lisina-tRNA Ligase , Pré-Escolar , Humanos , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação
13.
Nucleic Acids Res ; 49(11): 6128-6143, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34086938

RESUMO

Many non-coding RNAs with known functions are structurally conserved: their intramolecular secondary and tertiary interactions are maintained across evolutionary time. Consequently, the presence of conserved structure in multiple sequence alignments can be used to identify candidate functional non-coding RNAs. Here, we present a bioinformatics method that couples iterative homology search with covariation analysis to assess whether a genomic region has evidence of conserved RNA structure. We used this method to examine all unannotated regions of five well-studied fungal genomes (Saccharomyces cerevisiae, Candida albicans, Neurospora crassa, Aspergillus fumigatus, and Schizosaccharomyces pombe). We identified 17 novel structurally conserved non-coding RNA candidates, which include four H/ACA box small nucleolar RNAs, four intergenic RNAs and nine RNA structures located within the introns and untranslated regions (UTRs) of mRNAs. For the two structures in the 3' UTRs of the metabolic genes GLY1 and MET13, we performed experiments that provide evidence against them being eukaryotic riboswitches.


Assuntos
RNA Fúngico/química , RNA não Traduzido/química , Regiões 3' não Traduzidas , Biologia Computacional/métodos , Genoma Fúngico , Íntrons , Lisina-tRNA Ligase/genética , Cadeias de Markov , Conformação de Ácido Nucleico , RNA Nucleolar Pequeno/química , Proteínas Ribossômicas/genética , Riboswitch , Alinhamento de Sequência , Tiorredoxinas/genética
14.
Protein Sci ; 30(9): 1793-1803, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34184352

RESUMO

Malaria is a parasitic illness caused by the genus Plasmodium from the apicomplexan phylum. Five plasmodial species of P. falciparum (Pf), P. knowlesi, P. malariae, P. ovale, and P. vivax (Pv) are responsible for causing malaria in humans. According to the World Malaria Report 2020, there were 229 million cases and ~ 0.04 million deaths of which 67% were in children below 5 years of age. While more than 3 billion people are at risk of malaria infection globally, antimalarial drugs are their only option for treatment. Antimalarial drug resistance keeps arising periodically and thus threatens the main line of malaria treatment, emphasizing the need to find new alternatives. The availability of whole genomes of P. falciparum and P. vivax has allowed targeting their unexplored plasmodial enzymes for inhibitor development with a focus on multistage targets that are crucial for parasite viability in both the blood and liver stages. Over the past decades, aminoacyl-tRNA synthetases (aaRSs) have been explored as anti-bacterial and anti-fungal drug targets, and more recently (since 2009) aaRSs are also the focus of antimalarial drug targeting. Here, we dissect the structure-based knowledge of the most advanced three aaRSs-lysyl- (KRS), prolyl- (PRS), and phenylalanyl- (FRS) synthetases in terms of development of antimalarial drugs. These examples showcase the promising potential of this family of enzymes to provide druggable targets that stall protein synthesis upon inhibition and thereby kill malaria parasites selectively.


Assuntos
Aminoacil-tRNA Sintetases/química , Antimaláricos/química , Inibidores Enzimáticos/química , Lisina-tRNA Ligase/química , Fenilalanina-tRNA Ligase/química , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/química , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Antimaláricos/farmacologia , Domínio Catalítico , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Humanos , Lisina-tRNA Ligase/antagonistas & inibidores , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Modelos Moleculares , Fenilalanina-tRNA Ligase/antagonistas & inibidores , Fenilalanina-tRNA Ligase/genética , Fenilalanina-tRNA Ligase/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
15.
Genet Med ; 23(10): 1933-1943, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34172899

RESUMO

PURPOSE: Pathogenic variants in Lysyl-tRNA synthetase 1 (KARS1) have increasingly been recognized as a cause of early-onset complex neurological phenotypes. To advance the timely diagnosis of KARS1-related disorders, we sought to delineate its phenotype and generate a disease model to understand its function in vivo. METHODS: Through international collaboration, we identified 22 affected individuals from 16 unrelated families harboring biallelic likely pathogenic or pathogenic in KARS1 variants. Sequencing approaches ranged from disease-specific panels to genome sequencing. We generated loss-of-function alleles in zebrafish. RESULTS: We identify ten new and four known biallelic missense variants in KARS1 presenting with a moderate-to-severe developmental delay, progressive neurological and neurosensory abnormalities, and variable white matter involvement. We describe novel KARS1-associated signs such as autism, hyperactive behavior, pontine hypoplasia, and cerebellar atrophy with prevalent vermian involvement. Loss of kars1 leads to upregulation of p53, tissue-specific apoptosis, and downregulation of neurodevelopmental related genes, recapitulating key tissue-specific disease phenotypes of patients. Inhibition of p53 rescued several defects of kars1-/- knockouts. CONCLUSION: Our work delineates the clinical spectrum associated with KARS1 defects and provides a novel animal model for KARS1-related human diseases revealing p53 signaling components as potential therapeutic targets.


Assuntos
Perda Auditiva , Lisina-tRNA Ligase/genética , Transtornos do Neurodesenvolvimento , Alelos , Animais , Modelos Animais de Doenças , Perda Auditiva/genética , Humanos , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Peixe-Zebra/genética
16.
J Autoimmun ; 122: 102680, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34120070

RESUMO

OBJECTIVE: Anti-aminoacyl-tRNA synthetase (anti-ARS) antibodies are useful for identifying a clinical subset of patients with idiopathic inflammatory myopathies (IIMs). Anti-OJ antibodies, which recognize multi-enzyme synthetase complexes including isoleucyl-tRNA synthetase (IARS) and lysyl-tRNA synthetase (KARS), are among the anti-ARS antibodies. Although testing antibodies to other ARSs have been used clinically, no validated immunoassays for detecting anti-OJ antibodies are available. We aimed to establish an anti-OJ ELISA. METHODS: Serum samples were collected from 279 patients with IIMs and 22 patients with idiopathic interstitial pneumonia. Sixty-four of the samples that had been confirmed to be negative for anti-OJ by standard immunoprecipitation were used as the negative control, and 12 anti-OJ-positive reference sera were used as the positive control. Antibodies to IARS and KARS were assayed by ELISA using biotinylated recombinant proteins generated by in vitro transcription/translation. RESULTS: The anti-OJ-positive sera strongly reacted with the KARS and IARS recombinant proteins in ELISA. Although all 12 reference sera were positive in the anti-KARS ELISA, 4 of the 64 anti-OJ-negative sera were also weakly positive. The sensitivity and the specificity were 100% and 93.8%, respectively. Since our anti-KARS ELISA performed well, showing a high agreement with the results for immunoprecipitation (Cohen's κ > 0.8), the remaining 237 samples were also tested. Thirteen anti-KARS-positive sera were newly found by ELISA, all of which were anti-OJ positive by immunoprecipitation. CONCLUSION: Immunoassays for detecting anti-OJ antibodies using KARS and IARS recombinant proteins were developed. Our ELISAs performed well, with very high agreement of the results by immunoprecipitation and can be applied to the first reliable, easy-to-use measurement assays for anti-OJ antibodies.


Assuntos
Autoanticorpos/isolamento & purificação , Isoleucina-tRNA Ligase/metabolismo , Lisina-tRNA Ligase/metabolismo , Miosite/diagnóstico , Adulto , Idoso , Autoanticorpos/sangue , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática/métodos , Estudos de Viabilidade , Feminino , Voluntários Saudáveis , Humanos , Isoleucina-tRNA Ligase/imunologia , Lisina-tRNA Ligase/imunologia , Masculino , Pessoa de Meia-Idade , Miosite/sangue , Miosite/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Adulto Jovem
17.
Hum Mutat ; 42(6): 745-761, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33942428

RESUMO

KARS1 encodes a lysyl-transfer RNA synthetase (LysRS) that links lysine to its cognate transfer RNA. Two different KARS1 isoforms exert functional effects in cytosol and mitochondria. Bi-allelic pathogenic variants in KARS1 have been associated to sensorineural hearing and visual loss, neuropathy, seizures, and leukodystrophy. We report the clinical, biochemical, and neuroradiological features of nine individuals with KARS1-related disorder carrying 12 different variants with nine of them being novel. The consequences of these variants on the cytosol and/or mitochondrial LysRS were functionally validated in yeast mutants. Most cases presented with severe neurological features including congenital and progressive microcephaly, seizures, developmental delay/intellectual disability, and cerebral atrophy. Oculo-motor dysfunction and immuno-hematological problems were present in six and three cases, respectively. A yeast growth defect of variable severity was detected for most variants on both cytosolic and mitochondrial isoforms. The detrimental effects of two variants on yeast growth were partially rescued by lysine supplementation. Congenital progressive microcephaly, oculo-motor dysfunction, and immuno-hematological problems are emerging phenotypes in KARS1-related disorder. The data in yeast emphasize the role of both mitochondrial and cytosolic isoforms in the pathogenesis of KARS1-related disorder and supports the therapeutic potential of lysine supplementation at least in a subset of patients.


Assuntos
Anormalidades Múltiplas/genética , Lisina-tRNA Ligase/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Adolescente , Alelos , Encefalopatias Metabólicas Congênitas/complicações , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/patologia , Criança , Pré-Escolar , Estudos de Coortes , Citosol/metabolismo , Progressão da Doença , Feminino , Homozigoto , Humanos , Lactente , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Microcefalia/complicações , Microcefalia/genética , Microcefalia/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Organismos Geneticamente Modificados , Linhagem , Fenótipo , Saccharomyces cerevisiae
18.
Eur J Med Chem ; 218: 113405, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33831781

RESUMO

Recently, non-canonical roles of Lysyl-tRNA Synthetase (KRS), which is associated with cell migration and cancer metastasis, have been reported. Therefore, KRS has emerged as a promising target for the treatment of cell migration-related diseases, especially cancer metastasis, although the satisfying chemical inhibitors targeting KRS have not yet been identified. Here, we report the discovery of novel, mechanistically unique, and potent cell migration inhibitors targeting KRS, including the chemical and biological studies on the most effective N,N-dialkylthiazolo [5,4-b]pyridin-2-amine (SL-1910). SL-1910 exhibited highly potent migration inhibition (EC50 = 81 nM against the mutant KRS-overexpressed MDA-MB-231 cells) and was superior to the previously reported KRS inhibitor (migration inhibitory EC50 = 8.5 µM against H226 cells). The KRS protein binding study via fluorescence-based binding titration and KRS protein 2D-NMR mapping study, in vitro concentration-dependent cell migration inhibition, and in vivo anti-metastatic activity of SL-1910, which consists of a new scaffold, have been reported in this study. In addition, in vitro absorption, distribution, metabolism, and excretion studies and mouse pharmacokinetics experiments for SL-1910 were conducted.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Lisina-tRNA Ligase/antagonistas & inibidores , Piridinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Humanos , Lisina-tRNA Ligase/metabolismo , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
19.
Biochem Biophys Res Commun ; 554: 83-88, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33784510

RESUMO

Aminoacyl-tRNA synthetases (AARSs) catalyze the ligation of amino acids to their cognate tRNAs and therefore play an essential role in protein biosynthesis in all living cells. The KARS gene in human encodes both cytosolic and mitochondrial lysyl-tRNA synthetase (LysRS). A recent study identified a missense mutation in KARS gene (c.517T > C) that caused autosomal recessive nonsyndromic hearing loss. This mutation led to a tyrosine to histidine (YH) substitution in both cytosolic and mitochondrial LysRS proteins, and decreased their aminoacylation activity to different levels. Here, we report the crystal structure of LysRS YH mutant at a resolution of 2.5 Å. We found that the mutation did not interfere with the active center, nor did it cause any significant conformational changes in the protein. The loops involved in tetramer interface and tRNA anticodon binding site showed relatively bigger variations between the mutant and wild type proteins. Considering the differences between the cytosolic and mitochondrial tRNAlyss, we suggest that the mutation triggered subtle changes in the tRNA anticodon binding region, and the interferences were further amplified by the different D and T loops in mitochondrial tRNAlys, and led to a complete loss of the aminoacylation of mitochondrial tRNAlys.


Assuntos
Surdez/enzimologia , Lisina-tRNA Ligase/química , Mutação , Aminoacilação , Anticódon , Cristalografia por Raios X , Surdez/genética , Surdez/metabolismo , Surdez/patologia , Predisposição Genética para Doença , Humanos , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/isolamento & purificação , Lisina-tRNA Ligase/metabolismo , Mitocôndrias/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Biossíntese de Proteínas , Elementos Estruturais de Proteínas , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo
20.
J Allergy Clin Immunol ; 147(5): 1855-1864.e9, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33385443

RESUMO

BACKGROUND: Anaphylaxis is a severe allergic reaction that can be lethal if not treated adequately. The underlying molecular mechanisms responsible for the severity are mostly unknown. OBJECTIVE: This study is based on a clinical case of a patient with extremely severe anaphylaxis to paper wasp venom. This patient has a mutation in the KARS gene, which encodes lysyl-tRNA synthetase (LysRS), a moonlight protein with a canonical function in protein synthesis and a noncanonical function in antigen dependent-FcεRI activation in mast cells. In this study, the objective was to characterize the mutation at the molecular level. METHODS: Analysis of the KARS mutation was carried out using biochemical and functional approaches, cell transfection, Western blot, confocal microscopy, cell degranulation, prostaglandin D2 secretion, and proteases gene transcription. Structural analysis using molecular dynamics simulations and well-tempered metadynamics was also performed. RESULTS: The mutation found, P542R (proline was replaced by arginine at aminoacid 542), affects the location of the protein as we show in biochemical and structural analyses. The mutation resembles active LysRS and causes a constitutive activation of the microphthalmia transcription factor, which is involved in critical mast cell functions such as synthesis of mediators and granule biogenesis. Moreover, the structural analysis provides insights into how LysRS works in mast cell activation. CONCLUSIONS: A link between the aberrant LysRS-P542R function and mast cell-exacerbated activation with increase in proinflammatory mediator release after antigen-IgE-dependent response could be established.


Assuntos
Anafilaxia/genética , Lisina-tRNA Ligase/genética , Adulto , Anafilaxia/imunologia , Animais , Mordeduras e Picadas/complicações , Mordeduras e Picadas/genética , Mordeduras e Picadas/imunologia , Linhagem Celular , Humanos , Lisina-tRNA Ligase/imunologia , Masculino , Mastócitos/imunologia , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/imunologia , Mutação , Ratos , Vespas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA