Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
Commun Biol ; 7(1): 910, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39068219

RESUMO

Breast muscle growth rate and intramuscular fat (IMF) content show apparent differences between fast-growing broilers and slow-growing indigenous chickens. However, the underlying genetic basis of these phenotypic characteristics remains elusive. In this study, we investigate the dynamic alterations of three-dimensional genome architecture and chromatin accessibility in breast muscle across four key developmental stages from embryo to starter chick in Arbor Acres (AA) broilers and Yufen (YF) indigenous chickens. The limited breed-specifically up-regulated genes (Bup-DEGs) are embedded in breed-specific A compartment, while a majority of the Bup-DEGs involving myogenesis and adipogenesis are regulated by the breed-specific TAD reprogramming. Chromatin loops allow distal accessible regions to interact with myogenic genes, and those loops share an extremely low similarity between chicken with different growth rate. Moreover, AA-specific loop interactions promote the expression of 40 Bup-DEGs, such as IGF1, which contributes to myofiber hypertrophy. YF-specific loop interactions or distal accessible regions lead to increased expression of 5 Bup-DEGs, including PIGO, PEMT, DHCR7, TMEM38B, and DHDH, which contribute to IMF deposition. These results help elucidate the regulation of breast muscle growth and IMF deposition in chickens.


Assuntos
Galinhas , Cromatina , Desenvolvimento Muscular , Fenótipo , Animais , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Cromatina/metabolismo , Cromatina/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Músculos Peitorais/metabolismo , Músculos Peitorais/crescimento & desenvolvimento , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento
2.
Sci Rep ; 14(1): 16886, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043903

RESUMO

Poultry meat-production is increasing worldwide; leading to the selection of chickens for meat-production that show a fast growth. A label-free quantitative proteomic-approach and Western-blot were applied to investigate the dynamics of muscle protein under rapid growth conditions in two common fast-growing broiler genetic-lines (Ross 508 and AZ Extra Heavy Red-chicken). Muscle exudate from chicken Pectoralis major was used as substrate to unveil the proteome of these genetic-lines. Six-hundred forty-five proteins were identified in total from all samples, and after statistical-analysis 172 proteins were found to be differentially-expressed, clearly distinguishing the two chicken genetic-lines. Several of these differentially-expressed proteins were involved with the proteasome and glycolysis/gluconeogenesis-pathways. Changes in meat-quality traits were also observed, which were reflected in the proteomic-profile. Proteins involved in the ubiquitin-proteasome system were associated with the bigger muscle mass of Ross 508, while phosphoglucomutase 1 was associated with a possible higher capability of AZ Extra Heavy Red-chickens to cope with stressors. This pilot proteomic-approach applied on muscle exudate samples provided key evidence about the pathways and processes underlying these two chicken genetic-lines and their meat-quality parameters. We also identified potential biomarkers that could determine the peculiar production potentials (e.g. breast-growth) of these broilers-lines, which arise from differences in their genetic-backgrounds.


Assuntos
Galinhas , Proteínas Musculares , Proteoma , Proteômica , Animais , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Proteoma/metabolismo , Proteoma/análise , Cromatografia Líquida/métodos , Proteômica/métodos , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Músculos Peitorais/metabolismo , Músculos Peitorais/crescimento & desenvolvimento , Espectrometria de Massas/métodos , Carne/análise , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Espectrometria de Massa com Cromatografia Líquida
3.
Poult Sci ; 103(8): 103882, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833745

RESUMO

Long-term intensive genetic selection has led to significant differences between broiler and layer chickens, which are evident during the embryonic period. Despite this, there is a paucity of research on the genetic regulation of the initial formation of muscle fiber morphology in chick embryos. Embryonic d 17 (E17) is the key time point for myoblast fusion completion and muscle fiber morphology formation in chickens. This study aimed to explore the genetic regulatory mechanisms underlying the early muscle fiber morphology establishment in broiler chickens of Cornish (CC) and White Plymouth Rock (RR) and layer chickens of White Leghorn (WW) at E17 using the transcriptomic and chromatin accessibility sequencing of pectoral major muscles. The results showed that broiler chickens exhibited significant higher embryo weight and pectoral major muscle weight at E17 compared to layer chickens (P = 0.000). A total of 1,278, 1,248, and 892 differentially expressed genes (DEGs) of RNA-seq data were identified between CC vs. WW, RR vs. WW, and CC vs. RR, separately. All DEGs were combined for cluster analysis and they were divided into 6 clusters, including cluster 1 with higher expression in broilers and cluster 6 with higher expression in layers. DEGs in cluster 1 were enriched in terms related to macrophage activation (P = 0.002) and defense response to bacteria (P = 0.002), while DEGs in cluster 6 showed enrichment in protein-DNA complex (P = 0.003) and monooxygenase activity (P = 0.000). ATAC-seq data analysis identified a total of 38,603 peaks, with 13,051 peaks for CC, 18,780 peaks for RR, and 6,772 peaks for WW. Integrative analysis of transcriptomic and chromatin accessibility data revealed GOLM1, ISLR2, and TOPAZ1 were commonly upregulated genes in CC and RR. Furthermore, screening of all upregulated DEGs in cluster 1 from CC and RR identified GOLM1, ISLR2, and HNMT genes associated with neuroimmune functions and MYOM3 linked to muscle morphology development, showing significantly elevated expression in broiler chickens compared to layer chickens. These findings suggest active neural system connectivity during the initial formation of muscle fiber morphology in embryonic period, highlighting the early interaction between muscle fiber formation morphology and the nervous system. This study provides novel insights into late chick embryo development and lays a deeper foundation for further research.


Assuntos
Galinhas , Músculos Peitorais , Transcriptoma , Animais , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Embrião de Galinha , Músculos Peitorais/metabolismo , Desenvolvimento Embrionário , Epigenômica , Fibras Musculares Esqueléticas/metabolismo
4.
Poult Sci ; 103(8): 103862, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38843562

RESUMO

Oncomodulins (OCMs), also known as non-α-parvalbumins, are small molecules known for their high-affinity binding of Ca2+ ions. They play crucial roles as Ca2+ buffers and participate in signaling pathways within muscle and neuron cells. In chickens, 3 oncomodulin molecules have been identified at the protein level and are named chicken oncomodulin 1 (OCM1), -3 (OCM3), and alpha-parvalbumin (PVALB). OCM4 was newly assigned by genome annotation. A gene cluster containing OCM1, OCM3, and OCM4 is located in chromosome 14, while a single gene of PVALB is on chromosome 1. The Ca2+ signaling pathway may be a potential contributor to the onset of chicken breast myopathies. However, chicken OCMs have not been extensively studied in muscle tissues. In this study, the genetic specifications, tissue-specific and differential expression of OCM1, OCM3, OCM4, and PVALB in the context of chicken breast myopathies were investigated. OCM1 exhibited moderate expression in the liver, intestine, and kidney. OCM3 was highly expressed in thymus and breast muscle. A long noncoding RNA (lncRNA) transcribed from the antisense strand of the OCM3 gene was found to be expressed in liver, lung, heart, intestine, and kidney tissues. OCM4 was barely expressed in thymus, thigh-, and breast muscle. PVALB exhibited high expression across all tissues examined. Results of quantitative PCR (qPCR) indicated that the expression of OCM3 was significantly increased (4.4 ± 0.7 fold; P-value = 0.03) in woody breast (WB) muscle and even greater (8.5 ± 0.6 fold; P-value = 0.004) in WB/white striping (WS) muscles. The expression of PVALB showed no difference in WB muscle, but it was notably higher (4.6 ± 0.7 fold; P-value = 0.054) in WB/WS muscle, although statistical significance was not reached. These findings suggest that increased expression of OCM3 and PVALB may be linked to chicken breast myopathies with regard to disruption of Ca2+ buffering.


Assuntos
Proteínas Aviárias , Galinhas , Doenças Musculares , Doenças das Aves Domésticas , Animais , Galinhas/genética , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Doenças Musculares/veterinária , Doenças Musculares/genética , Doenças Musculares/metabolismo , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Músculos Peitorais/metabolismo , Perfilação da Expressão Gênica/veterinária
5.
Poult Sci ; 103(8): 103877, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38843563

RESUMO

This study aims to provide new insight on the association between the development of wooden breast myopathy and mitochondrial and glycolytic activity under oxidative stress. Myopathic muscle had higher oxidative stress together with altered glycolytic metabolism and tricarboxylic acid (TCA) cycle. This was evidenced by significantly elevated antioxidant enzyme activities (catalase, superoxide dismutase, and glutathione peroxidase), decreased citrate synthase activity and postmortem glycolytic potential with increasing wooden breast severity. In addition, affected muscles also exhibited higher initial and ultimate pH values as well as reduced total glucose and lactate contents. Citrate synthase activity was negatively correlated to antioxidant enzyme activities. Taken together, we propose that the development of the wooden breast lesion is a chronic process that may be related to the failure of muscle fibers to defend against the excessively generated oxidative products promoted by mitochondrial damage accompanied by impaired TCA cycle. Furthermore, there was a positive correlation between citrate synthase activity and glycolytic potential, which suggests that the wooden breast condition is linked to the overall altered energy metabolism of the muscle, including the oxidative phosphorylation and glycolytic pathways.


Assuntos
Galinhas , Metabolismo Energético , Doenças das Aves Domésticas , Animais , Doenças das Aves Domésticas/metabolismo , Antioxidantes/metabolismo , Músculos Peitorais/metabolismo , Doenças Musculares/veterinária , Doenças Musculares/metabolismo , Estresse Oxidativo , Glicólise , Masculino , Biomarcadores/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Citrato (si)-Sintase/metabolismo
6.
Poult Sci ; 103(8): 103920, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909504

RESUMO

The quality and flavor of chicken are affected by muscle metabolites and related regulatory genes, and the molecular regulation mechanism of meat quality is different among different breeds of chicken. In this study, 40 one-day-old Daweishan mini chicken (DM) and Cobb broiler (CB) were selected from each group, with 4 replicates and 10 chickens in each replicate. The chickens were reared until 90 d of age under the same management conditions. Then, metabolomics and transcriptomics data of 90-day-old DM (n = 4) and CB (n = 4) were integrated to analyze metabolites affecting breast muscle quality and flavor, and to explore the important genes regulating meat quality and flavor related metabolites. The results showed that a total of 38 significantly different metabolites (SDMs) and 420 differentially expressed genes (DEGs) were detected in the breast muscle of the 2 breeds. Amino acid and lipid metabolism may be the cause of meat quality and flavor difference between DM and CB chickens, involving metabolites such as L-methionine, betaine, N6, N6, N6-Trimethyl-L-lysine, L-anserine, glutathione, glutathione disulfide, L-threonine, N-Acetyl-L-aspartic acid, succinate, choline, DOPC, SOPC, alpha-linolenic acid, L-palmitoylcarnitine, etc. Important regulatory genes with high correlation with flavor amino acids (GATM, GSTO1) and lipids (PPARG, LPL, PLIN1, SCD, ANGPTL4, FABP7, GK, B4GALT6, UGT8, PLPP4) were identified by correlation analysis, and the gene-metabolite interaction network of breast muscle mass and flavor formation in DM chicken was constructed. This study showed that there were significant differences in breast metabolites between DM and CB chickens, mainly in amino acid and lipid metabolites. These 2 kinds of substances may be the main reasons for the difference in breast muscle quality and flavor between the 2 breeds. In general, this study could provide a theoretical basis for further research on the molecular regulatory mechanism of the formation of breast muscle quality and flavor differences between DM and CB chickens, and provide a reference for the development, utilization and genetic breeding of high-quality meat chicken breeds.


Assuntos
Galinhas , Carne , Músculos Peitorais , Transcriptoma , Animais , Galinhas/genética , Galinhas/fisiologia , Galinhas/metabolismo , Músculos Peitorais/metabolismo , Carne/análise , Metabolômica , Paladar , Perfilação da Expressão Gênica/veterinária , Metaboloma
7.
Mol Biol Rep ; 51(1): 625, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717527

RESUMO

BACKGROUND: The currently known homing pigeon is a result of a sharp one-sided selection for flight characteristics focused on speed, endurance, and spatial orientation. This has led to extremely well-adapted athletic phenotypes in racing birds. METHODS: Here, we identify genes and pathways contributing to exercise adaptation in sport pigeons by applying next-generation transcriptome sequencing of m.pectoralis muscle samples, collected before and after a 300 km competition flight. RESULTS: The analysis of differentially expressed genes pictured the central role of pathways involved in fuel selection and muscle maintenance during flight, with a set of genes, in which variations may therefore be exploited for genetic improvement of the racing pigeon population towards specific categories of competition flights. CONCLUSIONS: The presented results are a background to understanding the genetic processes in the muscles of birds during flight and also are the starting point of further selection of genetic markers associated with racing performance in carrier pigeons.


Assuntos
Columbidae , Voo Animal , Transcriptoma , Animais , Columbidae/genética , Columbidae/fisiologia , Voo Animal/fisiologia , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Músculos Peitorais/metabolismo , Músculos Peitorais/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia
8.
BMC Genomics ; 25(1): 438, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698322

RESUMO

BACKGROUND: Nutrient availability during early stages of development (embryogenesis and the first week post-hatch) can have long-term effects on physiological functions and bird metabolism. The embryo develops in a closed structure and depends entirely on the nutrients and energy available in the egg. The aim of this study was to describe the ontogeny of pathways governing hepatic metabolism that mediates many physiological functions in the pHu + and pHu- chicken lines, which are divergently selected for the ultimate pH of meat, a proxy for muscle glycogen stores, and which differ in the nutrient content and composition of eggs. RESULTS: We identified eight clusters of genes showing a common pattern of expression between embryonic day 12 (E12) and day 8 (D8) post-hatch. These clusters were not representative of a specific metabolic pathway or function. On E12 and E14, the majority of genes differentially expressed between the pHu + and pHu- lines were overexpressed in the pHu + line. Conversely, the majority of genes differentially expressed from E18 were overexpressed in the pHu- line. During the metabolic shift at E18, there was a decrease in the expression of genes linked to several metabolic functions (e.g. protein synthesis, autophagy and mitochondrial activity). At hatching (D0), there were two distinct groups of pHu + chicks based on hierarchical clustering; these groups also differed in liver weight and serum parameters (e.g. triglyceride content and creatine kinase activity). At D0 and D8, there was a sex effect for several metabolic pathways. Metabolism appeared to be more active and oriented towards protein synthesis (RPS6) and fatty acid ß-oxidation (ACAA2, ACOX1) in males than in females. In comparison, the genes overexpressed in females were related to carbohydrate metabolism (SLC2A1, SLC2A12, FoxO1, PHKA2, PHKB, PRKAB2 and GYS2). CONCLUSIONS: Our study provides the first detailed description of the evolution of different hepatic metabolic pathways during the early development of embryos and post-hatching chicks. We found a metabolic orientation for the pHu + line towards proteolysis, glycogen degradation, ATP synthesis and autophagy, likely in response to a higher energy requirement compared with pHu- embryos. The metabolic orientations specific to the pHu + and pHu- lines are established very early, probably in relation with their different genetic background and available nutrients.


Assuntos
Galinhas , Fígado , Animais , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Fígado/metabolismo , Fígado/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Feminino , Músculos Peitorais/metabolismo , Músculos Peitorais/crescimento & desenvolvimento , Masculino , Perfilação da Expressão Gênica , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento
9.
Poult Sci ; 103(7): 103781, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38669818

RESUMO

The Wooden Breast myopathy results in the necrosis and fibrosis of breast muscle fibers in fast-growing heavy weight meat-type broiler chickens. Myogenic satellite cells are required to repair and regenerate the damaged muscle fibers. Using Genome Wide Association, candidate genes affected with Wooden Breast have been previously reported. The effect of these genes on satellite cell proliferation, differentiation, and the synthesis of lipids by satellite cells is unknown. Satellite cells isolated from the pectoralis major muscle from commercial Ross 708 broilers and a Randombred chicken (RBch) line were used. Expression of calponin 1 (CNN1) and PHD and ring fingers domains 1 (PHRF1) were knocked down by silent interfering RNA to determine their effect on satellite cell-mediated proliferation, differentiation, and lipid accumulation. CNN1 and PHRF1 affected satellite cell activity and lipid accumulation in both lines. Proliferation was reduced in the Ross 708 and RBch lines by knocking down the expression of both genes, and differentiation was affected with a line and treatment interaction when gene expression was reduced at the beginning of proliferation. During differentiation lipid accumulation was decreased with knocking down the expression of CNN1 and PHRF1. Both CNN1 and PHRF1 have not been reported previously in skeletal muscle and further research is required to determine their effect on satellite cell-mediated growth and regeneration of the pectoralis major (breast) muscle.


Assuntos
Proteínas Aviárias , Proteínas de Ligação ao Cálcio , Galinhas , Músculos Peitorais , Células Satélites de Músculo Esquelético , Animais , Células Satélites de Músculo Esquelético/fisiologia , Células Satélites de Músculo Esquelético/metabolismo , Galinhas/genética , Galinhas/fisiologia , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Músculos Peitorais/fisiologia , Músculos Peitorais/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Calponinas , Proliferação de Células , Diferenciação Celular , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Técnicas de Silenciamento de Genes/veterinária
10.
Poult Sci ; 103(6): 103682, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593545

RESUMO

White striping (WS) is an emerging myopathy that results in significant economic losses as high as $1 billion (combined with losses derived from other breast myopathies including woody breast and spaghetti meat) to the global poultry industry. White striping is detected as the occurrence of white lines on raw poultry meat. The exact etiologies for WS are still unclear. Proteomic analyses of co-expressed WS and woody breast phenotypes previously demonstrated dysfunctions in carbohydrate metabolism, protein synthesis, and calcium buffering capabilities in muscle cells. In this study, we conducted shotgun proteomics on chicken breast fillets exhibiting only WS that were collected at approximately 6 h postmortem. After determining WS severity, protein extractions were conducted from severe WS meat with no woody breast (WB) condition (n = 5) and normal non-affected (no WS) control meat (n = 5). Shotgun proteomics was conducted by Orbitrap Lumos, tandem mass tag (TMT) analysis. As results, 148 differentially abundant proteins (|fold change|>1.4; p-value < 0.05) were identified in the WS meats compared with controls. The significant canonical pathways included BAG2 signaling pathway, glycogen degradation II, isoleucine degradation I, aldosterone signaling in epithelial cells, and valine degradation I. The potential upstream regulators include LIPE, UCP1, ATP5IF1, and DMD. The results of this study provide additional insights into the cellular mechanisms on the WS myopathy and meat quality.


Assuntos
Proteínas Aviárias , Galinhas , Carne , Doenças Musculares , Músculos Peitorais , Doenças das Aves Domésticas , Proteômica , Animais , Doenças Musculares/veterinária , Doenças Musculares/patologia , Doenças Musculares/metabolismo , Doenças das Aves Domésticas/metabolismo , Carne/análise , Músculos Peitorais/metabolismo , Proteínas Aviárias/metabolismo , Proteínas Aviárias/genética , Proteoma , Proteínas Musculares/metabolismo , Proteínas Musculares/genética
11.
Poult Sci ; 103(6): 103691, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598910

RESUMO

The blackness traits, considered an important economic factor in the black-bone chicken industry, still exhibits a common phenomenon of significant difference in blackness of breast muscle. To improve this phenomenon, this study compared growth traits, blackness traits, and transcriptome of breast muscles between the High Blackness Group (H group) and Low Blackness Group (L group) in the Xuefeng black-bone chickens. The results are as follows: 1) There was no significant difference in growth traits between the H group and the L group (P > 0.05). 2) The skin/breast muscle L values in the H group were significantly lower than those in the L group, while the breast muscle melanin content exhibited the opposite trend (P < 0.05). 3) A significant negative correlation was observed between breast muscle melanin content and skin/breast muscle L value (P < 0.05), and skin L value exhibiting a significant positive correlation with breast muscle L value (P < 0.05). 4) The breast muscle transcriptome comparison between the H group and L group revealed 831 and 405 DEGs in female and male chickens, respectively. This included 37 shared DEGs significantly enriched in melanosome, pigment granule, and the melanogenesis pathway. Seven candidate genes (DCT, PMEL, MLANA, TYRP1, OCA2, EDNRB2, and CALML4) may play a crucial role in the melanin production of breast muscle in Xuefeng black-bone chicken. The findings could accelerate the breeding process for achieving desired levels of breast muscle blackness and contribute to the exploration of the mechanisms underlying melanin production in black-bone chickens.


Assuntos
Galinhas , Melaninas , Músculos Peitorais , Pigmentação , Animais , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Galinhas/fisiologia , Melaninas/metabolismo , Melaninas/genética , Músculos Peitorais/metabolismo , Feminino , Pigmentação/genética , Masculino , Transcriptoma , Expressão Gênica
12.
Poult Sci ; 103(6): 103708, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631230

RESUMO

Meat production performance is the most important economic trait in broilers, and skeletal muscle, as the largest organ in animals, is directly related to meat production during embryonic and postnatal growth and development. N6-Methyladenosine (m6A) is a chemical modification occurs on RNA adenosine that has been reported to participate in a variety of biological processes in all species. However, there are still few reports on the regulatory role of muscle growth and development in poultry after birth. This study aims to reveal the distribution of m6A modification sites in chicken pectoralis major muscle after birth and find out the regulatory relationship between m6A and muscle development. As representatives of leaner (Xinghua chicken [XH]) and hypertrophic (White Recessive Rock chicken [WRR]) broilers, there are significant differences in body weight, muscle fiber diameter, and muscle fiber cross-sectional area between XH and WRR chickens. RNA sequencing detected a total of 397 differentially expressed genes (DEG) in the pectoralis major muscle of XH and WRR chicken, and these DEGs were mainly enriched in catalytic activity and metabolic pathways. MeRIP sequencing results showed that among all 6,476 differentially modified m6A peaks, about 90% peaks (5,823) were differentially down regulated in XH chickens. The joint analysis of the mRNA and MeRIP sequencing data found 145 DEGs with differential m6A peak, ALKBH5 as a m6A demethylase, was also included. The highly expression of ALKBH5 in the muscle tissue of poultry and differential expression between XH and WRR chickens suggest that ALKBH5 may play a crucial role in regulating muscle development. Our results revealed that there were significant differences in growth rate, body weight, muscle fiber diameter, and fiber cross-section area between WRR and XH chicken, as well as significant differences in m6A methylation level and muscle metabolism level.


Assuntos
Adenosina , Galinhas , Desenvolvimento Muscular , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Músculos Peitorais/crescimento & desenvolvimento , Músculos Peitorais/metabolismo , Análise de Sequência de RNA/veterinária , Masculino
13.
Poult Sci ; 103(5): 103590, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457991

RESUMO

Histidine-containing dipeptides (HCDs), such as anserine and carnosine, are enormously beneficial to human health and contribute to the meat flavor in chickens. Meat quality traits, including flavor, are polygenic traits with medium to high heritability. Polygenic traits can be improved through a better understanding of their genetic mechanisms. Genome-wide association studies (GWAS) constitute an effective genomic tool to identify the significant single-nucleotide polymorphisms (SNPs) and potential candidate genes related to various traits of interest in chickens. This study identified potential candidate genes influencing the anserine and carnosine contents in chicken meat through GWAS. We performed GWAS of anserine and carnosine using the Illumina chicken 60K SNP chip (Illumina Inc., San Diego, CA) in 637 Korean native chicken-red-brown line (KNC-R) birds consisting of 228 males and 409 females. The contents of anserine and carnosine in breast meat of KNC-R chickens were investigated. The mean value of the anserine and carnosine are 29.12 mM/g and 10.69 mM/g respectively. The genomic heritabilities were moderate (0.24) for anserine and high (0.43) for carnosine contents. Four and nine SNPs were significantly (P < 0.05) associated with anserine and carnosine, respectively. Based on the GWAS result, the 30.6 to 31.9 Mb region on chicken chromosome 7 was commonly associated with both anserine and carnosine. Through the functional annotation analysis, we identified HNMT and HNMT-like genes as potential candidate genes associated with both anserine and carnosine. The results presented here will contribute to the ongoing improvement of meat quality to satisfy current consumer demands, which are based on healthier, better-flavored, and higher-quality chicken meat.


Assuntos
Anserina , Carnosina , Galinhas , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Animais , Carnosina/metabolismo , Carnosina/análise , Carnosina/genética , Galinhas/genética , República da Coreia , Estudo de Associação Genômica Ampla/veterinária , Anserina/análise , Anserina/metabolismo , Masculino , Feminino , Músculos Peitorais/química , Músculos Peitorais/metabolismo , Carne/análise , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo
14.
Poult Sci ; 103(4): 103539, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382189

RESUMO

The economic losses incurred due to reduced muscle pigmentation highlight the crucial role of melanin-based coloration in the meat of black-bone chickens. Melanogenesis in the breast muscle of black-bone chickens is currently poorly understood in terms of molecular mechanisms. This study employed whole-transcriptome sequencing to analyze black and white breast muscle samples from black-bone chickens, leading to the identification of 367 differentially expressed (DE) mRNAs, 48 DElncRNAs, 104 DEcircRNAs, and 112 DEmiRNAs involved in melanin deposition. Based on these findings, a competitive endogenous RNA (ceRNA) network was developed to better understand the complex mechanisms of melanin deposition. Furthermore, our analysis revealed key DEmRNAs (TYR, DCT, EDNRB, MLPH and OCA2) regulated by DEmiRNAs (gga-miR-140-5p, gga-miR-1682, gga-miR-3529, gga-miR-499-3p, novel-m0012-3p, gga-miR-200b-5p, gga-miR-203a, gga-miR-6651-5p, gga-miR-7455-3p, gga-miR-31-5p, miR-140-x, miR-455-x, novel-m0065-3p, gga-miR-29b-1-5p, miR-455-y, novel-m0085-3p, and gga-miR-196-1-3p). These DEmiRNAs competitively interacted with DElncRNAs including MSTRG.2609.2, MSTRG.4185.1, LOC112530666, LOC112533366, LOC771030, LOC107054724, LOC121107411, LOC100859072, LOC101750037, LOC121108550, LOC121109224, LOC121110876, and LOC101749016, as well as DEcircRNAs, such as novel_circ_000158, novel_circ_000623, novel_001518, and novel_circ_003596. The findings from this study provide insight into the mechanisms that regulate lncRNA, circRNA, miRNA, and mRNA expression in chicken melanin deposition.


Assuntos
Galinhas , MicroRNAs , Animais , Galinhas/genética , Galinhas/metabolismo , Melaninas/genética , RNA Endógeno Competitivo , Transcriptoma , MicroRNAs/genética , MicroRNAs/metabolismo , Músculos Peitorais/metabolismo , Carne
15.
Poult Sci ; 103(1): 103179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37931400

RESUMO

Collagen type IV (COL4) is one of the major components of animals' and humans' basement membranes of several tissues, such as skeletal muscles and vascular endothelia. Alterations in COL4 assembly and secretion are associated to muscular disorders in humans and animals among which growth-related abnormalities such as white striping and wooden breast affecting Pectoralis major muscles (PMs) in modern fast-growing (FG) chickens. Considering the high prevalence of these myopathies in FG broilers and that a worsening is observed as the bird slaughter age is increased, the present study was intended to evaluate the distribution and the expression level of COL4 protein and its coding genes in PMs of FG broilers at different stages of muscle development (i.e., 7, 14, 21, 28, 35, and 42 d of age). Medium-growing (MG) chickens have been considered as the control group in consideration of the lower selection pressure on breast muscle growth rate and hypertrophy. Briefly, 5 PM/sampling time/genotype were selected for western blot, immunohistochemistry (IHC), and gene expression analyses. The normalized expression levels of COL4 coding genes showed an overexpression of COL4A2 in FG than MG at d 28, as well as a significant decrease in its expression over their rearing period. Overall, results obtained through the gene expression analysis suggested that selection for the hypertrophic growth of FG broilers may have led to an altered regulation of fibroblast proliferation and COL4 synthesis. Moreover, western blot and IHC analyses suggested an altered secretion and/or degradation of COL4 protein in FG broilers, as evidenced by the fluctuating trend of 2 bands observed in FG over time. In view of the above, the present research supports the evidence about a potential aberrant synthesis and/or degradation of COL4 and corroborates the hypothesis regarding a likely involvement of COL4 in the series of events underlying the growth-related abnormalities in modern FG broilers.


Assuntos
Doenças Musculares , Doenças das Aves Domésticas , Humanos , Animais , Músculos Peitorais/metabolismo , Galinhas/fisiologia , Colágeno Tipo IV/metabolismo , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Doenças Musculares/veterinária , Doenças Musculares/metabolismo , Carne/análise
16.
Poult Sci ; 102(12): 103103, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837679

RESUMO

Chronic heat stress has detrimental effects on the growth performance of broilers, and the potential mechanism is under exploration. In this study, the protein carbonyl modification was introduced to glycolytic enzymes to evaluate its relationship with the growth performance of heat-stressed (HS) broilers. A total of 144 male 28-day-old broilers were assigned to 3 treatments: the normal control group (NC, raised at 22°C with free access to feed and water), the HS group (raised at 32°C with free access to feed and water), and the pair-fed group (PF, raised at 22°C with an amount of feed equal to that consumed by the HS group on a previous day). Results showed that heat stress decreased the average daily growth, increased the feed-to-gain ratio (F/G), decreased breast muscle rate, and increased abdominal fat rate compared with the NC and PF groups (P < 0.05). Higher cloacal temperature and serum creatine kinase activity were found in the HS group than those of the NC and PF groups (P < 0.05). Heat stress increased the contents of carbonyl, advanced glycation end-products, malonaldehyde, and the activities of catalase, glutathione peroxidase, and total antioxidant capacity compared with the NC and PF groups (P < 0.05). Heat stress increased the contents of glucose and lactate, declined the glycogen content, and lowered the relative protein expressions of pyruvate kinase muscle type, lactate dehydrogenase A type (LDHA), and citrate synthase compared to those of the NC group (P < 0.05). In contrast to the NC and PF groups, heat stress intensified the carbonylation levels of phosphoglucomutase 1, triosephosphate isomerase 1, ß-enolase, and LDHA, which were positively correlated with the F/G (P < 0.05). These findings demonstrate that heat stress depresses growth performance on account of oxidative stress and glycolysis disorders. It further increases the carbonylation of glycolytic enzymes, which potentially correlates with the F/G by disturbing the mode of energy supply of broilers.


Assuntos
Galinhas , Resposta ao Choque Térmico , Masculino , Animais , Galinhas/fisiologia , Glicólise , Músculos Peitorais/metabolismo , Água/metabolismo , Ração Animal/análise , Suplementos Nutricionais , Temperatura Alta , Dieta
17.
Poult Sci ; 102(8): 102826, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37343347

RESUMO

This study aimed to investigate the level of lipid and protein oxidation in poultry breasts with severe white striping (WS; striation thickness > 1 mm) and nonaffected meats (N; normal breast) during storage under refrigeration (1°C for 14 d) and freezing (-18°C for 90 d). WS presented higher lipid content, although no difference in protein content was detected, compared to normal broiler breast (N). Regarding oxidative damages, a reduction in malondialdehyde and carbonyl protein, hexanal, octanal and nonanal levels, alongside the interaction of these compounds with other compounds in raw, roasted, and reheated breasts was observed under refrigerated storage (14 d). Freezing storage promotes an increase in carbonyls proteins, hexanal, octanal and nonanal levels at 45 d of storage in poultry meats and subsequent decrease, indicating the evolution of oxidative reactions. Regardless of the type of storage, in general, breasts with WS myopathy have higher levels of lipid and protein oxidation.


Assuntos
Galinhas , Temperatura Alta , Animais , Galinhas/metabolismo , Carne/análise , Proteínas/metabolismo , Estresse Oxidativo , Lipídeos , Músculos Peitorais/metabolismo
18.
Biol Trace Elem Res ; 201(12): 5764-5773, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36899096

RESUMO

This study aims to investigate the impacts of in ovo feeding (IOF) of selenized glucose (SeGlu) on selenium (Se) level and antioxidant capacity of breast muscle in newborn broilers. After candling on 16 day of incubation, a total of 450 eggs were randomly divided into three treatments. On the 17.5th day of incubation, eggs in a control treatment were injected with 0.1 mL of physiological saline (0.75%), while the 2nd group and 3rd group were supplied with 0.1 mL of physiological saline containing 10 µg Se from SeGlu (SeGlu10 group) and 20 µg Se from SeGlu (SeGlu20 group). The results showed that in ovo injection in both SeGlu10 and SeGlu20 increased the Se level and reduced glutathione concentration (GSH) in pectoral muscle of hatchlings (P < 0.05). Compared with the control group, the SeGlu20-treated chicks significantly enhanced the activity of the superoxide dismutase (SOD) and mRNA expression of NAD(P)H quinone dehydrogenase 1 (NQO1) in breast muscle, while there was upregulation in mRNA expressions of glutathione peroxidase 1 (GPX-1) and thioredoxin reductase 1 (TrxR1) and higher total antioxidant capacity (T-AOC) in SeGlu10 treatment (P < 0.05). However, no significant difference on enzyme activities of glutathione peroxidase (GR), glutathione reductase, thioredoxin reductase, concentration of malondialdehyde, and free radical scavenging ability (FRSA) of superoxide radical (O2-•) and hydroxyl radical (OH•) was observed among the three treatments (P > 0.05). Therefore, IOF of SeGlu enhanced Se deposition in breast muscle of neonatal broilers. In addition, in ovo injection of SeGlu could increase the antioxidant capacity of newborn chicks possibly through upregulating the mRNA expression of GPX1, TrxR1, and NQO1, as well as the SOD activity.


Assuntos
Antioxidantes , Selênio , Animais , Antioxidantes/metabolismo , Galinhas/metabolismo , Músculos Peitorais/metabolismo , Glucose/metabolismo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , RNA Mensageiro/genética
19.
Sci Rep ; 13(1): 4747, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959331

RESUMO

This integrative study of transcriptomics and metabolomics aimed to improve our understanding of Wooden Breast myopathy (WB). Breast muscle samples from 8 WB affected and 8 unaffected male broiler chickens of 47 days of age were harvested for metabolite profiling. Among these 16 samples, 5 affected and 6 unaffected also underwent gene expression profiling. The Joint Pathway Analysis was applied on 119 metabolites and 3444 genes exhibiting differential abundance or expression between WB affected and unaffected chickens. Mitochondrial dysfunctions in WB was suggested by higher levels of monoacylglycerols and down-regulated genes involved in lipid production, fatty acid beta oxidation, and oxidative phosphorylation. Lower levels of carnosine and anserine, along with down-regulated carnosine synthase 1 suggested decreased carnosine synthesis and hence impaired antioxidant capacity in WB. Additionally, Weighted Gene Co-expression Network Analysis results indicated that abundance of inosine monophosphate, significantly lower in WB muscle, was correlated with mRNA expression levels of numerous genes related to focal adhesion, extracellular matrix and intercellular signaling, implying its function in connecting and possibly regulating multiple key biological pathways. Overall, this study showed not only the consistency between transcript and metabolite profiles, but also the potential in gaining further insights from analyzing multi-omics data.


Assuntos
Carnosina , Doenças Musculares , Doenças das Aves Domésticas , Animais , Masculino , Transcriptoma , Galinhas/genética , Galinhas/metabolismo , Músculos Peitorais/metabolismo , Carnosina/metabolismo , Perfilação da Expressão Gênica , Doenças Musculares/genética , Doenças Musculares/veterinária , Doenças Musculares/metabolismo , Metabolismo Energético/genética , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo
20.
J Anim Physiol Anim Nutr (Berl) ; 107(5): 1216-1240, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36971147

RESUMO

Total 288 Ross-308-day-old male broiler chicks were randomly distributed into six dietary treatment groups in a two-way ANOVA with 2 × 3 factorial arrangements (two factors, i.e., dietary protein and energy having two types of protein, e.g., plant, animal and three different sources of energy, e.g., soybean oil, rice bran oil and sunflower oil) to justify if animal protein-soybean oil based broiler diet optimizes net profit at the expense of desirable ω-6 fatty acids in the breast muscle of the broiler chicken. Average daily feed intake (ADFI), final live weight (FLW), average daily gain (ADG), feed efficiency (FE), carcass characteristics, cardio-pulmonary morphometry, fatty acid profile of the breast muscle and cost-benefit analysis were measured. Results indicated that animal protein significantly increased 4.27% FLW, 6.13% ADFI, 4.31% ADG and 2.93% wing weight. Accordingly, soybean oil increased 4.76% FLW, 3.80% ADG and 1.36% dressing percentage at the expense of 12.07% proventriculus weight compared with sunflower oil. The generalized linear model identified no interaction effects of the sources of protein and energy on overall performance of the birds. Replacement of vegetable protein by animal protein decreased 14.01% ∑ω-3, 12.16% ∑ω-6 and 12.21% sum of polyunsaturated fatty acids (∑PUFA) and concomitantly increased 10.82% sum of saturated fatty acids (∑SFAs) in the breast muscle (Pectoralis major). Accordingly, replacement of sunflower oil by soybean oil decreased 29.17% ∑ω-3, 6.71% ∑ω-6, 11.62% sum of monounsaturated fatty acids (∑MUFAs) and 7.33% ∑PUFAs and concurrently increased 18.36% ∑SFAs in the breast muscle of the broiler birds. It was concluded that animal protein-soybean oil-based broiler diet optimized net profit at the expense of desirable ω-3 and ω-6 fatty acids in the breast muscle of the broiler chicken.


Assuntos
Ácidos Graxos Ômega-3 , Óleo de Soja , Animais , Ração Animal/análise , Galinhas/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Insaturados , Músculos Peitorais/metabolismo , Óleo de Girassol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA