Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 231, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561656

RESUMO

Litsea coreana Levl. var. sinensis (Allen) Yang et P. H. Huang is a popular ethnic herb and beverage plant known for its high flavonoid content, which has been linked to a variety of pharmacological benefits and crucial health-promoting impacts in humans. The progress in understanding the molecular mechanisms of flavonoid accumulation in this plant has been hindered due to the deficiency of genomic and transcriptomic resources. We utilized a combination of Illumina and Oxford Nanopore Technology (ONT) sequencing to generate a de novo hybrid transcriptome assembly. In total, 126,977 unigenes were characterized, out of which 107,977 were successfully annotated in seven public databases. Within the annotated unigenes, 3,781 were categorized into 58 transcription factor families. Furthermore, we investigated the presence of four valuable flavonoids-quercetin-3-O-ß-D-galactoside, quercetin-3-O-ß-D-glucoside, kaempferol-3-O-ß-D-galactoside, and kaempferol-3-O-ß-D-glucoside in 98 samples, using high-performance liquid chromatography. A weighted gene co-expression network analysis identified two co-expression modules, MEpink and MEturquoise, that showed strong positive correlation with flavonoid content. Within these modules, four transcription factor genes (R2R3-MYB, NAC, WD40, and ARF) and four key enzyme-encoding genes (CHI, F3H, PAL, and C4H) emerged as potential hub genes. Among them, the R2R3-MYB (LcsMYB123) as a homologous gene to AtMYB123/TT2, was speculated to play a significant role in flavonol biosynthesis based on phylogenetic analysis. Our findings provided a theoretical foundation for further research into the molecular mechanisms of flavonoid biosynthesis. Additionally, The hybrid transcriptome sequences will serve as a valuable molecular resource for the transcriptional annotation of L. coreana var. sinensis, which will contribute to the improvement of high-flavonoid materials.


Assuntos
Litsea , Transcriptoma , Humanos , Litsea/genética , Litsea/metabolismo , Quercetina , Filogenia , Perfilação da Expressão Gênica , Flavonoides/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Tree Physiol ; 43(12): 2150-2161, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37682081

RESUMO

Litsea cubeba, the core species of the Lauraceae family, is valuable for the production of essential oils due to its high concentration of monoterpenes (90%). The key monoterpene synthase and metabolic regulatory network of monoterpene biosynthesis have provided new insights for improving essential oil content. However, there are few studies on the regulation mechanism of monoterpenes in L. cubeba. In this study, we investigated LcTPS32, a member of the TPS-b subfamily, and identified its function as an enzyme for the synthesis of monoterpenes, including geraniol, α-pinene, ß-pinene, ß-myrcene, linalool and eucalyptol. The quantitative real-time PCR analysis showed that LcTPS32 was highly expressed in the fruits of L. cubeba and contributed to the characteristic flavor of its essential oil. Overexpression of LcTPS32 resulted in a significant increase in the production of monoterpenes in L. cubeba by activating both the MVA and MEP pathways. Additionally, the study revealed that LcMYB106 played a negative regulatory role in monoterpenes biosynthesis by directly binding to the promoter of LcTPS32. Our study indicates that LcMYB106 could serve as a crucial target for metabolic engineering endeavors, aiming at enhancing the monoterpene biosynthesis in L. cubeba.


Assuntos
Litsea , Óleos Voláteis , Litsea/genética , Litsea/química , Litsea/metabolismo , Monoterpenos/metabolismo , Óleos Voláteis/metabolismo , Eucaliptol
3.
Nat Commun ; 11(1): 1675, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245969

RESUMO

The laurel family within the Magnoliids has attracted attentions owing to its scents, variable inflorescences, and controversial phylogenetic position. Here, we present a chromosome-level assembly of the Litsea cubeba genome, together with low-coverage genomic and transcriptomic data for many other Lauraceae. Phylogenomic analyses show phylogenetic discordance at the position of Magnoliids, suggesting incomplete lineage sorting during the divergence of monocots, eudicots, and Magnoliids. An ancient whole-genome duplication (WGD) event occurred just before the divergence of Laurales and Magnoliales; subsequently, independent WGDs occurred almost simultaneously in the three Lauralean lineages. The phylogenetic relationships within Lauraceae correspond to the divergence of inflorescences, as evidenced by the phylogeny of FUWA, a conserved gene involved in determining panicle architecture in Lauraceae. Monoterpene synthases responsible for production of specific volatile compounds in Lauraceae are functionally verified. Our work sheds light on the evolution of the Lauraceae, the genetic basis for floral evolution and specific scents.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Especiação Genética , Genoma de Planta , Litsea/genética , Vias Biossintéticas/genética , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Duplicação Gênica , Perfilação da Expressão Gênica , Genômica , Inflorescência/genética , Litsea/metabolismo , Anotação de Sequência Molecular , Odorantes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA
4.
Genes (Basel) ; 11(1)2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906074

RESUMO

Abstract:Litseacubeba (Lour.) Pers., a popular essential oil plant, is a dioecious species with degenerative sexual organs in both male and female individuals. Yet, the mechanism of degenerative organs development in male and female flowers is poorly understood. Here, we analyzed the morphological characters of degenerative organ development by morphological and histological observations, and determined the critical stage of abortion that occurs at pre-meiosis in male and female flowers. We also conducted RNA sequencing (RNA-seq) to understand the genetic basis of stamen abortion in female flowers. The differentially expressed genes (DEGs) were identified during the staminode development in female flowers; functional enrichment analysis revealed some important biological pathways involved the regulation of stamen abortion, including plant hormone signal transduction, phenylpropanoid biosynthesis, flavonoid biosynthesis and monoterpenoid biosynthesis. Furthermore, 15 DEGs involved in the hormone pathways were found to regulate stamen development. By HPLC-MS/MS analysis, there were a salicylic acid (SA) content peak and the gibberellin (GA) content lowest point in the abortion processes in female flowers, suggesting a vital function of hormonal processes. Co-expression network analysis further identified several hub genes that potentially played significant roles in the stamen abortion of L. cubeba. Taken together, we proposed a model involved in plant hormones pathways underlying stamen abortion during pre-meiosis in female flowers of L.cubeba.


Assuntos
Vias Biossintéticas , Perfilação da Expressão Gênica/métodos , Litsea/efeitos dos fármacos , Reguladores de Crescimento de Plantas/análise , Cromatografia Líquida de Alta Pressão , Flores/efeitos dos fármacos , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Giberelinas/análise , Litsea/genética , Litsea/metabolismo , Litsea/fisiologia , Meiose , Propanóis/metabolismo , Ácido Salicílico/análise , Análise de Sequência de RNA/métodos , Espectrometria de Massas em Tandem
5.
PLoS One ; 8(10): e76890, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130803

RESUMO

BACKGROUND: Aromatic essential oils extracted from fresh fruits of Litsea cubeba (Lour.) Pers., have diverse medical and economic values. The dominant components in these essential oils are monoterpenes and sesquiterpenes. Understanding the molecular mechanisms of terpenoid biosynthesis is essential for improving the yield and quality of terpenes. However, the 40 available L. cubeba nucleotide sequences in the public databases are insufficient for studying the molecular mechanisms. Thus, high-throughput transcriptome sequencing of L. cubeba is necessary to generate large quantities of transcript sequences for the purpose of gene discovery, especially terpenoid biosynthesis related genes. RESULTS: Using Illumina paired-end sequencing, approximately 23.5 million high-quality reads were generated. De novo assembly yielded 68,648 unigenes with an average length of 834 bp. A total of 38,439 (56%) unigenes were annotated for their functions, and 35,732 and 25,806 unigenes could be aligned to the GO and COG database, respectively. By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 16,130 unigenes were assigned to 297 KEGG pathways, and 61 unigenes, which contained the mevalonate and 2-C-methyl-D-erythritol 4-phosphate pathways, could be related to terpenoid backbone biosynthesis. Of the 12,963 unigenes, 285 were annotated to the terpenoid pathways using the PlantCyc database. Additionally, 14 terpene synthase genes were identified from the transcriptome. The expression patterns of the 16 genes related to terpenoid biosynthesis were analyzed by RT-qPCR to explore their putative functions. CONCLUSION: RNA sequencing was effective in identifying a large quantity of sequence information. To our knowledge, this study is the first exploration of the L. cubeba transcriptome, and the substantial amount of transcripts obtained will accelerate the understanding of the molecular mechanisms of essential oils biosynthesis. The results may help improve future genetic and genomics studies on the molecular mechanisms behind the chemical composition of essential oils in L. cubeba fruits.


Assuntos
Perfilação da Expressão Gênica , Litsea/genética , Litsea/metabolismo , RNA de Plantas/genética , Análise de Sequência de RNA , Terpenos/metabolismo , Evolução Molecular , Genômica , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
J Photochem Photobiol B ; 128: 85-91, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24077497

RESUMO

The bark of Litsea costalis affords two new compounds named 4,4'-diallyl-5,5'-dimethoxy-[1,1'-biphennyl]-2,2'-diol, biseugenol A (1) and 2,2'-oxybis (4-allyl-1-methoxybenzene), biseugenol B (2) along with two known compounds (3-4), namely 5-methoxy-2-Hydroxy Benzaldehyde (3), and (E)-4-styrylphenol (4). The structures of 1 and 2 were determined using 1D and 2D NMR data. Also, the IR and NMR data were combined with quantum chemical calculations in the DFT approach using the hybrid B3LYP exchange-correlation function to confirm the structures of the compounds. Compounds showed fairly potent anticancer activity against cell lines and antioxidant (DPPH).


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Eugenol/análogos & derivados , Litsea/química , Éteres Fenílicos/química , Éteres Fenílicos/farmacologia , Casca de Planta/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Eugenol/química , Eugenol/isolamento & purificação , Eugenol/farmacologia , Humanos , Litsea/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Molecular , Éteres Fenílicos/isolamento & purificação , Casca de Planta/metabolismo , Teoria Quântica
7.
J Zhejiang Univ Sci B ; 10(11): 813-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19882755

RESUMO

Litsea elliptica Blume leaves have been traditionally used as medicinal herbs because of its antimutagenicity, chemopreventative and insecticidal properties. In this study, the toxic effects of L. elliptica essential oil against Sprague-Dawley rat's red blood cells (RBCs) were evaluated. L. elliptica essential oil was given by oral gavage 5 times per week for 3 treated groups in the doses of 125, 250, and 500 mg/(kg body weight), respectively, and the control group received distilled water. Full blood count, RBC osmotic fragility, RBC morphological changes, and RBC membrane lipid were analyzed 28 d after the treatment. Although L. elliptica essential oil administration had significantly different effects on hemoglobin (Hb), mean cell hemoglobin concentration (MCHC), mean cell volume (MCV), and mean cell hemoglobin (MCH) in the experimental groups as compared to the control group (P<0.05), the values were still within the normal range. L. elliptica induced morphological changes of RBC into the form of echinocyte. The percentage of echinocyte increased significantly among the treated groups in a dose-response manner (P<0.001). The concentrations of RBC membrane phospholipids and cholesterol of all treated groups were significantly lower than those of control group (P<0.001). However, the RBC membrane osmotic fragility and total proteins of RBC membrane findings did not differ significantly between control and treated groups (P>0.05). It is concluded that structural changes in the RBC membrane due to L. elliptica essential oil administration did not cause severe membrane damage.


Assuntos
Litsea/metabolismo , Óleos Voláteis/toxicidade , Extratos Vegetais/toxicidade , Animais , Relação Dose-Resposta a Droga , Índices de Eritrócitos , Volume de Eritrócitos , Eritrócitos/efeitos dos fármacos , Feminino , Hemoglobinas/metabolismo , Microscopia Eletrônica de Varredura/métodos , Fragilidade Osmótica , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA