Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(19): 11274-11293, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34614168

RESUMO

In plants and some animal lineages, RNA silencing is an efficient and adaptable defense mechanism against viruses. To counter it, viruses encode suppressor proteins that interfere with RNA silencing. Phloem-restricted viruses are spreading at an alarming rate and cause substantial reduction of crop yield, but how they interact with their hosts at the molecular level is still insufficiently understood. Here, we investigate the antiviral response against phloem-restricted turnip yellows virus (TuYV) in the model plant Arabidopsis thaliana. Using a combination of genetics, deep sequencing, and mechanical vasculature enrichment, we show that the main axis of silencing active against TuYV involves 22-nt vsiRNA production by DCL2, and their preferential loading into AGO1. Moreover, we identify vascular secondary siRNA produced from plant transcripts and initiated by DCL2-processed AGO1-loaded vsiRNA. Unexpectedly, and despite the viral encoded VSR P0 previously shown to mediate degradation of AGO proteins, vascular AGO1 undergoes specific post-translational stabilization during TuYV infection. Collectively, our work uncovers the complexity of antiviral RNA silencing against phloem-restricted TuYV and prompts a re-assessment of the role of its suppressor of silencing P0 during genuine infection.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Argonautas/genética , Proteínas de Ciclo Celular/genética , Interações Hospedeiro-Patógeno/genética , Luteoviridae/genética , Doenças das Plantas/genética , Ribonuclease III/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Arabidopsis/imunologia , Arabidopsis/virologia , Proteínas de Arabidopsis/imunologia , Proteínas Argonautas/imunologia , Proteínas de Ciclo Celular/imunologia , Resistência à Doença/genética , Regulação da Expressão Gênica , Genes Supressores , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/imunologia , Luteoviridae/crescimento & desenvolvimento , Luteoviridae/metabolismo , Floema/genética , Floema/imunologia , Floema/virologia , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Interferência de RNA , Ribonuclease III/imunologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Proteínas Virais/metabolismo
2.
Sci Rep ; 10(1): 22016, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328519

RESUMO

Viruses cause many severe plant diseases, resulting in immense losses of crop yield worldwide. Therefore, developing novel approaches to control plant viruses is crucial to meet the demands of a growing world population. Recently, RNA interference (RNAi) has been widely used to develop virus-resistant plants. Once genome replication and assembly of virion particles is completed inside the host plant, mature virions or sometimes naked viral genomes spread cell-to-cell through plasmodesmata by interacting with the virus-encoded movement protein (MP). We used the RNAi approach to suppress MP gene expression, which in turn prevented potato leafroll virus (PLRV) systemic infection in Solanum tuberosum cv. Khufri Ashoka. Potato plants agroinfiltrated with MP siRNA constructs exhibited no rolling symptoms upon PLRV infection, indicating that the silencing of MP gene expression is an efficient method for generating PLRV-resistant potato plants. Further, we identified novel ATPase motifs in MP that may be involved in DNA binding and translocation through plasmodesmata. We also showed that the ATPase activity of MP was stimulated in the presence of DNA/RNA. Overall, our findings provide a robust technology to generate PLRV-resistant potato plants, which can be extended to other species. Moreover, this approach also contributes to the study of genome translocation mechanisms of plant viruses.


Assuntos
Adenosina Trifosfatases/química , Luteoviridae/crescimento & desenvolvimento , Proteínas do Movimento Viral em Plantas/química , Proteínas do Movimento Viral em Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Replicação Viral/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Vetores Genéticos/metabolismo , Interações Hospedeiro-Patógeno , Luteoviridae/patogenicidade , Doenças das Plantas/virologia , Folhas de Planta/virologia , Proteínas do Movimento Viral em Plantas/isolamento & purificação , Domínios Proteicos , Solanum tuberosum/genética , Solanum tuberosum/virologia
3.
J Biosci ; 44(2)2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31180042

RESUMO

The present investigation was focussed on regeneration, evaluation and screening of somaclones for yellow leaf disease (YLD) resistance using in vitro mutagenesis from a popular susceptible sugarcane variety Co86032 using four chemical mutagens at three levels of concentration (sodium azide (SA) at 0.5 mg L-1, 1.0 mg L-1, 1.5 mg L-1; sodium nitrite (SN) at 3 mg L-1, 5 mg L-1, 7 mg L-1; ethyl methane sulphonate (EMS) at 0.6 µ ML-1, 0.8 µML-1, 1.0 µ ML-1 and 2,4 D at 4 mg L-1, 5 mg L-1, 6 mg L-1). A total of 1138 tissue culture seedlings obtained were evaluated for virus resistance both in natural field conditions and in controlled greenhouse condition after aphid vector transmission and presence or absence of virus was observed by visual screening and reverse transcription-polymerase chain reaction method. Four out of 207 asymptomatic plants (16T22, 16T23, 16T29 and 16T31) were devoid of virus coat protein band and were considered to be YLD resistant. The obtained resistance somaclones showed inferior yield traits so they have to be exploited as parents in hybridization programmes with commercial varieties to impart YLD resistance ultimately yielding agronomically superior YLD-resistant varieties in sugarcane.


Assuntos
Resistência à Doença/genética , Luteoviridae/patogenicidade , Doenças das Plantas/genética , Imunidade Vegetal/genética , Saccharum/genética , Animais , Afídeos/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Células Clonais , Resistência à Doença/efeitos dos fármacos , Metanossulfonato de Etila/farmacologia , Expressão Gênica , Insetos Vetores/virologia , Luteoviridae/genética , Luteoviridae/crescimento & desenvolvimento , Mutagênese , Mutagênicos/farmacologia , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Imunidade Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/virologia , Técnicas de Embriogênese Somática de Plantas , Regeneração/genética , Regeneração/imunologia , Saccharum/efeitos dos fármacos , Saccharum/imunologia , Saccharum/virologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/imunologia , Plântula/virologia , Azida Sódica/farmacologia , Nitrito de Sódio/farmacologia
4.
Curr Opin Virol ; 33: 24-32, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30031985

RESUMO

Viruses in the Luteoviridae cause plant diseases that are notoriously difficult to manage. Referred to as luteovirids, these single stranded, positive-sense RNA viruses are transmitted by aphids in a circulative, non-propagative manner. This review highlights new potential strategies to control luteovirid disease by blocking virus transmission by aphids. These include: first, interfering with aphid-virus interactions to inhibit virus acquisition by aphids, second, manipulating the host plant to block virus acquisition and inoculation, and third, rapid identification of efficient vector populations for the delivery of targeted control strategies. Translation of these methods to the field requires further advances in basic and translational research and the development of new tools to study the tritrophic interactions among plants, luteovirids, and aphids.


Assuntos
Agricultura/métodos , Afídeos/virologia , Controle de Insetos/métodos , Insetos Vetores/virologia , Luteoviridae/crescimento & desenvolvimento , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Animais , Afídeos/fisiologia , Insetos Vetores/fisiologia , Plantas
5.
Virus Res ; 241: 172-184, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28688850

RESUMO

As agricultural acreage expanded and came to dominate landscapes across the world, viruses gained opportunities to move between crop and wild native plants. In the Midwestern USA, virus exchange currently occurs between widespread annual Poaceae crops and remnant native perennial prairie grasses now under consideration as bioenergy feedstocks. In this region, the common aphid species Rhopalosiphum padi L. (the bird cherry-oat aphid) transmits several virus species in the family Luteoviridae, including Barley yellow dwarf virus (BYDV-PAV, genus Luteovirus) and Cereal yellow dwarf virus (CYDV-RPV and -RPS, genus Polerovirus). The yellow dwarf virus (YDV) species in these two genera share genetic similarities in their 3'-ends, but diverge in the 5'-regions. Most notably, CYDVs encode a P0 viral suppressor of RNA silencing (VSR) absent in BYDV-PAV. Because BYDV-PAV has been reported more frequently in annual cereals and CYDVs in perennial non-crop grasses, we examine the hypothesis that the viruses' genetic differences reflect different affinities for crop and non-crop hosts. Specifically, we ask (i) whether CYDVs might persist within and affect a native non-crop grass more strongly than BYDV-PAV, on the grounds that the polerovirus VSR could better moderate the defenses of a well-defended perennial, and (ii) whether the opposite pattern of effects might occur in a less defended annual crop. Because previous work found that the VSR of CYDV-RPS possessed greater silencing suppressor efficiency than that of CYDV-RPV, we further explored (iii) whether a novel grass-associated CYDV-RPS isolate would influence a native non-crop grass more strongly than a comparable CYDV-RPV isolate. In growth chamber studies, we found support for this hypothesis: only grass-associated CYDV-RPS stunted the shoots and crowns of Panicum virgatum L. (switchgrass), a perennial native North American prairie grass, whereas crop-associated BYDV-PAV (and coinfection with BYDV-PAV and CYDV-RPS) most stunted annual Avena sativa L. (oats). These findings suggest that some of the diversity in grass-infecting Luteoviridae reflects viral capacity to modulate defenses in different host types. Intriguingly, while all virus treatments also reduced root production in both host species, only crop-associated BYDV-PAV (or co-infection) reduced rooting depths. Such root effects may increase host susceptibility to drought, and indicate that BYDV-PAV pathogenicity is determined by something other than a P0 VSR. These findings contribute to growing evidence that pathogenic crop-associated viruses may harm native species as well as crops. Critical next questions include the extent to which crop-associated selection pressures drive viral pathogenesis.


Assuntos
Avena/virologia , Grão Comestível/crescimento & desenvolvimento , Luteoviridae/crescimento & desenvolvimento , Panicum/virologia , Raízes de Plantas/crescimento & desenvolvimento , Interferência de RNA , Triticum/virologia , Sequência de Aminoácidos , Animais , Afídeos/virologia , Avena/crescimento & desenvolvimento , Sequência de Bases , Grão Comestível/virologia , Luteoviridae/genética , Panicum/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Raízes de Plantas/virologia , Análise de Sequência de RNA , Triticum/crescimento & desenvolvimento
6.
Virus Res ; 241: 105-115, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28587865

RESUMO

Cultivar choice is at the heart of cropping systems and resistant cultivars should be at the heart of disease management strategies whenever available. They are the easiest, most efficient and environmentally friendly way of combating viral diseases at the farm level. Among the melon genetic resources, Vat is a unique gene conferring resistance to both the melon aphid Aphis gossypii and the viruses it carries. The 'virus side' of this pleiotropic phenotype is seldom regarded as an asset for virus control. Indeed, the effect of Vat on virus epidemics in the field is expected to vary according to the composition of aphid populations in the environment and long-term studies are needed to draw a correct trend. Therefore, the first objective of the study was to re-evaluate the potential of Vat to reduce viral diseases in melon crops. The second objective was to investigate the potential of Vat to exert a selection pressure on virus populations. We monitored the epidemics of Cucurbit aphid-borne yellows virus (CABYV), Cucumber mosaic virus (CMV), Watermelon mosaic virus (WMV) and Zucchini yellow mosaic virus (ZYMV) in two melon lines having a common genetic background, a resistant line (R) and a susceptible line (S), in eight field trials conducted in southeastern France between 2011 and 2015. Vat had limited impact if any on WMV epidemics probably because A. gossypii is not the main vector of WMV in the field, but a favorable impact on CMV, yet of variable intensity probably related to the importance of A. gossypii in the total aphid population. Vat had a significant impact on CABYV epidemics with mean incidence reduction exceeding 50% in some trials. There was no effect of Vat on the structure of virus populations, both for the non-persistent WMV transmitted by numerous aphid species and for the persistent CABYV transmitted predominantly by A. gossypii.


Assuntos
Afídeos/virologia , Cucumovirus/crescimento & desenvolvimento , Cucurbitaceae/virologia , Resistência à Doença/genética , Luteoviridae/crescimento & desenvolvimento , Doenças das Plantas/virologia , Potyvirus/crescimento & desenvolvimento , Animais , França , Insetos Vetores/virologia , Proteínas de Plantas/genética
7.
Virus Res ; 241: 228-235, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28625668

RESUMO

The Bowen region of Northern Queensland is an important winter production area for tomatoes in Australia. There are three economically important viruses in the region that affect tomato, Tomato yellow leaf curl virus (TYLCV), Tomato spotted wilt virus (TSWV) and Potato leafroll virus (PLRV), which are vectored by whiteflies, thrips and aphids, respectively. An area wide management approach is required to lower the primary inoculum throughout the district. To this end, we undertook investigations into the virus incidence and alternative hosts for the virus and vectors in different cropping regions throughout the district, as well as local management options such as insecticide application and possible non-host cover crops for the wet-season break in production. The initial incidence of Potato leafroll virus was very high, most probably due to abnormal weather patterns for the district, and has ceased to be a problem. Tomato yellow leaf curl virus is a continual problem even at the beginning of the season, indicating large reservoir host(s) in the environment. Only four alternative hosts have been identified: Stachytarpheta jamaicensis (TSWV), Solanum americanum (PLRV and TYLCV) Trianthema portulacastrum (TYLCV), and Amaranthus viridis(TLYCV). Different insecticide and application options were trialled for protection against Tomato yellow leaf curl virus, with the best possible option yielding marketable fruit more than ninety percent of a resistant hybrid. A trial of yield vs time of infection of TYLCV found that whitefly exclusion for 6 weeks post-transplant yielded an average increase of nearly three kilograms of marketable fruit per plant. A number of pulse crops have been confirmed as non-hosts of tomato yellow leaf curl for use as cover crops in the wet-season break. Most of the production has moved to dual resistant TYLCV/TSWV hybrids, though an area wide management program still needs to be established to reduce the primary inoculum throughout the district, giving growers more varietal options, especially early in the season.


Assuntos
Hemípteros/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Doenças das Plantas/prevenção & controle , Solanum lycopersicum/virologia , Animais , Begomovirus/crescimento & desenvolvimento , Hemípteros/virologia , Insetos Vetores/virologia , Luteoviridae/crescimento & desenvolvimento , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Oxazinas/farmacologia , Doenças das Plantas/virologia , Queensland , Tiametoxam , Tiazóis/farmacologia , Tospovirus/crescimento & desenvolvimento , ortoaminobenzoatos/farmacologia
8.
Viruses ; 9(7)2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28661469

RESUMO

A fluorescent viral clone of the polerovirus Turnip yellows virus (TuYV) was engineered by introducing the Enhanced Green Fluorescent Protein (EGFP) sequence into the non-structural domain sequence of the readthrough protein, a minor capsid protein. The resulting recombinant virus, referred to as TuYV-RTGFP, was infectious in several plant species when delivered by agroinoculation and invaded efficiently non-inoculated leaves. As expected for poleroviruses, which infect only phloem cells, the fluorescence emitted by TuYV-RTGFP was restricted to the vasculature of infected plants. In addition, TuYV-RTGFP was aphid transmissible and enabled the observation of the initial sites of infection in the phloem after aphid probing in epidermal cells. The aphid-transmitted virus moved efficiently to leaves distant from the inoculation sites and importantly retained the EGFP sequence in the viral genome. This work reports on the first engineered member in the Luteoviridae family that can be visualized by fluorescence emission in systemic leaves of different plant species after agroinoculation or aphid transmission.


Assuntos
Proteínas de Fluorescência Verde/análise , Luteoviridae/crescimento & desenvolvimento , Doenças das Plantas/virologia , Coloração e Rotulagem/métodos , Agrobacterium/genética , Animais , Afídeos/virologia , Proteínas de Fluorescência Verde/genética , Insetos Vetores/virologia , Luteoviridae/genética , Plantas/virologia , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Transformação Genética , Proteínas Virais/genética
9.
J Gen Virol ; 94(Pt 1): 209-219, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23015741

RESUMO

Plant viruses of the families Luteoviridae and Geminiviridae rely on hemipteran vectors for the infection of their hosts. Several lines of evidence have revealed that these viruses are transmitted by competent vectors in a circulative manner, involving entry into the vector's body and the crossing of epithelial tissues forming the alimentary tract and the salivary glands. Similar to luteovirids and geminiviruses, a third family of plant viruses, the family Nanoviridae, have also been reported to be transmitted by aphids in a circulative manner. However, there is limited direct evidence of a possible path of translocation through the aphid vectors. Here, we used time-course experiments and transmission assays coupled with real-time PCR and immunofluorescence assays on dissected tissues to examine the translocation, compartmentalization and retention of banana bunchy top virus (BBTV) into the aphid vector Pentalonia nigronervosa. Our results indicate that BBTV translocates rapidly through the aphid vector; it is internalized into the anterior midgut in which it accumulates and is retained at concentrations higher than either the haemolymph or the principal salivary glands. Despite the large increase in viral concentration, we have failed to detect BBTV transcripts with RT-PCR. When tissues were not permeabilized, BBTV localized as distinct puncta in the proximity of the basal surface of the cells forming the anterior midgut and principal salivary glands, suggesting an on-going process of virion escape and internalization, respectively. Interestingly, we document that those organs can have direct contact within the aphid body, suggesting a possible haemolymph-independent translocation path.


Assuntos
Afídeos/virologia , Babuvirus/fisiologia , Vírus de Plantas/crescimento & desenvolvimento , Vírus de Plantas/metabolismo , Animais , Babuvirus/genética , Babuvirus/crescimento & desenvolvimento , Babuvirus/metabolismo , Geminiviridae/genética , Geminiviridae/crescimento & desenvolvimento , Geminiviridae/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Luteoviridae/genética , Luteoviridae/crescimento & desenvolvimento , Luteoviridae/metabolismo , Vírus de Plantas/genética , Glândulas Salivares/virologia , Tropismo , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA