Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Science ; 382(6675): eadf3208, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38060659

RESUMO

The ribotoxic stress response (RSR) is a signaling pathway in which the p38- and c-Jun N-terminal kinase (JNK)-activating mitogen-activated protein kinase kinase kinase (MAP3K) ZAKα senses stalling and/or collision of ribosomes. Here, we show that reactive oxygen species (ROS)-generating agents trigger ribosomal impairment and ZAKα activation. Conversely, zebrafish larvae deficient for ZAKα are protected from ROS-induced pathology. Livers of mice fed a ROS-generating diet exhibit ZAKα-activating changes in ribosomal elongation dynamics. Highlighting a role for the RSR in metabolic regulation, ZAK-knockout mice are protected from developing high-fat high-sugar (HFHS) diet-induced blood glucose intolerance and liver steatosis. Finally, ZAK ablation slows animals from developing the hallmarks of metabolic aging. Our work highlights ROS-induced ribosomal impairment as a physiological activation signal for ZAKα that underlies metabolic adaptation in obesity and aging.


Assuntos
Envelhecimento , MAP Quinase Quinase Quinase 3 , Obesidade , Espécies Reativas de Oxigênio , Ribossomos , Estresse Fisiológico , Animais , Camundongos , Envelhecimento/metabolismo , MAP Quinase Quinase Quinase 3/genética , MAP Quinase Quinase Quinase 3/metabolismo , Obesidade/metabolismo , Biossíntese de Proteínas , Espécies Reativas de Oxigênio/metabolismo , Ribossomos/metabolismo , Peixe-Zebra , Camundongos Knockout
2.
Angiogenesis ; 26(2): 295-312, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36719480

RESUMO

Cerebral cavernous malformations (CCMs) refer to a common vascular abnormality that affects up to 0.5% of the population. A somatic gain-of-function mutation in MAP3K3 (p.I441M) was recently reported in sporadic CCMs, frequently accompanied by somatic activating PIK3CA mutations in diseased endothelium. However, the molecular mechanisms of these driver genes remain elusive. In this study, we performed whole-exome sequencing and droplet digital polymerase chain reaction to analyze CCM lesions and the matched blood from sporadic patients. 44 of 94 cases harbored mutations in KRIT1/CCM2 or MAP3K3, of which 75% were accompanied by PIK3CA mutations (P = 0.006). AAV-BR1-mediated brain endothelial-specific MAP3K3I441M overexpression induced CCM-like lesions throughout the brain and spinal cord in adolescent mice. Interestingly, over half of lesions disappeared at adulthood. Single-cell RNA sequencing found significant enrichment of the apoptosis pathway in a subset of brain endothelial cells in MAP3K3I441M mice compared to controls. We then demonstrated that MAP3K3I441M overexpression activated p38 signaling that is associated with the apoptosis of endothelial cells in vitro and in vivo. In contrast, the mice simultaneously overexpressing PIK3CA and MAP3K3 mutations had an increased number of CCM-like lesions and maintained these lesions for a longer time compared to those with only MAP3K3I441M. Further in vitro and in vivo experiments showed that activating PI3K signaling increased proliferation and alleviated apoptosis of endothelial cells. By using AAV-BR1, we found that MAP3K3I441M mutation can provoke CCM-like lesions in mice and the activation of PI3K signaling significantly enhances and maintains these lesions, providing a preclinical model for the further mechanistic and therapeutic study of CCMs.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Hemangioma Cavernoso do Sistema Nervoso Central , MAP Quinase Quinase Quinase 3 , Animais , Camundongos , Células Endoteliais/metabolismo , Endotélio/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Mutação/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , MAP Quinase Quinase Quinase 3/genética , MAP Quinase Quinase Quinase 3/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo
3.
Cardiovasc Drugs Ther ; 37(4): 655-665, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35416554

RESUMO

PURPOSE: This study aimed to explore the effect of microRNA (miR)-145 on cardiac fibrosis in heart failure mice and its target. METHODS: Experiments were carried out in mice receiving left coronary artery ligation, transverse aortic constriction (TAC), or angiotensin (Ang) II to trigger heart failure, and in cardiac fibroblasts (CFs) with Ang II-induced fibrosis. RESULTS: The miR-145 levels were decreased in the mice hearts of heart failure induced by myocardial infarction (MI), TAC or Ang II infusion, and in the Ang II-treated CFs. The impaired cardiac function was ameliorated by miR-145 agomiR in MI mice. The increased fibrosis and the levels of collagen I, collagen III, and transforming growth factor-beta (TGF-ß) in MI mice were inhibited by miR-145 agomiR or miR-145 transgene (TG). The agomiR of miR-145 also attenuated the increases of collagen I, collagen III, and TGF-ß in Ang II-treated CFs. Bioinformatics analysis and luciferase reporter assays indicated that mitogen-activated protein kinase kinase kinase 3 (MAP3K3) was a direct target gene of miR-145. MAP3K3 expression was suppressed by MiR-145 in CFs, while the MAP3K3 over-expression reversed the inhibiting effects of miR-145 agomiR on the Ang II-induced increases of collagen I, collagen III, and TGF-ß in CFs. CONCLUSION: These results indicated that miR-145 upregulation could improve cardiac dysfunction and cardiac fibrosis by inhibiting MAP3K3 in heart failure. Thus, upregulating miR-145 or blocking MAP3K3 can be used to treat heart failure and cardiac fibrosis.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Infarto do Miocárdio , Camundongos , Animais , Miocárdio/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , MAP Quinase Quinase Quinase 3/metabolismo , Infarto do Miocárdio/patologia , Insuficiência Cardíaca/metabolismo , Colágeno/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fibrose , Angiotensina II/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
4.
FEBS Open Bio ; 12(10): 1747-1760, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35748027

RESUMO

Tumor necrosis factor receptor-associated factor 4 (TRAF4) is overexpressed in a variety of carcinomas of different origins, but its role in tumorigenesis remains incompletely understood. Previous studies suggest that TRAF4 promotes epidermal growth factor receptor (EGFR) activation in non-small cell lung cancer (NSCLC). However, the downstream signaling pathway of TRAF4-mediated EGFR activation, as well as its effects on tumor cells, have not been fully elucidated. Here we report that TRAF4 overexpression is associated with increased activity of extracellular signal-regulated kinase 5 (ERK5) in NSCLC tissues. Activation of ERK5 was dependent on TRAF4-mediated EGFR activation, since inhibition of either TRAF4 or EGFR dramatically abolished phosphorylation of ERK5. Mechanistically, EGFR recruited mitogen-activated protein kinase kinase kinase 3 (MEKK3), an upstream kinase of ERK5, in a TRAF4-dependent manner. Thus, our data suggest that an EGFR-TRAF4-MEKK3-ERK5 axis promotes the proliferation of tumor cells, and this may be a potential target for therapeutic intervention of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/genética , MAP Quinase Quinase Quinase 3/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fosforilação , Fator 4 Associado a Receptor de TNF/genética , Fator 4 Associado a Receptor de TNF/metabolismo
5.
J Cell Biol ; 221(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35695893

RESUMO

Atherosclerosis, the major cause of myocardial infarction and stroke, results from converging inflammatory, metabolic, and biomechanical factors. Arterial lesions form at sites of low and disturbed blood flow but are suppressed by high laminar shear stress (LSS) mainly via transcriptional induction of the anti-inflammatory transcription factor, Kruppel-like factor 2 (Klf2). We therefore performed a whole genome CRISPR-Cas9 screen to identify genes required for LSS induction of Klf2. Subsequent mechanistic investigation revealed that LSS induces Klf2 via activation of both a MEKK2/3-MEK5-ERK5 kinase module and mitochondrial metabolism. Mitochondrial calcium and ROS signaling regulate assembly of a mitophagy- and p62-dependent scaffolding complex that amplifies MEKK-MEK5-ERK5 signaling. Blocking the mitochondrial pathway in vivo reduces expression of KLF2-dependent genes such as eNOS and inhibits vascular remodeling. Failure to activate the mitochondrial pathway limits Klf2 expression in regions of disturbed flow. This work thus defines a connection between metabolism and vascular inflammation that provides a new framework for understanding and developing treatments for vascular disease.


Assuntos
Células Endoteliais , Fatores de Transcrição Kruppel-Like , Mitocôndrias , Estresse Mecânico , Aterosclerose/patologia , Sistemas CRISPR-Cas , Sinalização do Cálcio , Células Endoteliais/metabolismo , Humanos , Inflamação , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , MAP Quinase Quinase 5 , MAP Quinase Quinase Quinase 2 , MAP Quinase Quinase Quinase 3 , Mitocôndrias/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Espécies Reativas de Oxigênio
6.
Br J Cancer ; 127(2): 237-248, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35637410

RESUMO

BACKGROUND: Histone deacetylases (HDACs) have been shown to be involved in tumorigenesis, but their precise role and molecular mechanisms in gastric cancer (GC) have not yet been fully elucidated. METHODS: Bioinformatics screening analysis, qRT-PCR, and immunohistochemistry (IHC) were used to identify the expression of HDAC4 in GC. In vitro and in vivo functional assays illustrated the biological function of HDAC4. RNA-seq, GSEA pathway analysis, and western blot revealed that HDAC4 activated p38 MAPK signalling. Immunofluorescence, western blot, and IHC verified the effect of HDAC4 on autophagy. ChIP and dual-luciferase reporter assays demonstrated that the transcriptional regulation mechanism of HDAC4 and ATG4B. RESULTS: HDAC4 is upregulated in GC and correlates with poor prognosis. In vitro and in vivo assays showed that HDAC4 contributes to the malignant phenotype of GC cells. HDAC4 inhibited the MEF2A-driven transcription of ATG4B and prevented MEKK3 from p62-dependent autophagic degradation, thus activating p38 MAPK signalling. Reciprocally, the downstream transcription factor USF1 enhanced HDAC4 expression by regulating HDAC4 promoter activity, forming a positive feedback loop and continuously stimulating HDAC4 expression and p38 MAPK signalling activation. CONCLUSION: HDAC4 plays an oncogenic role in GC, and HDAC4-based targeted therapy would represent a novel strategy for GC treatment.


Assuntos
MAP Quinase Quinase Quinase 3/metabolismo , MicroRNAs , Neoplasias Gástricas , Autofagia/genética , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , MicroRNAs/farmacologia , Proteínas Repressoras/genética , Neoplasias Gástricas/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
7.
Blood ; 139(19): 2942-2957, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35245372

RESUMO

The hematopoietic stem cells (HSCs) that produce blood for the lifetime of an animal arise from RUNX1+ hemogenic endothelial cells (HECs) in the embryonic vasculature through a process of endothelial-to-hematopoietic transition (EHT). Studies have identified inflammatory mediators and fluid shear forces as critical environmental stimuli for EHT, raising the question of how such diverse inputs are integrated to drive HEC specification. Endothelial cell MEKK3-KLF2/4 signaling can be activated by both fluid shear forces and inflammatory mediators, and it plays roles in cardiovascular development and disease that have been linked to both stimuli. Here we demonstrate that MEKK3 and KLF2/4 are required in endothelial cells for the specification of RUNX1+ HECs in both the yolk sac and dorsal aorta of the mouse embryo and for their transition to intraaortic hematopoietic cluster (IAHC) cells. The inflammatory mediators lipopolysaccharide and interferon-γ increase RUNX1+ HECs in an MEKK3-dependent manner. Maternal administration of catecholamines that stimulate embryo cardiac function and accelerate yolk sac vascular remodeling increases EHT by wild-type but not MEKK3-deficient endothelium. These findings identify MEKK-KLF2/4 signaling as an essential pathway for EHT and provide a molecular basis for the integration of diverse environmental inputs, such as inflammatory mediators and hemodynamic forces, during definitive hematopoiesis.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Hemangioblastos , Hematopoese , Animais , Diferenciação Celular , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Endotélio/metabolismo , Hemangioblastos/citologia , Hemangioblastos/metabolismo , Hemodinâmica , Mediadores da Inflamação/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , MAP Quinase Quinase Quinase 3/metabolismo , Camundongos
8.
J Mol Histol ; 53(2): 257-271, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35050465

RESUMO

Gastric cancer (GC) is an aggressive malignancy with high incidence and mortality. Radiotherapy is a common treatment for patients with advanced GC. Many long noncoding RNAs (lncRNAs) have been verified to affect the radiosensitivity of multiple cancers in previous studies. Nevertheless, whether lncRNA opioid growth factor receptor pseudogene 1 (OGFRP1) affects the radiosensitivity of GC has not been determined. We hypothesized that OGFRP1 might affect cellular processes in GC development. The present study aims to explore the role of OGFRP1 in GC development. First, high expression of OGFRP1 in GC tissues and cells was determined through RT-qPCR. Subsequently, functional assays including colony formation assays, 5-Ethynyl-2'-deoxyuridine assays and flow cytometry analyses were performed to probe the biological functions of OGFRP1 in GC. Specifically, the effect of OGFRP1 on the radiosensitivity of GC cells was detected. Subsequently, with the help of the starBase tool, we found that miR-149-5p might bind to OGFRP1, which was confirmed through a luciferase reporter assay. Furthermore, we identified that MAP3K3 was targeted by miR-149-5p in GC cells. Finally, the results from rescue experiments validated that enhanced MAP3K3 expression counteracted the effect of OGFRP1 silencing on GC cell proliferation, apoptosis and radiosensitivity. Overall, OGFRP1 was determined to promote GC cell proliferation while suppressing cell apoptosis and radiosensitivity by regulating the miR-149-5p/MAP3K3 axis.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , MAP Quinase Quinase Quinase 3 , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Tolerância a Radiação/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/radioterapia
9.
Aging Cell ; 21(2): e13543, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35080104

RESUMO

In this study, we explored the precise mechanisms underlying the receptor for advanced glycation end products (RAGE)-mediated neuronal loss and behavioral dysfunction induced by hyperglycemia. We used immunoprecipitation (IP) and GST pull-down assays to assess the interaction between RAGE and mitogen-activated protein kinase kinase 3 (MKK3). Then, we investigated the effect of specific mutation of RAGE on plasticity at hippocampal synapses and behavioral deficits in db/db mice through electrophysiological recordings, morphological assays, and behavioral tests. We discovered that RAGE binds MKK3 and that this binding is required for assembly of the MEKK3-MKK3-p38 signaling module. Mechanistically, we found that activation of p38 mitogen-activated protein kinase (MAPK)/NF-κB signaling depends on mediation of the RAGE-MKK3 interaction by C-terminal RAGE (ctRAGE) amino acids (AAs) 2-5. We found that ctRAGE R2A-K3A-R4A-Q5A mutation suppressed neuronal damage, improved synaptic plasticity, and alleviated behavioral deficits in diabetic mice by disrupting the RAGE-MKK3 conjugation. High glucose induces direct binding of RAGE and MKK3 via ctRAGE AAs 2-5, which leads to assembly of the MEKK3-MKK3-p38 signaling module and subsequent activation of the p38MAPK/NF-κB pathway, and ultimately results in diabetic encephalopathy (DE).


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , MAP Quinase Quinase 3 , MAP Quinase Quinase Quinase 3 , Receptor para Produtos Finais de Glicação Avançada , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Cognição , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase Quinase 3/metabolismo , Camundongos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
J Thromb Haemost ; 20(3): 605-618, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34780114

RESUMO

BACKGROUND: Vascular injury initiates rapid platelet activation, which is critical for haemostasis, while it also causes fatal thrombotic diseases, such as myocardial infarction or ischemic stroke. OBJECTIVES: To study the inhibitory effects and underlying mechanisms of XJ-8, a natural compound isolated from Sanguis draxonis, on platelet activation and thrombosis. METHODS: The regulatory effects of XJ-8 on the dense granule release, thromboxane A2 (TxA2 ) synthesis, α-granule release, activation of integrin αIIbß3, and aggregation of platelets induced by multiple agonists were investigated in in vitro experiments. The effects of XJ-8 on bleeding time and FeCl3 -induced carotid artery thrombosis were also evaluated in in vivo experiments. Furthermore, we investigated the underlying mechanisms by which XJ-8 exerted its pharmacological effects. RESULTS: XJ-8 not only significantly inhibited the dense granule release, TxA2 synthesis, and aggregation of platelets induced by multiple agonists, but also exerted extending effects on bleeding time and therapeutic effects on thrombotic disease. In addition, XJ-8 selectively and moderately inhibited the activity of mitogen-activated protein kinase kinase kinase 3 (MAP3K3) and the activation of signalling pathways downstream MAP3K3, which play important roles in platelet activation. CONCLUSION: XJ-8 can inhibit platelet function and thrombosis by targeting MAP3K3 and has potential to be developed into a novel therapeutic agent for the treatment of thrombotic diseases.


Assuntos
MAP Quinase Quinase Quinase 3 , Trombose , Plaquetas/metabolismo , Medicamentos de Ervas Chinesas , Hemostasia , Humanos , MAP Quinase Quinase Quinase 3/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Resinas Vegetais , Trombose/tratamento farmacológico , Trombose/metabolismo
11.
Int Immunopharmacol ; 103: 108219, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34953447

RESUMO

Neuronal death and neuroinflammation play critical roles in regulating the progression of traumatic brain injury (TBI). However, associated pathogenesis has not been fully understood. Tumor necrosis factor receptor-associated factor 7 (TRAF7), as the unique noncanonical member of the TRAF family, mediates various essential biological processes. Nevertheless, the effects of TRAF7 on TBI are still unclear. In this study, we showed that TRAF7 expression was markedly up-regulated in cortex and hippocampus of mice after TBI. Brain-specific TRAF7 deletion markedly ameliorated neuronal death in cortical and hippocampal samples of TBI mice, accompanied with cognitive impairments and motor dysfunction. Moreover, the aberrant activation of astrocyte and microglia in cortex and hippocampus of TBI mice was significantly restrained by TRAF7 conditional knockout in brain, as indicated by the increased expression of GFAP and Iba1. In addition, the releases of pro-inflammatory factors caused by TBI were also considerably diminished by brain-specific TRAF7 knockout, which were largely through the blockage of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways. Importantly, mitogen-activated protein kinase kinase kinase 3 (MEKK3) expression levels were greatly enhanced in cortex and hippocampus of mice with TBI, while being dramatically ameliorated by TRAF7 knockout in brain. Mechanistically, we showed that TRAF7 directly interacted with MEKK3. Of note, MEKK3 over-expression almost abrogated the capacity of TRAF7 knockout to mitigate neuronal death and neuroinflammation in the isolated primary cortical neurons and glial cells upon oxygen-glucose-deprivation/reperfusion (OGD/R) stimulation. Collectively, TRAF7 may be an important molecular switch that leads to TBI in a MEKK3-dependent manner, and can be served as a therapeutic target for TBI treatment.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Encéfalo/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Apoptose , Células Cultivadas , Humanos , Terapia de Imunossupressão , MAP Quinase Quinase Quinase 3/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inflamação Neurogênica , Especificidade de Órgãos , Deleção de Sequência , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética
12.
Cell Death Dis ; 12(12): 1146, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887384

RESUMO

High-grade serous ovarian cancer (HGSOC) is a common and lethal cancer of the female reproductive system. Long non-coding RNAs (lncRNAs) are aberrantly expressed in various cancers and play crucial roles in tumour progression. However, their function and molecular mechanism in HGSOC remain largely unknown. Based on public databases and bioinformatics analyses, the overexpression of lncRNA CTBP1-DT in HGSOC tissues was detected and validated in a cohort of HGSOC tissues. High expression of lncRNA CTBP1-DT was associated with poor prognosis and was an independent risk factor for survival. Overexpression of lncRNA CTBP1-DT promoted malignant biological behaviour of HGSOC cells, whereas its depletion induced growth arrest of HGSOC cells by vitro and in vivo assays. Mechanistically, lncRNA CTBP1-DT could competitively bind to miR-188-5p to protect MAP3K3 from degradation. Moreover, our results revealed that ETV5 could specifically interact with the promoter of lncRNA CTBP1-DT and activate its transcription. Collectively, these results reveal a novel ETV5/lncRNA CTBP1-DT/miR-188-5p/MAP3K3 pathway for HGSOC progression and suggest that lncRNA CTBP1-DT might be a potential biomarker and therapeutic target for HGSOC.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MAP Quinase Quinase Quinase 3/genética , MAP Quinase Quinase Quinase 3/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima/genética
13.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911761

RESUMO

Arterial remodeling is an important adaptive mechanism that maintains normal fluid shear stress in a variety of physiologic and pathologic conditions. Inward remodeling, a process that leads to reduction in arterial diameter, plays a critical role in progression of such common diseases as hypertension and atherosclerosis. Yet, despite its pathogenic importance, molecular mechanisms controlling inward remodeling remain undefined. Mitogen-activated protein kinases (MAPKs) perform a number of functions ranging from control of proliferation to migration and cell-fate transitions. While the MAPK ERK1/2 signaling pathway has been extensively examined in the endothelium, less is known about the role of the MEKK3/ERK5 pathway in vascular remodeling. To better define the role played by this signaling cascade, we studied the effect of endothelial-specific deletion of its key upstream MAP3K, MEKK3, in adult mice. The gene's deletion resulted in a gradual inward remodeling of both pulmonary and systematic arteries, leading to spontaneous hypertension in both vascular circuits and accelerated progression of atherosclerosis in hyperlipidemic mice. Molecular analysis revealed activation of TGFß-signaling both in vitro and in vivo. Endothelial-specific TGFßR1 knockout prevented inward arterial remodeling in MEKK3 endothelial knockout mice. These data point to the unexpected participation of endothelial MEKK3 in regulation of TGFßR1-Smad2/3 signaling and inward arterial remodeling in artery diseases.


Assuntos
Hipertensão Pulmonar/patologia , MAP Quinase Quinase Quinase 1/metabolismo , MAP Quinase Quinase Quinase 3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Remodelação Vascular/fisiologia , Animais , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Membro Posterior/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipertensão Pulmonar/metabolismo , Isquemia , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 3/genética , Camundongos , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Moduladores Seletivos de Receptor Estrogênico/toxicidade , Transdução de Sinais , Tamoxifeno/toxicidade , Fator de Crescimento Transformador beta/genética
14.
PLoS Negl Trop Dis ; 15(12): e0010027, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34879059

RESUMO

BACKGROUND: The metacestode larval stage of the fox-tapeworm Echinococcus multilocularis causes alveolar echinococcosis by tumour-like growth within the liver of the intermediate host. Metacestode growth and development is stimulated by host-derived cytokines such as insulin, fibroblast growth factor, and epidermal growth factor via activation of cognate receptor tyrosine kinases expressed by the parasite. Little is known, however, concerning signal transmission to the parasite nucleus and cross-reaction with other parasite signalling systems. METHODOLOGY/PRINCIPAL FINDINGS: Using bioinformatic approaches, cloning, and yeast two-hybrid analyses we identified a novel mitogen-activated kinase (MAPK) cascade module that consists of E. multilocularis orthologs of the tyrosine kinase receptor interactor Growth factor receptor-bound 2, EmGrb2, the MAPK kinase kinase EmMEKK1, a novel MAPK kinase, EmMKK3, and a close homolog to c-Jun N-terminal kinase (JNK), EmMPK3. Whole mount in situ hybridization analyses indicated that EmMEKK1 and EmMPK3 are both expressed in E. multilocularis germinative (stem) cells but also in differentiated or differentiating cells. Treatment with the known JNK inhibitor SP600125 led to a significantly reduced formation of metacestode vesicles from stem cells and to a specific reduction of proliferating stem cells in mature metacestode vesicles. CONCLUSIONS/SIGNIFICANCE: We provide evidence for the expression of a MEKK1-JNK MAPK cascade module which, in mammals, is crucially involved in stress responses, cytoskeletal rearrangements, and apoptosis, in E. multilocularis stem cells. Inhibitor studies indicate an important role of JNK signalling in E. multilocularis stem cell survival and/or maintenance. Our data are relevant for molecular and cellular studies into crosstalk signalling mechanisms that govern Echinococcus stem cell function and introduce the JNK signalling cascade as a possible target of chemotherapeutics against echinococcosis.


Assuntos
Echinococcus multilocularis/enzimologia , Proteínas de Helminto/metabolismo , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , Células-Tronco/enzimologia , Animais , Proliferação de Células , Echinococcus multilocularis/genética , Echinococcus multilocularis/crescimento & desenvolvimento , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Proteínas de Helminto/genética , MAP Quinase Quinase 4/genética , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 3/genética , MAP Quinase Quinase Quinase 3/metabolismo , Sistema de Sinalização das MAP Quinases , Células-Tronco/citologia
15.
J Ovarian Res ; 14(1): 160, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789310

RESUMO

BACKGROUND: Circular RNA (circRNA) is recently found to participate in the regulation of tumor progression, including ovarian cancer. However, the application of circRNA SET domain bifurcated histone lysine methyltransferase 1 (circSETDB1) as a therapeutic target in serous ovarian cancer (SOC) remains to be elucidated. Herein, circSETDB1 role in SOC malignant progression and underlying mechanism are revealed. METHODS: The expression of circSETDB1, microRNA-129-3p (miR-129-3p) and mitogen-activated protein kinase kinase kinase 3 (MAP3K3) messenger RNA (mRNA) was detected by quantitative real-time polymerase chain reaction. Protein abundance was determined by western blot analysis. Cell proliferation, apoptosis, invasion and migration were demonstrated by cell counting kit-8 and 5-Ethynyl-29-deoxyuridine assays, flow cytometry analysis, transwell invasion assay and wound-healing assay, respectively. The interaction between miR-129-3p and circSETDB1 or MAP3K3 was predicted by online database, and identified by mechanism assays. The effect of circSETDB1 knockdown on tumor formation in vivo was unveiled by mouse model experiment. RESULTS: CircSETDB1 and MAP3K3 expression were apparently upregulated, whereas miR-129-3p expression was downregulated in SOC tissues and cells in comparison with normal fallopian tube tissues or normal ovarian epithelial cells. CircSETDB1 knockdown inhibited cell proliferation, invasion and migration, but induced cell apoptosis in SOC cells. Additionally, miR-129-3p inhibitor impaired circSETDB1 silencing-mediated SOC malignant progression. MiR-129-3p repressed SOC cell processes via binding to MAP3K3. Furthermore, circSETDB1 knockdown suppressed tumor growth in vivo. CONCLUSION: CircSETDB1 silencing repressed SOC malignant progression through miR-129-3p/MAP3K3 pathway. This study supports circSETDB1 as a new therapeutic target for SOC.


1. CircSETDB1 expression was increased in SOC tissues and cells.2. CircSETDB1 silencing repressed the malignancy of SOC cells.3. CircSETDB1 mediated SOC malignant progression by interacting with miR-129-3p.4. MAP3K3 served as a target gene of miR-129-3p.5. CircSETDB1 knockdown inhibited tumor formation in vivo.


Assuntos
Cistadenocarcinoma Seroso/genética , MAP Quinase Quinase Quinase 3/genética , MicroRNAs/genética , Neoplasias Ovarianas/genética , RNA Circular/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Cistadenocarcinoma Seroso/patologia , Feminino , Inativação Gênica , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Neoplasias Ovarianas/patologia
16.
Cell Cycle ; 20(13): 1334-1346, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34189997

RESUMO

Circular RNAs (circRNAs) are related to the progression of non-small cell lung cancer (NSCLC). However, the roles and mechanism of circ_0006988 are largely unknown. The levels of circ_0006988, Low-Density Lipoprotein Receptor Class A Domain Containing 3 (LDLRAD3), microRNA-491-5p (miR-491-5p), Mitogen-Activated Protein Kinase Kinase Kinase 3 (MAP3K3) were measured using quantitative real-time polymerase-chain reaction (qRT-PCR) and western blot assay. The characteristic of circ_0006988 was analyzed by RNase R assay and Actinomycin D assay. Functional analyses were processed by Cell Counting Kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, colony formation assay, flow cytometry analysis, transwell assay, wound-healing assay and tube formation assay. The interactions between circ_0006988 and miR-491-5p as well as miR-491-5p and MAP3K3 were analyzed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Murine xenograft model assay was processed to verify the function of circ_0006988 in vivo. Immunohistochemistry (IHC) assay was conducted to examine the level of Ki67. Circ_0006988 abundance was increased in NSCLC tissues and cells. Circ_0006988 silencing restrained NSCLC cell proliferation, migration, invasion and angiogenesis, and induced apoptosis. Circ_0006988 sponged miR-491-5p, which directly targeted MAP3K3. MiR-491-5p overexpression repressed NSCLC cell malignant behaviors. MiR-491-5p downregulation or MAP3K3 overexpression reversed the effect of circ_0006988 silencing on NSCLC cell progression. In addition, circ_0006988 knockdown reduced xenograft tumor growth. ssCirc_0006988 contributed to the development of NSCLC by miR-491-5p/MAP3K3 axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Movimento Celular , Proliferação de Células , Neoplasias Pulmonares/enzimologia , MAP Quinase Quinase Quinase 3/metabolismo , MicroRNAs/metabolismo , Neovascularização Patológica , RNA Circular/metabolismo , Células A549 , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MAP Quinase Quinase Quinase 3/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , RNA Circular/genética , Transdução de Sinais , Carga Tumoral
17.
Artigo em Inglês | MEDLINE | ID: mdl-34186154

RESUMO

Mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 3 (MEKK3) is a serine/threonine protein kinase that acts as a key regulator and is widely involved in various innate and acquired immune signaling pathways. In this study, we first cloned the complete open reading frame (ORF) of the MEKK3 gene (named CcMEKK3) in a hybrid snakehead (Channa maculate ♀ × Channa argus ♂). The full-length ORF of CcMEKK3 is 1851 bp, and encodes a putative protein of 616 amino acids containing a serine/threonine kinase catalytic (S-TKc) domain and a Phox and Bem1p (PB1) domain. A sequence alignment and phylogenetic tree analysis showed that CcMEKK3 is highly conserved relative to the MEKK3 proteins of other teleost species. CcMEKK3 was constitutively expressed in all the healthy hybrid snakehead tissues tested, with greatest expression in the immune tissues, such as the head kidney and spleen. The expression of CcMEKK3 was usually upregulated in the head kidney, spleen, and liver at different time points after infection with Nocardia seriolae or Aeromonas schubertii. Similarly, the dynamic expression levels of CcMEKK3 in head kidney leukocytes after stimulation revealed that CcMEKK3 was induced by LTA, LPS, and poly(I:C). In the subcellular localization analysis, CcMEKK3 was evenly distributed in the cytoplasm of HEK293T cells, and its overexpression significantly promoted the activities of NF-κB and AP-1. These results suggest that CcMEKK3 is involved in the immune defense against these two pathogens, and plays a crucial role in activating the NF-κB and MAPK signaling pathways.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/metabolismo , Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Imunidade Inata/imunologia , MAP Quinase Quinase Quinase 3/metabolismo , Nocardiose/imunologia , Aeromonas/imunologia , Aeromonas/metabolismo , Animais , Doenças dos Peixes/microbiologia , Proteínas de Peixes/imunologia , Peixes/metabolismo , Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , MAP Quinase Quinase Quinase 3/imunologia , Nocardia/imunologia , Nocardia/metabolismo , Nocardiose/metabolismo , Nocardiose/microbiologia
18.
Yonsei Med J ; 62(6): 535-544, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34027641

RESUMO

PURPOSE: Long non-coding RNAs (lncRNAs) are essential regulators in the development of ovarian cancer (OC). Nonetheless, the function of lncRNA DNM3 opposite strand/antisense RNA (DNM3OS) in OC remains unclear. This work aimed to investigate the biological roles and underlying mechanisms of DNM3OS in OC. MATERIALS AND METHODS: Quantitative real-time polymerase chain reaction was conducted to examine DNM3OS, microRNA (miR)-193a-3p, and mitogen-activated protein kinase 3 (MAP3K3) mRNA expression in OC tissues and cell lines. Kaplan-Meier survival analysis was employed to analyze the relationship between DNM3OS expression and the prognosis of OC patients. Cell counting kit-8, 5-ethynyl-2'-deoxyuridine, and transwell experiments were conducted to monitor cell proliferation, migration, and invasion, respectively. Western blot was applied to examine epithelial-mesenchymal transition associated protein (E-cadherin and N-cadherin) expression. Luciferase reporter gene and RNA immunoprecipitation experiments were performed to confirm the relationships among DNM3OS, miR-193a-3p, and MAP3K3. Pearson's correlation analysis was adopted to analyze the correlations among DNM3OS, miR-193a-3p, and MAP3K3 mRNA. RESULTS: DNM3OS expression was remarkably increased in OC tissues and cell lines, which was associated with the unfavorable prognosis of the patients. DNM3OS overexpression enhanced OC cell proliferation, migration, and invasion; suppressed E-cadherin protein expression; and facilitated N-cadherin protein expression, while the transfection of miR-193a-3p mimics had the opposite effects. DNM3OS directly interacted with miR-193a-3p, and miR-193a-3p targeted MAP3K3 by directly binding to 3'UTR. DNM3OS could up-regulate the expression of MAP3K3 via repressing miR-193a-3p expression. CONCLUSION: DNM3OS, as an oncogenic lncRNA, increases the malignancy of OC cells via regulation of an miR-193a-3p/MAP3K3 axis.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Humanos , MAP Quinase Quinase Quinase 3 , MicroRNAs/genética , Proteína Quinase 3 Ativada por Mitógeno , Neoplasias Ovarianas/genética , RNA Antissenso
19.
Nature ; 594(7862): 271-276, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33910229

RESUMO

Vascular malformations are thought to be monogenic disorders that result in dysregulated growth of blood vessels. In the brain, cerebral cavernous malformations (CCMs) arise owing to inactivation of the endothelial CCM protein complex, which is required to dampen the activity of the kinase MEKK31-4. Environmental factors can explain differences in the natural history of CCMs between individuals5, but why single CCMs often exhibit sudden, rapid growth, culminating in strokes or seizures, is unknown. Here we show that growth of CCMs requires increased signalling through the phosphatidylinositol-3-kinase (PI3K)-mTOR pathway as well as loss of function of the CCM complex. We identify somatic gain-of-function mutations in PIK3CA and loss-of-function mutations in the CCM complex in the same cells in a majority of human CCMs. Using mouse models, we show that growth of CCMs requires both PI3K gain of function and CCM loss of function in endothelial cells, and that both CCM loss of function and increased expression of the transcription factor KLF4 (a downstream effector of MEKK3) augment mTOR signalling in endothelial cells. Consistent with these findings, the mTORC1 inhibitor rapamycin effectively blocks the formation of CCMs in mouse models. We establish a three-hit mechanism analogous to cancer, in which aggressive vascular malformations arise through the loss of vascular 'suppressor genes' that constrain vessel growth and gain of a vascular 'oncogene' that stimulates excess vessel growth. These findings suggest that aggressive CCMs could be treated using clinically approved mTORC1 inhibitors.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Mutação , Neoplasias/genética , Animais , Animais Recém-Nascidos , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Mutação com Ganho de Função , Hemangioma Cavernoso do Sistema Nervoso Central/irrigação sanguínea , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Mutação com Perda de Função , MAP Quinase Quinase Quinase 3/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
20.
Am J Hum Genet ; 108(5): 942-950, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33891857

RESUMO

Cerebral cavernous malformations (CCMs) are vascular disorders that affect up to 0.5% of the total population. About 20% of CCMs are inherited because of familial mutations in CCM genes, including CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10, whereas the etiology of a majority of simplex CCM-affected individuals remains unclear. Here, we report somatic mutations of MAP3K3, PIK3CA, MAP2K7, and CCM genes in CCM lesions. In particular, somatic hotspot mutations of PIK3CA are found in 11 of 38 individuals with CCMs, and a MAP3K3 somatic mutation (c.1323C>G [p.Ile441Met]) is detected in 37.0% (34 of 92) of the simplex CCM-affected individuals. Strikingly, the MAP3K3 c.1323C>G mutation presents in 95.7% (22 of 23) of the popcorn-like lesions but only 2.5% (1 of 40) of the subacute-bleeding or multifocal lesions that are predominantly attributed to mutations in the CCM1/2/3 signaling complex. Leveraging mini-bulk sequencing, we demonstrate the enrichment of MAP3K3 c.1323C>G mutation in CCM endothelium. Mechanistically, beyond the activation of CCM1/2/3-inhibited ERK5 signaling, MEKK3 p.Ile441Met (MAP3K3 encodes MEKK3) also activates ERK1/2, JNK, and p38 pathways because of mutation-induced MEKK3 kinase activity enhancement. Collectively, we identified several somatic activating mutations in CCM endothelium, and the MAP3K3 c.1323C>G mutation defines a primary CCM subtype with distinct characteristics in signaling activation and magnetic resonance imaging appearance.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central/genética , MAP Quinase Quinase Quinase 3/genética , Mutação , Sequência de Aminoácidos , Classe I de Fosfatidilinositol 3-Quinases/genética , Células Endoteliais/metabolismo , Mutação em Linhagem Germinativa , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , MAP Quinase Quinase Quinase 3/metabolismo , Sistema de Sinalização das MAP Quinases , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA