Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35216065

RESUMO

P0 proteins encoded by poleroviruses Brassica yellows virus (BrYV) and Potato leafroll virus (PLRV) are viral suppressors of RNA silencing (VSR) involved in abolishing host RNA silencing to assist viral infection. However, other roles that P0 proteins play in virus infection remain unclear. Here, we found that C-terminal truncation of P0 resulted in compromised systemic infection of BrYV and PLRV. C-terminal truncation affected systemic but not local VSR activities of P0 proteins, but neither transient nor ectopic stably expressed VSR proteins could rescue the systemic infection of BrYV and PLRV mutants. Moreover, BrYV mutant failed to establish systemic infection in DCL2/4 RNAi or RDR6 RNAi plants, indicating that systemic infection might be independent of the VSR activity of P0. Partially rescued infection of BrYV mutant by the co-infected PLRV implied the functional conservation of P0 proteins within genus. However, although C-terminal truncation mutant of BrYV P0 showed weaker interaction with its movement protein (MP) when compared to wild-type P0, wild-type and mutant PLRV P0 showed similar interaction with its MP. In sum, our findings revealed the role of P0 in virus systemic infection and the requirement of P0 carboxyl terminal region for the infection.


Assuntos
Luteoviridae/genética , Luteoviridae/patogenicidade , Proteína P0 da Mielina/genética , Proteínas Virais/genética , Brassica/virologia , Mutação/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Interferência de RNA/fisiologia , Nicotiana/virologia
2.
Sci Rep ; 11(1): 7149, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785787

RESUMO

Yellow leaf disease caused by sugarcane yellow leaf virus (SCYLV) is one of the most prevalent diseases worldwide. In this study, six near-complete genome sequences of SCYLV were determined to be 5775-5881 bp in length. Phylogenetic analysis revealed that the two SCYLV isolates from Réunion Island, France, and four from China were clustered into REU and CUB genotypes, respectively, based on 50 genomic sequences (this study = 6, GenBank = 44). Meanwhile, all 50 isolates were clustered into three phylogroups (G1-G3). Twelve significant recombinant events occurred in intra- and inter-phylogroups between geographical origins and host crops. Most recombinant hotspots were distributed in coat protein read-through protein (RTD), followed by ORF0 (P0) and ORF1 (P1). High genetic divergences of 12.4% for genomic sequences and 6.0-24.9% for individual genes were determined at nucleotide levels. The highest nucleotide diversity (π) was found in P0, followed by P1 and RdRP. In addition, purifying selection was a main factor restricting variability in SCYLV populations. Infrequent gene flow between Africa and the two subpopulations (Asia and America) were found, whereas frequent gene flow between Asia and America subpopulations was observed. Taken together, our findings facilitate understanding of genetic diversity and evolutionary dynamics of SCYLV.


Assuntos
Evolução Molecular , Genes Virais , Luteoviridae/genética , Saccharum/virologia , África , América , Ásia , Resistência à Doença/genética , Variação Genética , Genômica , Geografia , Luteoviridae/isolamento & purificação , Luteoviridae/patogenicidade , Fases de Leitura Aberta/genética , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/virologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Recombinação Genética , Saccharum/genética , Alinhamento de Sequência
3.
Virus Genes ; 57(3): 289-292, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33630229

RESUMO

In 2018 virus-like symptoms, typical of polerovirus infection were observed in several oilseed rape crops in northern Greece. In order to identify the etiological agent of these symptoms a polerovirus-generic RT-PCR assay was applied. Sequencing of the amplicons revealed the presence of virus isolates genetically close to turnip yellows virus (TuYV). Further molecular characterization of the near complete genome of '1-2', 'Geo1', 'Geo7' and 'Geo15' isolates revealed that they share > 96% nt identity with various TuYV sequences. On the other hand, the fifth, characterized isolate from oilseed rape, termed '1-1', showed higher sequence similarity to brassica yellows virus (BrYV) regarding the 5' part of the complete coding sequence, whereas the 3' part was closely related to TuYV isolates. A recombination analysis using RDP indicated the presence of a putative breakpoint (nucleotide position 2964) in '1-1' genome and it is proposed that the virus isolate '1-1' might be an interspecies recombinant between BrYV and TuYV. To our knowledge, this is the first time that the complete coding sequences of Greek TuYV isolates have been determined and the first detection of a BrYV/TuYV recombinant isolate infecting oilseed rape in Greece.


Assuntos
Genoma Viral/genética , Luteoviridae/genética , Doenças das Plantas/genética , Vírus de Plantas/genética , Brassica napus/virologia , Grécia , Luteoviridae/patogenicidade , Filogenia , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade
4.
Sci Rep ; 10(1): 22016, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328519

RESUMO

Viruses cause many severe plant diseases, resulting in immense losses of crop yield worldwide. Therefore, developing novel approaches to control plant viruses is crucial to meet the demands of a growing world population. Recently, RNA interference (RNAi) has been widely used to develop virus-resistant plants. Once genome replication and assembly of virion particles is completed inside the host plant, mature virions or sometimes naked viral genomes spread cell-to-cell through plasmodesmata by interacting with the virus-encoded movement protein (MP). We used the RNAi approach to suppress MP gene expression, which in turn prevented potato leafroll virus (PLRV) systemic infection in Solanum tuberosum cv. Khufri Ashoka. Potato plants agroinfiltrated with MP siRNA constructs exhibited no rolling symptoms upon PLRV infection, indicating that the silencing of MP gene expression is an efficient method for generating PLRV-resistant potato plants. Further, we identified novel ATPase motifs in MP that may be involved in DNA binding and translocation through plasmodesmata. We also showed that the ATPase activity of MP was stimulated in the presence of DNA/RNA. Overall, our findings provide a robust technology to generate PLRV-resistant potato plants, which can be extended to other species. Moreover, this approach also contributes to the study of genome translocation mechanisms of plant viruses.


Assuntos
Adenosina Trifosfatases/química , Luteoviridae/crescimento & desenvolvimento , Proteínas do Movimento Viral em Plantas/química , Proteínas do Movimento Viral em Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Replicação Viral/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Vetores Genéticos/metabolismo , Interações Hospedeiro-Patógeno , Luteoviridae/patogenicidade , Doenças das Plantas/virologia , Folhas de Planta/virologia , Proteínas do Movimento Viral em Plantas/isolamento & purificação , Domínios Proteicos , Solanum tuberosum/genética , Solanum tuberosum/virologia
5.
PLoS One ; 15(9): e0239199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32941541

RESUMO

Miscanthus sinensis is a grass used for sugarcane breeding and bioenergy production. Using high throughput sequencing technologies, we identified a new viral genome in infected M. sinensis leaf tissue displaying yellow fleck symptoms. This virus is most related to members of the genus Polerovirus in the family Luteoviridae. The canonical ORFs were computationally identified, the P3 coat protein was expressed, and virus-like particles were purified and found to conform to icosahedral shapes, characteristic of the family Luteoviridae. We propose the name Miscanthus yellow fleck virus for this new virus.


Assuntos
Luteoviridae/genética , Filogenia , Poaceae/virologia , Luteoviridae/classificação , Luteoviridae/patogenicidade , Luteoviridae/ultraestrutura
6.
Virus Res ; 277: 197847, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31887329

RESUMO

Turnip yellows virus (TuYV; family Luteoviridae, genus Polerovirus) is the most economically damaging virus infecting canola (Brassica napus) in the south-west Australian grainbelt. However, the impact of TuYV infection at different growth stages on canola seed yield has not been examined. This information is vital for implementing targeted management strategies. Four glasshouse experiments were conducted to examine seed yield losses incurred by an open-pollinated (ATR Bonito) and hybrid (Hyola® 404RR) canola cultivar when aphid-inoculated with TuYV at GS12 (two leaves unfolded), GS17 (seven leaves unfolded), GS30 (beginning of stem elongation) and GS65 (full flowering). When inoculated at GS12 and GS17, cv. Bonito plants incurred 30 % and 36 % seed yield losses, respectively, compared to healthy plants. Similarly, cv. 404RR incurred 41 % and 26 % seed yield losses at GS12 and GS17, respectively. However, when inoculated at GS30, whilst cv. Bonito plants incurred a 26 % seed yield loss, cv. 404RR incurred no significant loss. Neither cultivar incurred seed yield losses from inoculation at GS65. Additional information was collected from these experiments to improve sampling protocols to enhance TuYV detection, with a molecular and serological technique. When canola plants were at pre-flowering growth stages, TuYV was reliably detected 7-14 days after inoculation (DAI) in the youngest leaf. Once flowering had begun, TuYV was consistently detected 7-14 DAI in petals and flower buds. In contrast, regardless of growth stage, testing the oldest leaf regularly resulted in delayed detection or false negatives. Information generated in this study helps to quantify the value of management strategies targeted at preventing TuYV spread in pre-flowering canola crops and ultimately increase the efficiency of resource use.


Assuntos
Brassica napus/fisiologia , Brassica napus/virologia , Luteoviridae/patogenicidade , Sementes/virologia , Austrália , Biomassa , Luteoviridae/genética , Doenças das Plantas/virologia , Folhas de Planta/virologia
7.
J Virol Methods ; 276: 113760, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31712092

RESUMO

Cotton production is widely effected by Cotton Leaf Curl Virus (CLCuV) in world posing serious losses to cotton yield.The CRT genes from CLCuV resistant G. arboreum and CLCuV susceptible G. hirsutum were cloned and sequenced to know the differences of protein composition in both species. Molecular techniques were used to isolate full length putative biotic stress resistance genes from G. arboreum besides the analysis of identified novel genes in model plant tobacco (Nicotiana tabacum) for resistance to cotton leaf curl disease complex. It was found that transgenic plants over expressing Hydroperoxidelyase (HPL) genes exhibited higher enzyme activity than wild type. In addition the genome sequence information was used for the purpose of gene isolation. Even for the enhanced expression of Calreticulin (CRT), AOS and HPL in G. hirsutum, it still showed susceptibility against CLCuV suggesting alternative genes and pathways involved for the expression of resistance.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Gossypium/genética , Nicotiana/virologia , Doenças das Plantas/virologia , Gossypium/enzimologia , Lipoxigenase/genética , Luteoviridae/patogenicidade , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/virologia , Estresse Fisiológico
8.
J Biosci ; 44(2)2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31180042

RESUMO

The present investigation was focussed on regeneration, evaluation and screening of somaclones for yellow leaf disease (YLD) resistance using in vitro mutagenesis from a popular susceptible sugarcane variety Co86032 using four chemical mutagens at three levels of concentration (sodium azide (SA) at 0.5 mg L-1, 1.0 mg L-1, 1.5 mg L-1; sodium nitrite (SN) at 3 mg L-1, 5 mg L-1, 7 mg L-1; ethyl methane sulphonate (EMS) at 0.6 µ ML-1, 0.8 µML-1, 1.0 µ ML-1 and 2,4 D at 4 mg L-1, 5 mg L-1, 6 mg L-1). A total of 1138 tissue culture seedlings obtained were evaluated for virus resistance both in natural field conditions and in controlled greenhouse condition after aphid vector transmission and presence or absence of virus was observed by visual screening and reverse transcription-polymerase chain reaction method. Four out of 207 asymptomatic plants (16T22, 16T23, 16T29 and 16T31) were devoid of virus coat protein band and were considered to be YLD resistant. The obtained resistance somaclones showed inferior yield traits so they have to be exploited as parents in hybridization programmes with commercial varieties to impart YLD resistance ultimately yielding agronomically superior YLD-resistant varieties in sugarcane.


Assuntos
Resistência à Doença/genética , Luteoviridae/patogenicidade , Doenças das Plantas/genética , Imunidade Vegetal/genética , Saccharum/genética , Animais , Afídeos/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Células Clonais , Resistência à Doença/efeitos dos fármacos , Metanossulfonato de Etila/farmacologia , Expressão Gênica , Insetos Vetores/virologia , Luteoviridae/genética , Luteoviridae/crescimento & desenvolvimento , Mutagênese , Mutagênicos/farmacologia , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Imunidade Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/virologia , Técnicas de Embriogênese Somática de Plantas , Regeneração/genética , Regeneração/imunologia , Saccharum/efeitos dos fármacos , Saccharum/imunologia , Saccharum/virologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/imunologia , Plântula/virologia , Azida Sódica/farmacologia , Nitrito de Sódio/farmacologia
9.
Virus Genes ; 55(2): 253-256, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30697673

RESUMO

Brassica yellows virus (BrYV), prevalently distributed throughout mainland China and South Korea while triggering serious diseases in cruciferous crops, is proposed to be a new species in the genus Polerovirus within the family Luteoviridae. There are three distinct genotypes (BrYV-A, BrYV-B and BrYV-C) reported in cabbage and radish. Here, we describe a new BrYV isolate infecting tobacco plants in the field, which was named BrYV-NtabQJ. The complete genome sequence of BrYV-NtabQJ is 5741 nt in length, and 89% of the sequence shares higher sequence identities (about 90%) with different BrYV isolates. However, it possesses a quite divergent region within ORF5, which is more close to Beet western yellows virus (BWYV), Beet mild yellowing virus (BMYV) and Beet chlorosis virus (BChV). A significant recombination event was then detected among BrYV-NtabQJ, BrYV-B Beijng isolate (BrYV-BBJ) and BWYV Leonurus sibiricus isolate (BWYV-LS). It is proposed that BrYV-NtabQJ might be an interspecific recombinant between BrYV-BBJ and BWYV-LS, and the recombination might result in the successful aphid transmission of BrYV from cruciferous crops to tobacco. And it also poses new challenges for BrYV diagnosis and the vegetable production.


Assuntos
Luteoviridae/genética , Nicotiana/virologia , Filogenia , Doenças das Plantas/virologia , Brassica/virologia , Transferência Genética Horizontal/genética , Genoma Viral , Genótipo , Especificidade de Hospedeiro/genética , Luteoviridae/patogenicidade , Luteovirus/genética , Fases de Leitura Aberta , Raphanus/virologia , Nicotiana/genética
10.
Sci Rep ; 8(1): 16273, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389981

RESUMO

Poleroviruses are widely distributed and often of great economic importance because they cause a variety of symptoms, such as the rolling of young leaves, leaf color changes, and plant decline, in infected plants. However, the molecular mechanism behind these viral-induced symptoms is still unknown. Here, we verified the pathogenicity of the polerovirus Brassica yellows virus (BrYV) by transforming its full-length amplicon into Arabidopsis thaliana, which resulted in many abnormal phenotypes. To better understand the interactions between BrYV and its host, global transcriptome profiles of the transgenic plants were compared with that of non-transgenic Arabidopsis plants. An association between the BrYV- induced purple leaf symptoms and the activation of anthocyanin biosynthesis was noted. Using the transgenic approach, we found that movement protein of BrYV was responsible for the induction of these coloration symptoms. Collectively, our findings demonstrate the BrYV' pathogenicity and show that the BrYV-induced purple leaf symptom resulted from its movement protein stimulating anthocyanin accumulation.


Assuntos
Antocianinas/biossíntese , Arabidopsis/metabolismo , Luteoviridae/patogenicidade , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Proteínas do Movimento Viral em Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/virologia , Brassica/virologia , Cor , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma Viral/genética , Luteoviridae/genética , Luteoviridae/metabolismo , Filogenia , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , Regulação para Cima
11.
Z Naturforsch C J Biosci ; 73(11-12): 423-438, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30067514

RESUMO

Solanum tuberosum (potato) is the second most important vegetable crop in Egypt. It is locally consumed, manufactured or supplied for export to Europe and other Arab countries. Potato is subject to infection by a number of plant viruses, which affect its yield and quality. Potato virus Y (PVY), potato leaf roll virus (PLRV), and Alfalfa mosaic virus (AMV) were detected in major potato-growing areas surveyed. Multiplex-RT-PCR assay was used for the detection of these three viruses in one reaction using three specific primer pairs designed to amplify genomic parts of each virus (1594 bp for PLRV, 795 bp for AMV, 801 bp for PVY). All three viruses were detected in a single reaction mixture in naturally infected field-grown potatoes. Multiplex RT-PCR improved sensitivity necessary for the early detection of infection. Incidence of single, double, or triple infection has been recorded in some locations. Full-length sequencing has been performed for an Egyptian FER isolate of PLRV. Through phylogenetic analysis, it was shown to occupy the same clade with isolate JokerMV10 from Germany. Complete nucleotide sequence of an Egyptian FER isolate of AMV and phylogenetic analysis was also performed; we propose that it is a new distinct strain of AMV belonging to a new subgroup IIC. This is the first complete nucleotide sequence of an Egyptian isolate of AMV. Genetic biodiversity of devastating potato viruses necessitates continuous monitoring of new genetic variants of such viruses.


Assuntos
Vírus do Mosaico da Alfafa/genética , Genoma Viral , Luteoviridae/genética , Microbiota , Solanum tuberosum/virologia , Vírus do Mosaico da Alfafa/patogenicidade , Egito , Luteoviridae/patogenicidade
12.
Virol J ; 15(1): 90, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29792207

RESUMO

BACKGROUND: Maize lethal necrosis is caused by a synergistic co-infection of Maize chlorotic mottle virus (MCMV) and a specific member of the Potyviridae, such as Sugarcane mosaic virus (SCMV), Wheat streak mosaic virus (WSMV) or Johnson grass mosaic virus (JGMV). Typical maize lethal necrosis symptoms include severe yellowing and leaf drying from the edges. In Kenya, we detected plants showing typical and atypical symptoms. Both groups of plants often tested negative for SCMV by ELISA. METHODS: We used next-generation sequencing to identify viruses associated to maize lethal necrosis in Kenya through a metagenomics analysis. Symptomatic and asymptomatic leaf samples were collected from maize and sorghum representing sixteen counties. RESULTS: Complete and partial genomes were assembled for MCMV, SCMV, Maize streak virus (MSV) and Maize yellow dwarf virus-RMV (MYDV-RMV). These four viruses (MCMV, SCMV, MSV and MYDV-RMV) were found together in 30 of 68 samples. A geographic analysis showed that these viruses are widely distributed in Kenya. Phylogenetic analyses of nucleotide sequences showed that MCMV, MYDV-RMV and MSV are similar to isolates from East Africa and other parts of the world. Single nucleotide polymorphism, nucleotide and polyprotein sequence alignments identified three genetically distinct groups of SCMV in Kenya. Variation mapped to sequences at the border of NIb and the coat protein. Partial genome sequences were obtained for other four potyviruses and one polerovirus. CONCLUSION: Our results uncover the complexity of the maize lethal necrosis epidemic in Kenya. MCMV, SCMV, MSV and MYDV-RMV are widely distributed and infect both maize and sorghum. SCMV population in Kenya is diverse and consists of numerous strains that are genetically different to isolates from other parts of the world. Several potyviruses, and possibly poleroviruses, are also involved.


Assuntos
Gammaherpesvirinae/genética , Genoma Viral , Luteoviridae/genética , Potyviridae/genética , Potyvirus/genética , Zea mays/virologia , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Mapeamento Cromossômico , Gammaherpesvirinae/classificação , Gammaherpesvirinae/isolamento & purificação , Gammaherpesvirinae/patogenicidade , Sequenciamento de Nucleotídeos em Larga Escala , Quênia , Luteoviridae/classificação , Luteoviridae/isolamento & purificação , Luteoviridae/patogenicidade , Metagenômica/métodos , Filogenia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Polimorfismo Genético , Potyviridae/classificação , Potyviridae/isolamento & purificação , Potyviridae/patogenicidade , Potyvirus/classificação , Potyvirus/isolamento & purificação , Potyvirus/patogenicidade , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sorghum/virologia
13.
Sci Rep ; 7: 45132, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28345652

RESUMO

Viral synergism is caused by co-infection of two unrelated viruses, leading to more severe symptoms or increased titres of one or both viruses. Synergistic infection of phloem-restricted poleroviruses and umbraviruses has destructive effects on crop plants. The mechanism underlying this synergy remains elusive. In our study, synergism was observed in co-infections of a polerovirus Brassica yellows virus (BrYV) and an umbravirus Pea enation mosaic virus 2 (PEMV 2) on Nicotiana benthamiana, which led to (1) increased titres of BrYV, (2) appearance of severe symptoms, (3) gain of mechanical transmission capacity of BrYV, (4) broader distribution of BrYV to non-vascular tissues. Besides, profiles of virus-derived small interfering RNAs (vsiRNAs) from BrYV and PEMV 2 in singly and doubly infected plants were obtained by small RNA deep sequencing. Our results showed that accumulation of BrYV vsiRNAs increased tremendously and ratio of positive to negative strand BrYV vsiRNAs differed between singly infected and co-infected plants. Positions to which the BrYV vsiRNAs mapped to the viral genome varied considerably during synergistic infection. Moreover, target genes of vsiRNAs were predicted and annotated. Our results revealed the synergistic characteristics during co-infection of BrYV and PEMV 2, and implied possible effects of synergism have on vsiRNAs.


Assuntos
Luteoviridae/genética , Vírus do Mosaico/genética , Nicotiana/virologia , RNA Interferente Pequeno/genética , RNA Viral/genética , Luteoviridae/patogenicidade , Vírus do Mosaico/patogenicidade , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo
14.
Transgenic Res ; 25(6): 813-828, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27544267

RESUMO

An inverted repeat construct corresponding to a segment of the potato leaf roll virus coat protein gene was created under control of a constitutive promoter and transferred into a transformation vector with a heat inducible Cre-loxP system to excise the nptII antibiotic resistance marker gene. Fifty-eight transgenic events were evaluated for resistance to PLRV by greenhouse inoculations, which lead to the identification of 7 highly resistant events, of which 4 were extremely resistant. This resistance was also highly effective against accumulation in subsequent tuber generations from inoculated plants, which has not been reported before. Northern blot analysis showed correlation of PLRV specific siRNA accumulation with the level of PLRV resistance. Heat mediated excision of the nptII antibiotic resistance gene in PLRV resistant events was highly efficient in one event with full excision in 71 % of treated explants. On the other hand 8 out of 10 analyzed events showed truncated T-DNA insertions lacking one of the two loxP sites as determined by PCR and confirmed by sequencing flanking regions in 2 events, suggesting cryptic LB sites in the non-coding region between the nptII gene and the flanking loxP site. Accordingly, it is proposed to modify the Cre-loxP vector by reducing the 1 kb size of the region between nptII, loxP, and the LB.


Assuntos
Sequências Repetidas Invertidas/genética , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/genética , Proteínas do Envelope Viral/genética , DNA Bacteriano/genética , Vetores Genéticos/genética , Integrases/genética , Luteoviridae/genética , Luteoviridae/patogenicidade , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/virologia , Interferência de RNA , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/virologia
15.
Curr Opin Virol ; 19: 30-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27394001

RESUMO

Global land conversion and intensification of agriculture mean that remnant native plant populations are increasingly exposed to crop viruses. What are the consequences for wild plants? In natural unmanaged systems, the key consideration is how crop virus infection influences plant fitness. Field studies of virus effects on wild plant fitness are scant. Approaches include (i) observational studies, (ii) studies of experimental plants with natural infection, and (iii) studies of experimental plants with experimental infection, with most studies focused on viruses in the Luteoviridae and Potyviridae families. Fitness effects documented are largely neutral to negative. Crop virus influence on wild plants merits attention in ecological conservation and restoration.


Assuntos
Produtos Agrícolas/virologia , Doenças das Plantas/virologia , Plantas/virologia , Agricultura , Luteoviridae/patogenicidade , Potyviridae/patogenicidade
16.
Mol Plant Pathol ; 16(5): 435-48, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25187258

RESUMO

Plant disease resistance (R) proteins that confer resistance to viruses recognize viral gene products with diverse functions, including viral suppressors of RNA silencing (VSRs). The P0 protein from poleroviruses is a VSR that targets the ARGONAUTE1 (AGO1) protein for degradation, thereby disrupting RNA silencing and antiviral defences. Here, we report resistance against poleroviruses in Nicotiana glutinosa directed against Turnip yellows virus (TuYV) and Potato leafroll virus (PLRV). The P0 proteins from TuYV (P0(T) (u) ), PLRV (P0(PL) ) and Cucurbit aphid-borne yellows virus (P0(CA) ) were found to elicit a hypersensitive response (HR) in N. glutinosa accession TW59, whereas other accessions recognized P0(PL) only. Genetic analysis showed that recognition of P0(T) (u) by a resistance gene designated RPO1 (Resistance to POleroviruses 1) is inherited as a dominant allele. Expression of P0 from a Potato virus X (PVX) expression vector transferred recognition to the recombinant virus on plants expressing RPO1, supporting P0 as the unique Polerovirus factor eliciting resistance. The induction of HR required a functional P0 protein, as P0(T) (u) mutants with substitutions in the F-box motif that abolished VSR activity were unable to elicit HR. We surmised that the broad P0 recognition seen in TW59 and the requirement for the F-box protein motif could indicate detection of P0-induced AGO1 degradation and disruption of RNA silencing; however, other viral silencing suppressors, including the PVX P25 that also causes AGO1 degradation, failed to elicit HR in N. glutinosa. Investigation of P0 elicitation of RPO1 could provide insight into P0 activities within the cell that trigger resistance.


Assuntos
Luteoviridae/metabolismo , Nicotiana/imunologia , Nicotiana/virologia , Interferência de RNA , Proteínas Virais/metabolismo , Morte Celular/genética , Segregação de Cromossomos/genética , Resistência à Doença/genética , Resistência à Doença/imunologia , Proteínas F-Box/metabolismo , Genes Dominantes , Genes de Plantas , Loci Gênicos , Luteoviridae/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , Potexvirus/metabolismo , Nicotiana/citologia , Virulência/genética
17.
Virus Res ; 186: 32-7, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24269348

RESUMO

Pathogens and their vectors can interact either directly or indirectly via their shared hosts, with implications for the persistence and spread of the pathogen in host populations. For example, some plant viruses induce changes in host plants that cause the aphids that carry these viruses to settle preferentially on infected plants. Furthermore, relative preference by the vector for infected plants can change to a preference for noninfected plants after virus acquisition by the vector, as has recently been demonstrated in the wheat-Rhopalosiphum padi-Barley yellow dwarf virus pathosystem. Here we document a similar dynamic in the potato-Myzus persicae (Sulzer)-Potato leaf roll virus (PLRV) pathosystem. Specifically, in a dual choice bioassay, nonviruliferous apterous M. persicae settled preferentially on or near potato plants infected with PLRV relative to noninfected (sham-inoculated) control plants, whereas viruliferous M. persicae (carrying PLRV) preferentially settled on or near sham-inoculated potato plants relative to infected plants. The change in preference after virus acquisition also occurred in response to trapped headspace volatiles, and to synthetic mimics of headspace volatile blends from PLRV-infected and sham-inoculated potato plants. The change in preference we document should promote virus spread by increasing rates of virus acquisition and transmission by the vector.


Assuntos
Afídeos/virologia , Comportamento Alimentar , Insetos Vetores/virologia , Luteoviridae/fisiologia , Doenças das Plantas/virologia , Solanum tuberosum/virologia , Compostos Orgânicos Voláteis/isolamento & purificação , Animais , Afídeos/efeitos dos fármacos , Comportamento Animal , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno , Insetos Vetores/efeitos dos fármacos , Luteoviridae/química , Luteoviridae/patogenicidade , Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Compostos Orgânicos Voláteis/farmacologia
18.
Virus Res ; 175(1): 64-70, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23623981

RESUMO

Cotton blue disease is the most important viral disease of cotton in the southern part of South America. Its etiological agent, cotton leafroll dwarf virus (CLRDV), is specifically transmitted to host plants by the aphid vector (Aphis gossypii) and any attempt to perform mechanical inoculations of this virus into its host has failed. This limitation has held back the study of this virus and the disease it causes. In this study, a full-length cDNA of CLRDV was constructed and expressed in vivo under the control of cauliflower mosaic virus 35S promoter. An agrobacterium-mediated inoculation system for the cloned cDNA construct of CLRDV was developed. Northern and immunoblot analyses showed that after several weeks the replicon of CLRDV delivered by Agrobacterium tumefaciens in Gossypium hirsutum plants gave rise to a systemic infection and typical blue disease symptoms correlated to the presence of viral RNA and P3 capsid protein. We also demonstrated that the virus that accumulated in the agroinfected plants was transmissible by the vector A. gossypii. This result confirms the production of biologically active transmissible virions. In addition, the clone was infectious in Nicotiana benthamiana plants which developed interveinal chlorosis three weeks postinoculation and CLRDV was detected both in the inoculated and systemic leaves. Attempts to agroinfect Arabidopsis thaliana plants were irregularly successful. Although no symptoms were observed, the P3 capsid protein as well as the genomic and subgenomic RNAs were irregularly detected in systemic leaves of some agroinfiltrated plants. The inefficient infection rate infers that A. thaliana is a poor host for CLRDV. This is the first report on the construction of a biologically-active infectious full-length clone of a cotton RNA virus showing successful agroinfection of host and non-host plants. The system herein developed will be useful to study CLRDV viral functions and plant-virus interactions using a reverse genetic approach.


Assuntos
Gossypium/virologia , Luteoviridae/patogenicidade , Nicotiana/virologia , Doenças das Plantas/virologia , Agrobacterium tumefaciens/genética , Animais , Afídeos/virologia , Arabidopsis/virologia , Clonagem Molecular , Expressão Gênica , Genoma Viral , Luteoviridae/genética , América do Sul , Transformação Genética
19.
Mol Plant Microbe Interact ; 26(2): 257-65, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23013438

RESUMO

In addition to being essential for translation of eukaryotic mRNA, translation initiation factors are also key components of plant-virus interactions. In order to address the involvement of these factors in the infectious cycle of poleroviruses (aphid-transmitted, phloem-limited viruses), the accumulation of three poleroviruses was followed in Arabidopsis thaliana mutant lines impaired in the synthesis of translation initiation factors in the eIF4E and eIF4G families. We found that efficient accumulation of Turnip yellows virus (TuYV) in A. thaliana relies on the presence of eIF (iso)4G1, whereas Beet mild yellowing virus (BMYV) and Beet western yellows virus-USA (BWYV-USA) rely, instead, on eIF4E1. A role for these factors in the infectious processes of TuYV and BMYV was confirmed by direct interaction in yeast between these specific factors and the 5' viral genome-linked protein of the related virus. Although the underlying molecular mechanism is still unknown, this study reveals a totally unforeseen situation in which closely related viruses belonging to the same genus use different translation initiation factors for efficient infection of A. thaliana.


Assuntos
Arabidopsis/virologia , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Luteoviridae/genética , Doenças das Plantas/virologia , Animais , Afídeos/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação Eucariótico 4G/genética , Interações Hospedeiro-Patógeno , Insetos Vetores/virologia , Luteoviridae/patogenicidade , Luteoviridae/fisiologia , Mutação , Proteínas Recombinantes , Especificidade da Espécie , Técnicas do Sistema de Duplo-Híbrido , Virulência
20.
Plant Mol Biol ; 80(4-5): 443-60, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22987114

RESUMO

Small RNAs (sRNAs) are a class of non-coding RNAs ranging from 20- to 40-nucleotides (nts) that are present in most eukaryotic organisms. In plants, sRNAs are involved in the regulation of development, the maintenance of genome stability and the antiviral response. Viruses, however, can interfere with and exploit the silencing-based regulatory networks, causing the deregulation of sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). To understand the impact of viral infection on the plant sRNA pathway, we deep sequenced the sRNAs in cotton leaves infected with Cotton leafroll dwarf virus (CLRDV), which is a member of the economically important virus family Luteoviridae. A total of 60 putative conserved cotton miRNAs were identified, including 19 new miRNA families that had not been previously described in cotton. Some of these miRNAs were clearly misregulated during viral infection, and their possible role in symptom development and disease progression is discussed. Furthermore, we found that the 24-nt heterochromatin-associated siRNAs were quantitatively and qualitatively altered in the infected plant, leading to the reactivation of at least one cotton transposable element. This is the first study to explore the global alterations of sRNAs in virus-infected cotton plants. Our results indicate that some CLRDV-induced symptoms may be correlated with the deregulation of miRNA and/or epigenetic networks.


Assuntos
Elementos de DNA Transponíveis , Gossypium/genética , Luteoviridae/patogenicidade , MicroRNAs/genética , RNA de Plantas/genética , Sequência de Bases , Primers do DNA , Gossypium/virologia , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA