Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.124
Filtrar
1.
Nat Neurosci ; 27(5): 927-939, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570661

RESUMO

An essential feature of neurons is their ability to centrally integrate information from their dendrites. The activity of astrocytes, in contrast, has been described as mostly uncoordinated across cellular compartments without clear central integration. Here we report conditional integration of calcium signals in astrocytic distal processes at their soma. In the hippocampus of adult mice of both sexes, we found that global astrocytic activity, as recorded with population calcium imaging, reflected past neuronal and behavioral events on a timescale of seconds. Salient past events, indicated by pupil dilations, facilitated the propagation of calcium signals from distal processes to the soma. Centripetal propagation to the soma was reproduced by optogenetic activation of the locus coeruleus, a key regulator of arousal, and reduced by pharmacological inhibition of α1-adrenergic receptors. Together, our results suggest that astrocytes are computational units of the brain that slowly and conditionally integrate calcium signals upon behaviorally relevant events.


Assuntos
Astrócitos , Sinalização do Cálcio , Hipocampo , Locus Cerúleo , Animais , Locus Cerúleo/fisiologia , Locus Cerúleo/citologia , Astrócitos/fisiologia , Camundongos , Hipocampo/fisiologia , Hipocampo/citologia , Masculino , Sinalização do Cálcio/fisiologia , Feminino , Optogenética , Camundongos Transgênicos , Neurônios/fisiologia , Camundongos Endogâmicos C57BL , Cálcio/metabolismo
2.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38649278

RESUMO

Attending to salient sensory attributes of food, such as tastes that are new, displeasing, or unexpected, allows the procurement of nutrients without food poisoning. Exposure to new tastes is known to increase norepinephrine (NE) release in taste processing forebrain areas, yet the central source for this release is unknown. Locus ceruleus norepinephrine neurons (LC-NE) emerge as a candidate in signaling salient information about taste, as other salient sensory stimuli (e.g., visual, auditory, somatosensation) are known to activate LC neurons. To determine if LC neurons are sensitive to features of taste novelty, we used fiber photometry to record LC-NE activity in water-restricted mice that voluntarily licked either novel or familiar substances of differential palatability (saccharine, citric acid). We observed that LC-NE activity was suppressed during lick bursts and transiently activated upon the termination of licking and that these dynamics were independent of the familiarity of the substance consumed. We next recorded LC dynamics during brief and unexpected consumption of tastants and found no increase in LC-NE activity, despite their responsiveness to visual and auditory stimuli, revealing selectivity in LC's responses to salient sensory information. Our findings suggest that LC activity during licking is not influenced by taste novelty, implicating a possible role for non-LC noradrenergic nuclei in signaling critical information about taste.


Assuntos
Locus Cerúleo , Camundongos Endogâmicos C57BL , Norepinefrina , Paladar , Animais , Locus Cerúleo/fisiologia , Masculino , Norepinefrina/metabolismo , Paladar/fisiologia , Camundongos , Percepção Gustatória/fisiologia , Ácido Cítrico/metabolismo , Sacarina/administração & dosagem , Neurônios/fisiologia , Feminino , Comportamento Animal/fisiologia
3.
J Integr Neurosci ; 23(3): 60, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38538224

RESUMO

BACKGROUND: The medial prefrontal cortex (mPFC) is synaptically coupled to locus ceruleus (LC) located in the pontine tegmentum. The LC supplies norepinephrine (NE) to most of the central nervous system (CNS) via an elaborate efferent network. NE release in the cortex and various limbic structures regulates arousal, memory processes, adaptive behavior and cognitive control. METHODS: The study investigated the role of the mPFC-LC circuit in the cognitive behavior of mice. The mPFC efferents were inhibited optogenetically at the level of dorso-rostral pons by virally delivered ArchT opsin. The mice were implanted bilaterally with optic fibers transmitting yellow light and tested for anxiety-like behavior on Elevated O-maze (EOM), for long-term memory with Novel Object Recognition test (NOR), for problem-solving ability with Puzzle test and for learning with Cued Fear Conditioning (FC). In addition, we used anterograde transsynaptic viral tracing to map a possible anatomical circuit allowing the mPFC to modulate the activity of LC neurons, which supply NE to the main limbic structures with a functional role in cognitive behavior. RESULTS: The application of yellow light did not affect the anxiety-like behavior of the mice but impaired their ability to recognize a novel object and solve a problem. Optogenetic inhibition of mPFC to LC, in either acquisition or recall phase of FC similarly decreased freezing. The viral tracing identified the following tripartite circuits: mPFC-LC-dentate gyrus of the hippocampus (DG), mPFC-LC-amygdala (Amy), and mPFC-LC-mPFC. CONCLUSIONS: Our results reveal essential long-range regulatory circuits from the mPFC to LC and from LC to the limbic system that serves to optimize cognitive performance.


Assuntos
Locus Cerúleo , Optogenética , Camundongos , Animais , Locus Cerúleo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Cognição
4.
Front Biosci (Landmark Ed) ; 29(3): 118, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38538284

RESUMO

Locus coeruleus is a small bilateral nucleus in the brainstem. It is the main source of norepinephrine (noradrenaline) throughout the central nervous system (about 70% of all norepinephrine in the central nervous system), and, as shown in numerous studies, it is involved in regulating a significant number of functions. The detailed study of the functions of the Locus Coeruleus (LC) and its significance in human life became possible only after the development of histofluorescence methods for monoamines in the 1960s. The widespread locus coeruleus-norepinephrine (LC-NE) projection system regulates the entire central nervous system and modulates sensory processing, motor behavior, arousal, and cognitive processes. Damage to the LC and the associated decrease in norepinephrine levels are involved in a wide range of clinical conditions and pathological processes. Although much about the anatomy and physiology of the LC is currently known, its ultimate role in the regulation of behavior, control of the sleep-wake cycle, stress response, and the development of pathological conditions (such as Alzheimer's disease, dementia, depression, suicidal behavior, chronic traumatic encephalopathy, and Parkinson's disease) is not fully understood. Non-invasive visualization of the LC can be used for differential diagnosis, determining the stage of the disease, and predicting its course. Studying the dysfunction of the LC-norepinephrine system, involved in the pathogenesis of various neurological diseases, may ultimately form the basis for the development of new treatment methods based on the pharmacological elevation of norepinephrine levels. In this review, we will attempt to highlight the key points regarding the structure and function of the Locus Coeruleus, as well as outline the main directions and prospects for its study.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Locus Cerúleo/patologia , Locus Cerúleo/fisiologia , Doenças Neurodegenerativas/patologia , Norepinefrina/fisiologia
5.
Neuropsychopharmacology ; 49(6): 1014-1023, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38368493

RESUMO

In the central nervous system, noradrenaline transmission controls the degree to which we are awake, alert, and attentive. Aberrant noradrenaline transmission is associated with pathological forms of hyper- and hypo-arousal that present in numerous neuropsychiatric disorders often associated with dysfunction in serotonin transmission. In vivo, noradrenaline regulates the release of serotonin because noradrenergic input drives the serotonin neurons to fire action potentials via activation of excitatory α1-adrenergic receptors (α1-AR). Despite the critical influence of noradrenaline on the activity of dorsal raphe serotonin neurons, the source of noradrenergic afferents has not been resolved and the presynaptic mechanisms that regulate noradrenaline-dependent synaptic transmission have not been described. Using an acute brain slice preparation from male and female mice and electrophysiological recordings from dorsal raphe serotonin neurons, we found that selective optogenetic activation of locus coeruleus terminals in the dorsal raphe was sufficient to produce an α1-AR-mediated excitatory postsynaptic current (α1-AR-EPSC). Activation of inhibitory α2-adrenergic receptors (α2-AR) with UK-14,304 eliminated the α1-AR-EPSC via presynaptic inhibition of noradrenaline release, likely via inhibition of voltage-gated calcium channels. In a subset of serotonin neurons, activation of postsynaptic α2-AR produced an outward current through activation of GIRK potassium conductance. Further, in vivo activation of α2-AR by systemic administration of clonidine reduced the expression of c-fos in the dorsal raphe serotonin neurons, indicating reduced neural activity. Thus, α2-AR are critical regulators of serotonin neuron excitability.


Assuntos
Núcleo Dorsal da Rafe , Locus Cerúleo , Receptores Adrenérgicos alfa 2 , Neurônios Serotoninérgicos , Transmissão Sináptica , Animais , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/fisiologia , Núcleo Dorsal da Rafe/metabolismo , Masculino , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos alfa 2/fisiologia , Receptores Adrenérgicos alfa 2/efeitos dos fármacos , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/fisiologia , Feminino , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Camundongos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Optogenética , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Camundongos Endogâmicos C57BL , Norepinefrina/metabolismo , Camundongos Transgênicos
6.
Neurobiol Aging ; 136: 133-156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364691

RESUMO

Brain functional and structural changes lead to cognitive decline during aging, but a high level of cognitive stimulation during life can improve cognitive performances in the older adults, forming the cognitive reserve. Noradrenaline has been proposed as a molecular link between environmental stimulation and constitution of the cognitive reserve. Taking advantage of the ability of olfactory stimulation to activate noradrenergic neurons of the locus coeruleus, we used repeated olfactory enrichment sessions over the mouse lifespan to enable the cognitive reserve buildup. Mice submitted to olfactory enrichment, whether started in early or late adulthood, displayed improved olfactory discrimination at late ages and interestingly, improved spatial memory and cognitive flexibility. Moreover, olfactory and non-olfactory cognitive performances correlated with increased noradrenergic innervation in the olfactory bulb and dorsal hippocampus. Finally, c-Fos mapping and connectivity analysis revealed task-specific remodeling of functional neural networks in enriched older mice. Long-term olfactory enrichment thus triggers structural noradrenergic plasticity and network remodeling associated with better cognitive aging and thereby forms a promising mouse model of the cognitive reserve buildup.


Assuntos
Encéfalo , Olfato , Camundongos , Animais , Olfato/fisiologia , Cognição , Norepinefrina/fisiologia , Locus Cerúleo/fisiologia , Bulbo Olfatório/fisiologia
7.
Proc Natl Acad Sci U S A ; 121(9): e2320276121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38381789

RESUMO

Neuropeptide S (NPS) was postulated to be a wake-promoting neuropeptide with unknown mechanism, and a mutation in its receptor (NPSR1) causes the short sleep duration trait in humans. We investigated the role of different NPS+ nuclei in sleep/wake regulation. Loss-of-function and chemogenetic studies revealed that NPS+ neurons in the parabrachial nucleus (PB) are wake-promoting, whereas peri-locus coeruleus (peri-LC) NPS+ neurons are not important for sleep/wake modulation. Further, we found that a NPS+ nucleus in the central gray of the pons (CGPn) strongly promotes sleep. Fiber photometry recordings showed that NPS+ neurons are wake-active in the CGPn and wake/REM-sleep active in the PB and peri-LC. Blocking NPS-NPSR1 signaling or knockdown of Nps supported the function of the NPS-NPSR1 pathway in sleep/wake regulation. Together, these results reveal that NPS and NPS+ neurons play dichotomous roles in sleep/wake regulation at both the molecular and circuit levels.


Assuntos
Neuropeptídeos , Sono , Humanos , Sono/fisiologia , Ponte/fisiologia , Locus Cerúleo/fisiologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
8.
Sci Rep ; 14(1): 4069, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374419

RESUMO

We investigated the participation of the nucleus of the tractus solitarius (NTS) in tonic‒clonic seizures and postictal antinociception control mediated by NMDA receptors, the role of NTS GABAergic interneurons and noradrenergic pathways from the locus coeruleus (LC) in these phenomena. The NTS-lateral nucleus reticularis paragigantocellularis (lPGi)-LC pathway was studied by evaluating neural tract tracer deposits in the lPGi. NMDA and GABAergic receptors agonists and antagonists were microinjected into the NTS, followed by pharmacologically induced seizures. The effects of LC neurotoxic lesions caused by DSP-4, followed by NTS-NMDA receptor activation, on both tonic‒clonic seizures and postictal antinociception were also investigated. The NTS is connected to lPGi neurons that send outputs to the LC. Glutamatergic vesicles were found on dendrites and perikarya of GABAergic interneurons in the NTS. Both tonic‒clonic seizures and postictal antinociception are partially dependent on glutamatergic-mediated neurotransmission in the NTS of seizing rats in addition to the integrity of the noradrenergic system since NMDA receptor blockade in the NTS and intrathecal administration of DSP-4 decrease the postictal antinociception. The GABAA receptor activation in the NTS decreases both seizure severity and postictal antinociception. These findings suggest that glutamatergic inputs to NTS-GABAergic interneurons, in addition to ascending and descending noradrenergic pathways from the LC, are critical for the control of both seizures and postictal antinociception.


Assuntos
Benzilaminas , Locus Cerúleo , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Locus Cerúleo/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Bulbo/metabolismo , Núcleo Solitário/metabolismo , Norepinefrina/metabolismo , Convulsões/metabolismo
9.
Geroscience ; 46(1): 1017-1033, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37318717

RESUMO

The cognitive aging process is not necessarily linear. Central task-evoked pupillary responses, representing a brainstem-pupil relationship, may vary across the lifespan. Thus we examined, in 75 adults ranging in age from 19 to 86, whether task-evoked pupillary responses to an attention task may serve in as an index of cognitive aging. This is because the locus coeruleus (LC), located in the brainstem, is not only among the earliest sites of degeneration in pathological aging, but also supports both attentional and pupillary behaviors. We assessed brief, task-evoked phasic attentional orienting to behaviorally relevant and irrelevant auditory tones, stimuli known specifically to recruit the LC in the brainstem and evoke pupillary responses. Due to potential nonlinear changes across the lifespan, we used a novel data-driven analysis on 6 dynamic pupillary behaviors on 10% of the data to reveal cut off points that best characterized the three age bands: young (19-41 years old), middle aged (42-68 years old), and older adults (69 + years old). Follow-up analyses on independent data, the remaining 90%, revealed age-related changes such as monotonic decreases in tonic pupillary diameter and dynamic range, along with curvilinear phasic pupillary responses to the behaviorally relevant target events, increasing in the middle-aged group and then decreasing in the older group. Additionally, the older group showed decreased differentiation of pupillary responses between target and distractor events. This pattern is consistent with potential compensatory LC activity in midlife that is diminished in old age, resulting in decreased adaptive gain. Beyond regulating responses to light, pupillary dynamics reveal a nonlinear capacity for neurally mediated gain across the lifespan, thus providing evidence in support of the LC adaptive gain hypothesis.


Assuntos
Atenção , Longevidade , Atenção/fisiologia , Pupila/fisiologia , Locus Cerúleo/fisiologia
10.
Psychophysiology ; 61(4): e14479, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37920144

RESUMO

The locus coeruleus-norepinephrine (LC-NE) system, which regulates arousal levels, is important for cognitive control, including emotional conflict resolution. Additionally, the LC-NE system is implicated in P300 generation. If the P300 is mediated by the LC-NE system, and considering the established correlations between LC activity and pupil dilation, P300 amplitude should correlate with task-evoked (phasic) pupil dilation on a trial-by-trial basis. However, prior studies, predominantly utilizing oddball-type paradigms, have not demonstrated correlations between concurrently recorded task-evoked pupil dilation and P300 responses. Using a recently developed emotional face-word Stroop task that links pupil dilation to the LC-NE system, here, we examined both intra- and inter-individual correlations between task-evoked pupil dilation and P300 amplitude. We found that lower accuracy, slower reaction times, and larger task-evoked pupil dilation were obtained in the incongruent compared to the congruent condition. Furthermore, we observed intra-individual correlations between task-evoked pupil dilation and P300 amplitude, with larger pupil dilation correlating with a greater P300 amplitude. In contrast, pupil dilation did not exhibit consistent correlations with N450 and N170 amplitudes. Baseline (tonic) pupil size also showed correlations with P300 and N170 amplitudes, with smaller pupil size corresponding to larger amplitude. Moreover, inter-individual differences in task-evoked pupil dilation between the congruent and incongruent conditions correlated with differences in reaction time and P300 amplitude, though these effects only approached significance. To summarize, our study provides evidence for a connection between task-evoked pupil dilation and P300 amplitude at the single-trial level, suggesting the involvement of the LC-NE system in P300 generation.


Assuntos
Nível de Alerta , Pupila , Humanos , Teste de Stroop , Pupila/fisiologia , Tempo de Reação/fisiologia , Nível de Alerta/fisiologia , Locus Cerúleo/fisiologia , Norepinefrina/fisiologia
11.
Nat Hum Behav ; 8(1): 43-62, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37904022

RESUMO

The brain's arousal state is controlled by several neuromodulatory nuclei known to substantially influence cognition and mental well-being. Here we investigate whether human participants can gain volitional control of their arousal state using a pupil-based biofeedback approach. Our approach inverts a mechanism suggested by previous literature that links activity of the locus coeruleus, one of the key regulators of central arousal and pupil dynamics. We show that pupil-based biofeedback enables participants to acquire volitional control of pupil size. Applying pupil self-regulation systematically modulates activity of the locus coeruleus and other brainstem structures involved in arousal control. Furthermore, it modulates cardiovascular measures such as heart rate, and behavioural and psychophysiological responses during an oddball task. We provide evidence that pupil-based biofeedback makes the brain's arousal system accessible to volitional control, a finding that has tremendous potential for translation to behavioural and clinical applications across various domains, including stress-related and anxiety disorders.


Assuntos
Nível de Alerta , Pupila , Humanos , Pupila/fisiologia , Nível de Alerta/fisiologia , Locus Cerúleo/fisiologia , Cognição/fisiologia , Biorretroalimentação Psicológica
12.
J Neurosci ; 44(7)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38124020

RESUMO

The locus ceruleus (LC) is the primary source of neocortical noradrenaline, which is known to be involved in diverse brain functions including sensory perception, attention, and learning. Previous studies have shown that LC stimulation paired with sensory experience can induce task-dependent plasticity in the sensory neocortex and in the hippocampus. However, it remains unknown whether LC activation similarly impacts neural representations in the agranular motor cortical regions that are responsible for movement planning and production. In this study, we test whether optogenetic stimulation of the LC paired with motor performance is sufficient to induce task-relevant plasticity in the somatotopic cortical motor map. Male and female TH-Cre + rats were trained on a skilled reaching lever-pressing task emphasizing the use of the proximal forelimb musculature, and a viral approach was used to selectively express ChR2 in noradrenergic LC neurons. Once animals reached criterial behavioral performance, they received five training sessions in which correct task performance was paired with optogenetic stimulation of the LC delivered at 3, 10, or 30 Hz. After the last stimulation session, motor cortical mapping was performed using intracortical microstimulation. Our results show that lever pressing paired with LC stimulation at 10 Hz, but not at 3 or 30 Hz, drove the expansion of the motor map representation of the task-relevant proximal FL musculature. These findings demonstrate that phasic, training-paired activation of the LC is sufficient to induce experience-dependent plasticity in the agranular motor cortex and that this LC-driven plasticity is highly dependent on the temporal dynamics of LC activation.


Assuntos
Locus Cerúleo , Córtex Motor , Ratos , Feminino , Masculino , Animais , Locus Cerúleo/fisiologia , Córtex Motor/fisiologia , Optogenética , Movimento/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal
13.
Cell Rep ; 42(12): 113566, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38100349

RESUMO

Catecholamine signaling is thought to modulate cognition in an inverted-U relationship, but the mechanisms are unclear. We measured norepinephrine and dopamine release, postsynaptic calcium responses, and interactions between tonic and phasic firing modes under various stimuli and conditions. High tonic activity in vivo depleted catecholamine stores, desensitized postsynaptic responses, and decreased phasic transmission. Together, these findings provide a more complete understanding of the inverted-U relationship, offering insights into psychiatric disorders and neurodegenerative diseases with impaired catecholamine signaling.


Assuntos
Catecolaminas , Locus Cerúleo , Humanos , Locus Cerúleo/fisiologia , Norepinefrina , Dopamina , Transdução de Sinais
14.
Proc Natl Acad Sci U S A ; 120(46): e2307275120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931094

RESUMO

Memory formation is typically divided into phases associated with encoding, storage, consolidation, and retrieval. The neural determinants of these phases are thought to differ. This study first investigated the impact of the experience of novelty in rats incurred at a different time, before or after, the precise moment of memory encoding. Memory retention was enhanced. Optogenetic activation of the locus coeruleus mimicked this enhancement induced by novelty, both when given before and after the moment of encoding. Optogenetic activation of the locus coeruleus also induced a slow-onset potentiation of field potentials in area CA1 of the hippocampus evoked by CA3 stimulation. Despite the locus coeruleus being considered a primarily noradrenergic area, both effects of such stimulation were blocked by the dopamine D1/D5 receptor antagonist SCH 23390. These findings substantiate and enrich the evidence implicating the locus coeruleus in cellular aspects of memory consolidation in hippocampus.


Assuntos
Locus Cerúleo , Optogenética , Ratos , Animais , Locus Cerúleo/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Norepinefrina/farmacologia , Potenciação de Longa Duração/fisiologia
15.
Curr Biol ; 33(22): 5003-5010.e6, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37875110

RESUMO

The noradrenaline (NA) system is one of the brain's major neuromodulatory systems; it originates in a small midbrain nucleus, the locus coeruleus (LC), and projects widely throughout the brain.1,2 The LC-NA system is believed to regulate arousal and attention3,4 and is a pharmacological target in multiple clinical conditions.5,6,7 Yet our understanding of its role in health and disease has been impeded by a lack of direct recordings in humans. Here, we address this problem by showing that electrochemical estimates of sub-second NA dynamics can be obtained using clinical depth electrodes implanted for epilepsy monitoring. We made these recordings in the amygdala, an evolutionarily ancient structure that supports emotional processing8,9 and receives dense LC-NA projections,10 while patients (n = 3) performed a visual affective oddball task. The task was designed to induce different cognitive states, with the oddball stimuli involving emotionally evocative images,11 which varied in terms of arousal (low versus high) and valence (negative versus positive). Consistent with theory, the NA estimates tracked the emotional modulation of attention, with a stronger oddball response in a high-arousal state. Parallel estimates of pupil dilation, a common behavioral proxy for LC-NA activity,12 supported a hypothesis that pupil-NA coupling changes with cognitive state,13,14 with the pupil and NA estimates being positively correlated for oddball stimuli in a high-arousal but not a low-arousal state. Our study provides proof of concept that neuromodulator monitoring is now possible using depth electrodes in standard clinical use.


Assuntos
Atenção , Norepinefrina , Humanos , Atenção/fisiologia , Nível de Alerta/fisiologia , Tonsila do Cerebelo , Encéfalo , Locus Cerúleo/fisiologia , Pupila/fisiologia
16.
Cortex ; 169: 118-129, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866060

RESUMO

BACKGROUND: Autistic individuals excel at visual search, however, the neural mechanism(s) underlying this advantage remain unclear. The locus coeruleus-norepinephrine (LC-NE) system, which plays a critical role in sensory perception and selective attention, has been shown to function in a persistently elevated state in individuals on the spectrum. However, the relationship between elevated tonic LC-NE activity and accelerated search in autism has not been explored. OBJECTIVE: To examine the relationship between visual search abilities and resting pupil diameter (an indirect measure of tonic LC-NE activation) in autistic and neurotypical children. METHODS: Participants were 24 school-aged autistic children and 24 age- and IQ-matched neurotypical children aged 8-15 years. Children completed two tasks: a resting eye-tracking task and a visual search paradigm. For the resting eye-tracking task, pupil diameter was monitored while participants fixated a central crosshair. For the visual search paradigm, participants were instructed to find the target (vertical line) embedded within an array of tilted (10°) distractor lines. The target was present on 50% of trials, and displayed within set sizes of 18, 24, and 36 items. RESULTS: Consistent with previous studies, autistic children had significantly larger resting pupil size and searched faster and more efficiently compared to their neurotypical peers. Eye-tracking findings revealed that accelerated search was associated with fewer, not shorter, fixations in the autism group. Autistic children also showed reduced leftward search bias. Larger resting pupil size, indicative of increased tonic activation of the LC-NE system, was associated with greater search efficiency, longer fixation durations, and reduced leftward bias. Finally, within both groups reduced leftward bias was associated with increased autism symptomatology. DISCUSSION: Together, these findings add to the existing body of research highlighting superior search in autism, suggest that elevated tonic LC-NE activity may contribute to more efficient search, and link non-social visual-spatial processing strengths to autism symptoms.


Assuntos
Transtorno Autístico , Locus Cerúleo , Criança , Humanos , Locus Cerúleo/fisiologia , Atenção/fisiologia , Sensação , Norepinefrina
17.
Physiol Behav ; 272: 114370, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37797663

RESUMO

Both animals and humans have been studied to explore the impact of acute physical exercise (PE) on memory. In rats, a single session of PE enhances the persistence of novel object recognition (NOR) memory, which depends on dopamine and noradrenaline activity in the hippocampus. However, limited research has examined the involvement of other brain regions in this phenomenon. In this study, we investigated the role of the ventral tegmental area (VTA) and locus coeruleus (LC) in modulating the persistence of NOR memory induced by acute PE. After NOR training, some animals underwent a 30 min treadmill PE session, followed by infusion of either vehicle (VEH) or muscimol (MUS) in either the VTA or LC. Other animals did not undergo PE and only received VEH, MUS, or NMDA within the same time window. We evaluated memory recall 1, 7, and 14 days later. Acute PE promoted memory persistence for up to 14 days afterward, similar to NMDA glutamatergic stimulation of the VTA or LC. Moreover, only the LC region was required for the memory improvement induced by acute PE since blocking this region with MUS impaired NOR encoding. Our findings suggest that acute PE can improve learning within a closed time window, and this effect depends on LC, but not VTA, activity.


Assuntos
Locus Cerúleo , Área Tegmentar Ventral , Humanos , Ratos , Animais , Locus Cerúleo/fisiologia , N-Metilaspartato/farmacologia , Reconhecimento Psicológico , Memória
18.
Curr Biol ; 33(21): 4679-4688.e3, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37741282

RESUMO

Purposeful movement across unpredictable environments requires quick, accurate, and contextually appropriate motor corrections in response to disruptions in balance and posture.1,2,3 These responses must respect both the current position and limitations of the body, as well as the surrounding environment,4,5,6 and involve a combination of segmental reflexes in the spinal cord, vestibulospinal and reticulospinal pathways in the brainstem, and forebrain structures such as the motor cortex.7,8,9,10 These motor plans can be heavily influenced by the animal's surrounding environment, even when that environment has no mechanical influence on the perturbation itself. This environmental influence has been considered as cortical in nature, priming motor responses to a perturbation.8,11 Similarly, postural responses can be influenced by environments that alter threat levels in humans.12,13,14,15,16,17,18 Such studies are generally in agreement with work done in the mouse showing that optogenetic stimulation of the lateral vestibular nucleus (LVN) only results in motor responses when the animal is on a balance beam at height and not when walking on the stable surface of a treadmill.10 In general, this ability to flexibly modify postural responses across terrains and environmental conditions is a critically important component of the balance system.19,20 Here we show that LVN-generated motor corrections can be altered by manipulating the surrounding environment. Furthermore, environmental influence on corrections requires noradrenergic signaling from the locus coeruleus, suggesting a potential link between forebrain structures that convey sensory information about the environment and brainstem circuits that generate motor corrections.


Assuntos
Locus Cerúleo , Reflexo , Humanos , Camundongos , Animais , Locus Cerúleo/fisiologia , Reflexo/fisiologia , Medula Espinal/fisiologia , Norepinefrina
19.
Biol Sex Differ ; 14(1): 64, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770907

RESUMO

BACKGROUND: In addition to social and cultural factors, sex differences in the central nervous system have a critical influence on behavior, although the neurobiology underlying these differences remains unclear. Interestingly, the Locus Coeruleus (LC), a noradrenergic nucleus that exhibits sexual dimorphism, integrates signals that are related to diverse activities, including emotions, cognition and pain. Therefore, we set-out to evaluate sex differences in behaviors related to LC nucleus, and subsequently, to assess the sex differences in LC morphology and function. METHODS: Female and male C57BL/6J mice were studied to explore the role of the LC in anxiety, depressive-like behavior, well-being, pain, and learning and memory. We also explored the number of noradrenergic LC cells, their somatodendritic volume, as well as the electrophysiological properties of LC neurons in each sex. RESULTS: While both male and female mice displayed similar depressive-like behavior, female mice exhibited more anxiety-related behaviors. Interestingly, females outperformed males in memory tasks that involved distinguishing objects with small differences and they also showed greater thermal pain sensitivity. Immunohistological analysis revealed that females had fewer noradrenergic cells yet they showed a larger dendritic volume than males. Patch clamp electrophysiology studies demonstrated that LC neurons in female mice had a lower capacitance and that they were more excitable than male LC neurons, albeit with similar action potential properties. CONCLUSIONS: Overall, this study provides new insights into the sex differences related to LC nucleus and associated behaviors, which may explain the heightened emotional arousal response observed in females.


Exploring sex differences in the brain is important to understand the impact of such differences in pathological conditions characterized by gender bias, as well as their therapeutic implications. In this manuscript, we examined sex differences in the mouse locus coeruleus (LC) and how this might affect related behaviours. The LC is a sexually dimorphic nucleus that integrates signals associated with attention, anxiety, stress, arousal, pain, memory and learning. Our findings reveal that female mice exhibit more intense anxiety-related behaviors but that they perform better than males in recognizing small differences between objects. Additionally, we found pronounced sex differences in the LC, which contained fewer noradrenergic cells in females, with a larger dendritic volume and displaying enhanced cell excitability. These differences in the LC, a nucleus that fulfils a pivotal role in stress and pain, could be important for understanding the higher prevalence of stress-related disorders in women, such as anxiety and depression, but also of chronic pain. Hence, it is clearly important to consider sex differences in both preclinical and clinical research studies that attempt to understand pathologies related to these phenomena.


Assuntos
Locus Cerúleo , Neurônios , Feminino , Masculino , Camundongos , Animais , Locus Cerúleo/patologia , Locus Cerúleo/fisiologia , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Norepinefrina , Emoções
20.
Neurobiol Aging ; 132: 85-99, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769491

RESUMO

Using data from a clinical trial, we tested the hypothesis that daily sessions modulating heart rate oscillations affect older adults' volume of a region-of-interest (ROI) comprised of adjacent hippocampal subregions with relatively strong locus coeruleus (LC) noradrenergic input. Younger and older adults were randomly assigned to one of two daily biofeedback practices for 5 weeks: (1) engage in slow-paced breathing to increase the amplitude of oscillations in heart rate at their breathing frequency (Osc+); (2) engage in self-selected strategies to decrease heart rate oscillations (Osc-). The interventions did not significantly affect younger adults' hippocampal volume. Among older adults, the two conditions affected volume in the LC-targeted hippocampal ROI differentially as reflected in a significant condition × time-point interaction on ROI volume. These condition differences were driven by opposing changes in the two conditions (increased volume in Osc+ and decreased volume in Osc-) and were mediated by the degree of heart rate oscillation during training sessions.


Assuntos
Hipocampo , Locus Cerúleo , Frequência Cardíaca/fisiologia , Locus Cerúleo/fisiologia , Hipocampo/diagnóstico por imagem , Biorretroalimentação Psicológica/fisiologia , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA