Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37175374

RESUMO

Marine cyanobacteria are known to produce structurally diverse bioactive specialized metabolites during bloom occurrence. These ecologically active allelochemicals confer chemical defense for the microalgae from competing microbes and herbivores. From a collection of a marine cyanobacterium, cf. Lyngbya sp., a small quantity of a new cyclopropane-containing molecule, benderadiene (2), and lyngbyoic acid (1) were purified and characterized using spectroscopic methods. Using live reporter quorum-sensing (QS) inhibitory assays, based on P. aeruginosa PAO1 lasB-gfp and rhlA-gfp strains, both compounds were found to inhibit QS-regulated gene expression in a dose-dependent manner. In addition to lyngbyoic acid being more active in the PAO1 lasB-gfp biosensor strain (IC50 of 20.4 µM), it displayed anti-biofilm activity when incubated with wild-type P. aeruginosa. The discovery of lyngbyoic acid in relatively high amounts provided insights into its ecological significance as a defensive allelochemical in targeting competing microbes through interference with their QS systems and starting material to produce other related analogs. Similar strategies could be adopted by other marine cyanobacterial strains where the high production of other lipid acids has been reported. Preliminary evidence is provided from the virtual molecular docking of these cyanobacterial free acids at the ligand-binding site of the P. aeruginosa LasR transcriptional protein.


Assuntos
Cianobactérias , Lyngbya , Lyngbya/metabolismo , Simulação de Acoplamento Molecular , Biofilmes , Percepção de Quorum , Cianobactérias/metabolismo , Ciclopropanos/farmacologia , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética
2.
Mar Drugs ; 18(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291783

RESUMO

Cyanobacteria are essential for the vast number of compounds they produce and the possible applications in the pharmaceutical, cosmetical, and food industries. As Lyngbya species' characterization is limited in the literature, we characterize this cyanobacterium's growth and biomass. L. purpureum was grown and analyzed under different salinities, culture media, and incubation times to determine the best conditions that favor its cell growth and the general production of proteins, carbohydrates, lipids, and some pigments as phycocyanin and chlorophyll a. In this study, each analyzed biomolecule's highest content was proteins 431.69 mg g-1, carbohydrates 301.45 mg g-1, lipids 131.5 mg g-1, chlorophyll a 4.09 mg g-1, and phycocyanin 40.4 mg g-1. These results can provide a general context of the possible uses that can be given to biomass and give an opening to investigate possible biocompounds or bio metabolites that can be obtained from it.


Assuntos
Biomassa , Lyngbya/efeitos dos fármacos , Lyngbya/genética , Proteínas de Bactérias/biossíntese , Carboidratos/biossíntese , Clorofila A/biossíntese , Meios de Cultura , Lipídeos/biossíntese , Lyngbya/metabolismo , Ficocianina/biossíntese , Solução Salina
3.
Sci Rep ; 10(1): 14095, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839512

RESUMO

Natural coastal microbial mat communities are multi-species assemblages that experience fluctuating environmental conditions and are shaped by resource competition as well as by cooperation. Laboratory studies rarely address the natural complexity of microbial communities but are usually limited to homogeneous mono-cultures of key species grown in liquid media. The mat-forming filamentous cyanobacteria Lyngbya aestuarii and Coleofasciculus chthonoplastes were cultured under different conditions to investigate the expression of circadian clock genes and genes that are under their control. The cyanobacteria were grown in liquid medium or on a solid substrate (glass beads) as mono- or as co-cultures under a light-dark regime and subsequently transferred to continuous light. TaqMan-probe based qPCR assays were used to quantify the expression of the circadian clock genes kaiA, kaiB, and kaiC, and of four genes that are under control of the circadian clock: psbA, nifH, ftsZ, and prx. Expression of kaiABC was influenced by co-culturing the cyanobacteria and whether grown in liquid media or on a solid substrate. Free-running (i.e. under continuous light) expression cycle of the circadian clock genes was observed in L. aestuarii but not in C. chthonoplastes. In the former organism, maximum expression of psbA and nifH occurred temporally separated and independent of the light regime, although the peak shifted in time when the culture was transferred to continuous illumination. Although functionally similar, both species of cyanobacteria displayed different 24-h transcriptional patterns in response to the experimental treatments, suggesting that their circadian clocks have adapted to different life strategies adopted by these mat-forming cyanobacteria.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Cianobactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Técnicas de Cocultura , Cianobactérias/genética , Cianobactérias/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Expressão Gênica/genética , Lyngbya/genética , Lyngbya/metabolismo , Lyngbya/fisiologia , Microbiota/fisiologia , Oxirredutases/genética , Oxirredutases/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA