Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
Methods Mol Biol ; 2808: 1-7, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743358

RESUMO

We have adopted a real-time assay based on a dual-split reporter to assess cell-cell fusion mediated by the measles virus (MeV) membrane fusion machinery. This reporter system is comprised of two expression vectors, each encoding a segment of Renilla luciferase fused to a segment of GFP. To regain function, the two segments need to associate, which is dependent on cell-cell fusion between effector cells expressing the MeV fusion machinery and target cells expressing the corresponding MeV receptor. By measuring reconstituted luciferase activity, we can follow the kinetics of cell-cell fusion and quantify the extent of fusion. This assay lends itself to the study of the MeV fusion machinery comprised of the attachment and fusion glycoproteins, the matrix protein, and the MeV receptors. Moreover, entry inhibitors targeting attachment or fusion can be readily screened using this assay. Finally, this assay can be easily adopted to study the entry of other members of the Paramyxoviridae, as we have demonstrated for the henipaviruses.


Assuntos
Fusão Celular , Vírus do Sarampo , Internalização do Vírus , Vírus do Sarampo/genética , Vírus do Sarampo/fisiologia , Humanos , Animais , Fusão Celular/métodos , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Chlorocebus aethiops , Linhagem Celular , Células Vero , Luciferases de Renilla/genética , Luciferases de Renilla/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(48): e2312848120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983512

RESUMO

The availability of natural protein sequences synergized with generative AI provides new paradigms to engineer enzymes. Although active enzyme variants with numerous mutations have been designed using generative models, their performance often falls short of their wild type counterparts. Additionally, in practical applications, choosing fewer mutations that can rival the efficacy of extensive sequence alterations is usually more advantageous. Pinpointing beneficial single mutations continues to be a formidable task. In this study, using the generative maximum entropy model to analyze Renilla luciferase (RLuc) homologs, and in conjunction with biochemistry experiments, we demonstrated that natural evolutionary information could be used to predictively improve enzyme activity and stability by engineering the active center and protein scaffold, respectively. The success rate to improve either luciferase activity or stability of designed single mutants is ~50%. This finding highlights nature's ingenious approach to evolving proficient enzymes, wherein diverse evolutionary pressures are preferentially applied to distinct regions of the enzyme, ultimately culminating in an overall high performance. We also reveal an evolutionary preference in RLuc toward emitting blue light that holds advantages in terms of water penetration compared to other light spectra. Taken together, our approach facilitates navigation through enzyme sequence space and offers effective strategies for computer-aided rational enzyme engineering.


Assuntos
Luz , Mutação , Luciferases de Renilla/genética , Luciferases de Renilla/metabolismo , Estabilidade Enzimática
3.
ACS Chem Biol ; 18(1): 184-192, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36516069

RESUMO

Disruption of interactions between Hsp90 and the cochaperone protein, Aha1, has emerged as a therapeutic strategy to inhibit Aha1-driven cancer metastasis and tau aggregation in models of tauopathy. A combination of split Renilla luciferase assays was developed to screen and quantify the ability of small molecules to disrupt interactions between Hsp90 and both full length Aha1 protein (Aha1-FL) and the Aha1 C-terminal domain (Aha1-CTD). This luminescence-based approach was used to identify withaferin A and gedunin as disruptors of Hsp90/Aha1 interactions and provided insight into the binding regions for gambogic acid and gedunin on the Hsp90 homodimer. All compounds tested that disrupted Hsp90/Aha1-CTD interactions were found to disrupt interactions between Hsp90 and Aha1-FL, suggesting that interactions between Hsp90 and the Aha1-CTD play a key role in the stability of Hsp90/Aha1 complexes.


Assuntos
Proteínas de Choque Térmico HSP90 , Limoninas , Luciferases de Renilla/genética , Luciferases de Renilla/química , Luciferases de Renilla/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo
4.
Viruses ; 14(6)2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35746608

RESUMO

(1) Background: Porcine Parvovirus (PPV) is a single-stranded DNA virus without envelope which causes great harm in relation to porcine reproductive disorders in clinic. Cluster of Differentiation 38 (CD38) is a transmembrane protein widely existing in mammals. Its various functions make it a very popular research object, including in the viral infection field. (2) Methods: Western blotting and an EdU Cell Proliferation Kit were used to evaluate the effect of CD38-deficient cells. Relative quantitative real-time RT-PCR was used to detect the transcription levels of cytokines after PPV infection. The renilla luciferase reporter gene assay was used to verify the activation function of CD38 on downstream factors. The fluorescence probe method was used to detect the level of intracellular reactive oxygen species (ROS). (3) Results: This study found that the loss of CD38 function inhibited the up-regulated state of Toll-like Receptor 9 (TLR9), Interferon-α (IFN-α), and Myxovirus Resistance 1 (Mx1) after PPV infection. The luminescence of the group transfected with both CD38 expression plasmid and TLR9 promoter renilla luciferase reporter plasmid was significantly up-regulated compared with the control, suggesting that CD38 may activate the promoter of TLR9. In addition, CD38 deficiency not only activated the transcription of Sirtuin-1 (SIRT1), but also inhibited ROS level and the transcription of NLR Family Pyrin Domain Containing 3 (NLRP3). (4) Conclusion: (i) CD38 may participate in the TLR9/IFN-α/Mx1 pathway by activating the expression of TLR9 after PPV infected PK-15 cells; (ii) CD38 may activate the NLRP3/CASP1 pathway by increasing ROS level; (iii) CD38 deficiency activates the expression of SIRT1 and can prevent the normal proliferation of PPV.


Assuntos
Infecções por Parvoviridae , Parvovirus Suíno , Animais , Inflamassomos/metabolismo , Luciferases de Renilla/metabolismo , Mamíferos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Infecções por Parvoviridae/veterinária , Parvovirus Suíno/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Sirtuína 1/metabolismo , Suínos , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
5.
J Virol ; 95(20): e0103021, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34379508

RESUMO

We have developed a flexible platform for delivery of proteins to target cell interiors using paramyxovirus-like particles. The key enabling feature is an appendage, 15 to 30 amino acid residues in length, that is added to cargo proteins and that induces them to bind to the viral matrix (M) protein during virus-like particle (VLP) assembly. The cargo is then incorporated within the VLPs as they bud, using the same interactions that normally direct viral genome packaging. The appendage can also serve as an epitope tag for cargo detection using a nucleocapsid (NP) protein-specific monoclonal antibody. Using this approach, we generated Renilla luciferase-loaded VLPs, green fluorescent protein-loaded VLPs, superoxide dismutase-loaded VLPs, and Cre recombinase-loaded VLPs. In each case, the VLPs could efficiently deliver their functional cargos to target cells and, in the case of Cre recombinase, to target cell nuclei. The strategy was employed using two different VLP production platforms, one based on parainfluenza virus 5 (PIV5) and the other based on Nipah virus, and in both cases efficient cargo packaging and delivery could be achieved. These findings provide a foundation for development of paramyxovirus-like particles as tools for safe and efficient delivery of therapeutic proteins to cells and tissues. IMPORTANCE Therapeutic proteins including transcription factors and genome editors have enormous clinical potential but are currently limited in part due to the challenges of safely and efficiently delivering these proteins to the interiors of target cells. Here, we have developed a new strategy for protein delivery based on manipulation of paramyxovirus genome packaging interactions.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Paramyxoviridae/metabolismo , Proteínas da Matriz Viral/metabolismo , Engenharia Genética/métodos , Humanos , Luciferases de Renilla/metabolismo , Nucleocapsídeo/metabolismo , Paramyxoviridae/genética , Vírion/metabolismo , Montagem de Vírus
6.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203212

RESUMO

Firefly luciferase is susceptible to inhibition and stabilization by compounds under investigation for biological activity and toxicity. This can lead to false-positive results in in vitro cell-based assays. However, firefly luciferase remains one of the most commonly used reporter genes. Here, we evaluated isoflavonoids for inhibition of firefly luciferase. These natural compounds are often studied using luciferase reporter-gene assays. We used a quantitative structure-activity relationship (QSAR) model to compare the results of in silico predictions with a newly developed in vitro assay that enables concomitant detection of inhibition of firefly and Renilla luciferases. The QSAR model predicted a moderate to high likelihood of firefly luciferase inhibition for all of the 11 isoflavonoids investigated, and the in vitro assays confirmed this for seven of them: daidzein, genistein, glycitein, prunetin, biochanin A, calycosin, and formononetin. In contrast, none of the 11 isoflavonoids inhibited Renilla luciferase. Molecular docking calculations indicated that isoflavonoids interact favorably with the D-luciferin binding pocket of firefly luciferase. These data demonstrate the importance of reporter-enzyme inhibition when studying the effects of such compounds and suggest that this in vitro assay can be used to exclude false-positives due to firefly or Renilla luciferase inhibition, and to thus define the most appropriate reporter gene.


Assuntos
Genes Reporter/fisiologia , Isoflavonas/metabolismo , Luciferases de Renilla/metabolismo , Animais , Vaga-Lumes , Genes Reporter/genética , Isoflavonas/química , Luciferases de Renilla/química , Estrutura Secundária de Proteína
7.
Nat Commun ; 12(1): 3616, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127663

RESUMO

Protein dynamics are often invoked in explanations of enzyme catalysis, but their design has proven elusive. Here we track the role of dynamics in evolution, starting from the evolvable and thermostable ancestral protein AncHLD-RLuc which catalyses both dehalogenase and luciferase reactions. Insertion-deletion (InDel) backbone mutagenesis of AncHLD-RLuc challenged the scaffold dynamics. Screening for both activities reveals InDel mutations localized in three distinct regions that lead to altered protein dynamics (based on crystallographic B-factors, hydrogen exchange, and molecular dynamics simulations). An anisotropic network model highlights the importance of the conformational flexibility of a loop-helix fragment of Renilla luciferases for ligand binding. Transplantation of this dynamic fragment leads to lower product inhibition and highly stable glow-type bioluminescence. The success of our approach suggests that a strategy comprising (i) constructing a stable and evolvable template, (ii) mapping functional regions by backbone mutagenesis, and (iii) transplantation of dynamic features, can lead to functionally innovative proteins.


Assuntos
Luciferases/química , Luciferases/genética , Luciferases/metabolismo , Simulação de Dinâmica Molecular , Engenharia de Proteínas , Animais , Sítios de Ligação , Catálise , Estabilidade Enzimática , Cinética , Luciferases de Renilla/química , Luciferases de Renilla/genética , Luciferases de Renilla/metabolismo , Mamíferos , Camundongos , Mutagênese , Mutação , Células NIH 3T3 , Conformação Proteica , Temperatura
8.
Methods Mol Biol ; 2276: 441-452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34060060

RESUMO

Most mitochondrial proteins are encoded by the nuclear genome, synthesized in the cytosol, and imported into the organelle. Mitochondrial protein import is therefore vital for the maintenance of mitochondrial function and cell survival. Alterations in this process are suspected to contribute to various diseases, including neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. Our understanding of the cytosolic signaling mechanisms and posttranslational modifications regulating the mitochondrial import process is still in its infancy and hampered by the lack of tools for its dynamic assessment in cells. We recently engineered an inducible molecular biosensor for monitoring one of the main mitochondrial import routes, the so-called presequence pathway, using a quantitative luminescence-based readout. Here, we provide basic guidelines for using this probe in common cell types of general use in the scientific community: HEK293T cells, human fibroblasts, and mouse primary neurons. These guidelines can serve as a starting point for the development of more elaborated protocols for the dynamic investigation of the presequence import pathway and its regulation in relevant physiological and pathological conditions.


Assuntos
Técnicas Biossensoriais/métodos , Luciferases de Renilla/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Animais , Células Cultivadas , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos
9.
Methods Mol Biol ; 2309: 201-218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028689

RESUMO

Understanding the biological background of strigolactone (SL) structural diversity and the SL signaling pathway at molecular level requires quantitative and sensitive tools that precisely determine SL dynamics. Such biosensors may be also very helpful in screening for SL analogs and mimics with defined biological functions.Recently, the genetically encoded, ratiometric sensor StrigoQuant was developed and allowed the quantification of the activity of a wide concentration range of SLs. StrigoQuant can be used for studies on the biosynthesis, function and signal transduction of this hormone class.Here, we provide a comprehensive protocol for establishing the use of StrigoQuant in Arabidopsis protoplasts. We first describe the generation and transformation of the protoplasts with StrigoQuant and detail the application of the synthetic SL analogue GR24. We then show the recording of the luminescence signal and how the obtained data are processed and used to assess/determine SL perception.


Assuntos
Arabidopsis/metabolismo , Bioensaio , Técnicas Biossensoriais , Compostos Heterocíclicos com 3 Anéis/metabolismo , Lactonas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Protoplastos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Luciferases de Renilla/genética , Luciferases de Renilla/metabolismo , Medições Luminescentes , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
10.
Methods Mol Biol ; 2201: 15-26, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32975785

RESUMO

MOR expression levels at a specific cell type or tissue significantly contribute to its role in pain transmission and in other responses involving opioid receptors. Therefore, molecular processes regulating MOR levels have gained more and more interest. Recently, posttranscriptional regulation mechanisms have been shown to play a relevant role in influencing MOR expression levels, with polymorphisms and mutations within OPRM1 3'-UTR region impacting the differential opioid-mediated response observed within individuals. Here we report a Renilla luciferase reporter assay format suitable for dissecting the contribution of different and distinct OPRM1 3'-UTR elements to MOR expression levels in a model of glial cells, both under basal conditions and following specific treatments.


Assuntos
Perfilação da Expressão Gênica/métodos , Receptores Opioides mu/genética , Regiões 3' não Traduzidas/genética , Animais , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Genes Reporter/genética , Humanos , Luciferases de Renilla/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Receptores Opioides mu/metabolismo
11.
Methods Mol Biol ; 2201: 35-43, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32975787

RESUMO

Bioluminescence resonance energy transfer (BRET ) is a natural phenomenon that has been successfully applied for the study of protein-protein interactions, including opioid receptor oligomers. The discovery of opioid receptor homomers and heteromers has brought to the discovery of new functions and new way of signaling and trafficking; therefore, opioid receptor oligomers may be considered as novel drug targets. Fusing receptors of interest with Renilla luciferase and with a fluorescent protein (such as EYFP ) it is possible to study opioid receptor dimerization using BRET .


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Receptores Opioides mu/metabolismo , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Transferência de Energia , Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Luciferases de Renilla/metabolismo , Medições Luminescentes , Transdução de Sinais/efeitos dos fármacos
12.
Methods Mol Biol ; 2201: 45-58, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32975788

RESUMO

Bioluminescence resonance energy transfer (BRET ) is a very sensitive technique employed to study protein-protein interactions, including G-protein-coupled receptor (GPCR ) hetero- and homo-dimerization. Recently, BRET has also been used to investigate the interaction between GPCRs (e.g.: α2 adrenergic receptor, muscarinic M2 receptor, dopaminergic D2 receptor) and nonvisual arrestins. Within the last decade an increasing interest arose toward opioid agonists with limited activation of arrestin-dependent signaling pathways, as they are believed to be effective analgesics with reduced adverse effects. Here a BRET protocol is described to investigate interactions between the kappa opioid receptor (KOR ) and nonvisual arrestins (arrestin-2 and arrestin-3) in HEK-293 cells, both under basal conditions and after exposure to KOR ligands.


Assuntos
Arrestinas/metabolismo , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Receptores Opioides kappa/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Transferência de Energia , Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Células HEK293 , Humanos , Ligantes , Luciferases de Renilla/metabolismo , Medições Luminescentes , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestina 2/metabolismo , beta-Arrestinas/metabolismo
13.
Arch Toxicol ; 94(8): 2769-2784, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32447522

RESUMO

The water framework directive re-evaluation proposes the integration of effect-based tools, increasing the need for alternative methods. Especially within aquatic toxicology, coverage of specific toxicity pathways is scarce, and most applications are based on mammalian or bacterial models, not reflecting realistic exposure scenarios. The use of transient reporter gene assays in cells from organisms of interest could be a quick and inexpensive solution. However, interference with cellular homeostasis may impact the system beyond the function of the manipulated gene and thus lead to non-specific results. We describe how varying vector geometry and different regulatory gene elements on plasmids used for transfection in zebrafish hepatocytes and embryonic fibroblasts may lead up to a tenfold difference in potency. Cells were transiently co-transfected with an Nrf2-responsive Firefly luciferase reporter plasmid and eight different Renilla luciferase normalization plasmids. Transfected cells were exposed to two different regimes (0.1-100 µM and 7.8-250 µM) of the oxidative stress-inducing compounds, sulforaphane, tertbutylhydroquinone, and metazachlor. Nrf2 activity was measured in dual-luciferase assays. In parallel, cytotoxicity was assessed for different endpoints (energy metabolism, protein amount, membrane stability, and cell proliferation) in non-transfected cells and cells co-transfected with constructs of increasing size, to be used for normalization. Transfected cells were more susceptible to cytotoxicity in a vector size-dependent manner. Conclusively, we report that vector geometries (size, backbones, gene-regulatory units), cell line (tissue origin), applied transfection methods, and signal normalization may alter the sensitivity of reporter bioassays in a synergistic manner. Further, we propose that thorough bioassay design is needed to ensure reliability and regulatory acceptance.


Assuntos
Fibroblastos/efeitos dos fármacos , Genes Reporter , Hepatócitos/efeitos dos fármacos , Luciferases de Vaga-Lume/metabolismo , Luciferases de Renilla/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Testes de Toxicidade , Transfecção , Proteínas de Peixe-Zebra/metabolismo , Animais , Bioensaio , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Luciferases de Vaga-Lume/genética , Luciferases de Renilla/genética , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Medição de Risco , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
14.
Methods Mol Biol ; 2081: 15-27, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31721115

RESUMO

Detection of apoptotic cells is crucial for understanding the mechanism of diseases and for therapy development. So far, visible-emitting fluorescent probes such as FITC-labeled Annexin V has been widely used for the detection of apoptotic cells. However, such probes cannot be applied to noninvasive imaging in the near-infrared (NIR) region. Compared with visible light, NIR light is highly permeable in turbid biological samples and tissues. In addition, NIR optical imaging has several advantages such as lower autofluorescence and scattering from biological samples, leading to clearer images with high signal to background ratios. Here, we describe the synthesis and application of bioluminescence resonance energy transfer (BRET)-coupled quantum dots (QDs) for the NIR optical imaging of apoptotic cells.


Assuntos
Apoptose , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Imagem Molecular , Citometria de Fluxo , Glutationa , Humanos , Luciferases de Renilla/genética , Luciferases de Renilla/metabolismo , Medições Luminescentes/métodos , Imagem Molecular/métodos , Imagem Óptica/métodos , Pontos Quânticos
15.
Antiviral Res ; 173: 104646, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705922

RESUMO

Human coronaviruses (HCoVs) are important pathogens that cause upper respiratory tract infections and have neuroinvasive abilities; however, little is known about the dynamic infection process of CoVs in vivo, and there are currently no specific antiviral drugs to prevent or treat HCoV infection. Here, we verified the replication ability and pathogenicity of a reporter HCoV-OC43 strain expressing Renilla luciferase (Rluc; rOC43-ns2DelRluc) in mice with different genetic backgrounds (C57BL/6 and BALB/c). Additionally, we monitored the spatial and temporal progression of HCoV-OC43 through the central nervous system (CNS) of live BALB/c mice after intranasal or intracerebral inoculation with rOC43-ns2DelRluc. We found that rOC43-ns2DelRluc was fatal to suckling mice after intranasal inoculation, and that viral titers and Rluc expression were detected in the brains and spinal cords of mice infected with rOC43-ns2DelRluc. Moreover, viral replication was initially observed in the brain by non-invasive bioluminescence imaging before the infection spread to the spinal cord of BALB/c mice, consistent with its tropism in the CNS. Furthermore, the Rluc readout correlated with the HCoV replication ability and protein expression, which allowed quantification of antiviral activity in live mice. Additionally, we validated that chloroquine strongly inhibited rOC43-ns2DelRluc replication in vivo. These results provide new insights into the temporal and spatial dissemination of HCoV-OC43 in the CNS, and our methods provide an extremely sensitive platform for evaluating the efficacy of antiviral therapies to treat neuroinvasive HCoVs in live mice.


Assuntos
Sistema Nervoso Central/virologia , Infecções por Coronavirus/virologia , Coronavirus Humano OC43/fisiologia , Animais , Antivirais/administração & dosagem , Encéfalo/diagnóstico por imagem , Encéfalo/virologia , Sistema Nervoso Central/diagnóstico por imagem , Cloroquina/administração & dosagem , Infecções por Coronavirus/diagnóstico por imagem , Infecções por Coronavirus/tratamento farmacológico , Coronavirus Humano OC43/genética , Genes Reporter , Humanos , Luciferases de Renilla/genética , Luciferases de Renilla/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Imagem Molecular , Replicação Viral/efeitos dos fármacos
16.
Biochem Biophys Res Commun ; 521(3): 674-680, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31685208

RESUMO

Galectin-3 (Gal-3) is a multifunctional glycan-binding protein that participates in many pathophysiological events and has been described as a biomarker and potential therapeutic target for severe disorders, such as cancer. Several probes for Gal-3 or its ligands have been developed, however both the pathophysiological mechanisms and potential biomedical applications of Gal-3 remain not fully assessed. Molecular imaging using bioluminescent probes provides great sensitivity for in vivo and in vitro analysis for both cellular and whole multicellular organism tracking and target detection. Here, we engineered a chimeric molecule consisting of Renilla luciferase fused with mouse Gal-3 (RLuc-mGal-3). RLuc-mGal-3 preparation was highly homogenous, soluble, active, and has molecular mass of 65,870.95 Da. This molecule was able to bind to MKN45 cell surface, property which was inhibited by the reduction of Gal-3 ligands on the cell surface by the overexpression of ST6GalNAc-I. In order to obtain an efficient and stable delivery system, RLuc-mGal-3 was adsorbed to poly-lactic acid nanoparticles, which increased binding to MKN45 cells in vitro. Furthermore, bioluminescence imaging showed that RLuc-mGal-3 was able to indicate the presence of implanted tumor in mice, event drastically inhibited by the presence of lactose. This novel bioluminescent chimeric molecule offers a safe and highly sensitive alternative to fluorescent and radiolabeled probes with potential application in biomedical research for a better understanding of the distribution and fate of Gal-3 and its ligands in vitro and in vivo.


Assuntos
Galectina 3/metabolismo , Luciferases de Renilla/metabolismo , Substâncias Luminescentes/metabolismo , Neoplasias/diagnóstico por imagem , Polissacarídeos/metabolismo , Animais , Linhagem Celular Tumoral , Galectina 3/análise , Galectina 3/genética , Humanos , Luciferases de Renilla/análise , Luciferases de Renilla/genética , Substâncias Luminescentes/análise , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Imagem Óptica , Polissacarídeos/análise , Ligação Proteica , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
17.
Methods Mol Biol ; 1947: 169-182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30969416

RESUMO

Ligand-biased signaling could have a significant impact on drug discovery programs. As such, many approaches to screening now target a larger section of the signaling responses downstream of an individual G protein-coupled receptor (GPCR). Biosensor-based platforms have been developed to capture signaling signatures. Despite the ability to use such signaling signatures, they may still be particular to an individual cell type and thus such platforms may not be portable from cell to cell, necessitating further cell-specific biosensor development. We have developed a complementary strategy based on capturing receptor-proximal conformational profiles using intra-molecular BRET-based sensors composed of a Renilla luciferase donor engineered into the carboxy-terminus and CCPGCC motifs which bind fluorescent hairpin biarsenical dyes engineered into different positions into the receptor primary structure. Here, we discuss how these experiments can be conducted and combined with CRISPR/Cas9 genome editing to assess specific G protein-dependent and -independent events.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Técnicas Biossensoriais/métodos , Sistemas CRISPR-Cas , Edição de Genes/métodos , Luciferases de Renilla/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Fluorescência , Humanos , Ligantes , Conformação Proteica , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
18.
Methods Mol Biol ; 1947: 183-197, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30969417

RESUMO

How G protein-coupled receptors are assembled is a matter of considerable interest owing in large part to their remarkable pharmacological importance. For determining receptor stoichiometry, resonance energy transfer-based methods offer considerable advantages insofar as they provide the necessary spatial resolution, and because measurements can be made in situ, relatively easily. This chapter describes three complementary stoichiometric assays that rely on measurements of bioluminescence resonance energy transfer. These quantitative approaches make it possible to identify true protein-protein interactions from non-specific associations that inevitably result from constraining proteins in cellular membranes. In our experience, concordant data obtained in two or more of these assays, benchmarked with suitable controls, strongly predict receptor stoichiometry.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Membrana Celular/metabolismo , Luciferases de Renilla/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Fluorescência , Células HEK293 , Humanos , Ligantes , Ligação Proteica , Conformação Proteica
19.
Methods Mol Biol ; 1947: 199-215, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30969418

RESUMO

G protein-coupled receptors (GPCRs) are the target for many drugs. Evidence continues to accumulate demonstrating that multiple receptors form homo- and heteromeric complexes, which in turn dynamically couple with G proteins, and other interacting proteins. Here, we describe a method to simultaneously determine the identity of up to four distinct constituents of GPCR complexes using a combination of sequential bioluminescence resonance energy transfer 2-fluorescence resonance energy transfer (SRET2) with bimolecular fluorescence complementation (BiFC). The method is amenable to moderate throughput screening of changes in response to ligands and time-course analysis of protein-protein oligomerization.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Imunofluorescência/métodos , Luciferases de Renilla/metabolismo , Multimerização Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Fluorescência , Humanos , Microscopia de Fluorescência
20.
Anim Biotechnol ; 30(2): 180-185, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30583705

RESUMO

Recombinant BK virus (rBKV) is able to express polypeptides under control of its native BKV late promoter. This ability helps to use this construct as a good reporter since it can infect human cells. In this study, we generate a BKV construct containing Renilla luciferase (Rluc) sequences under control of the BKV late promoter. The activity of Rluc was strongly detected in Vero-76 and Cos-1 cells transfected with rBKV-Rluc-myc-2A-VP2 construct, indicating the production of a functional enzyme driven by the native late promoter. Furthermore, a construct made of rBKV-IL2SP-Rluc-myc-2A-VP2 by introducing human IL2 secretion peptide (IL2 SP) caused secretion of IL2SP-Rluc-myc into the culture medium. As a concluding remark, a potential infectious rBKV that can express foreign antigens such as Rluc was generated successfully. The proposed strategy would be useful to engineer recombinant forms of rBKV with many potential applications including development of antiviral assay for new drugs, human vaccines and gene delivery systems for immunotherapeutic or cell transduction.


Assuntos
Antivirais/farmacocinética , Vírus BK/genética , Técnicas de Transferência de Genes , Engenharia Genética , Peptídeos/farmacocinética , Infecções por Polyomavirus/virologia , Animais , Vírus BK/fisiologia , Células COS , Chlorocebus aethiops , Terapia Genética , Humanos , Luciferases de Renilla/genética , Luciferases de Renilla/metabolismo , Regiões Promotoras Genéticas/genética , Transfecção , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA