RESUMO
The molecular and cellular organization of the primate cerebellum remains poorly characterized. We obtained single-cell spatial transcriptomic atlases of macaque, marmoset, and mouse cerebella and identified primate-specific cell subtypes, including Purkinje cells and molecular-layer interneurons, that show different expression of the glutamate ionotropic receptor Delta type subunit 2 (GRID2) gene. Distinct gene expression profiles were found in anterior, posterior, and vestibular regions in all species, whereas region-selective gene expression was predominantly observed in the granular layer of primates and in the Purkinje layer of mice. Gene expression gradients in the cerebellar cortex matched well with functional connectivity gradients revealed with awake functional magnetic resonance imaging, with more lobule-specific differences between primates and mice than between two primate species. These comprehensive atlases and comparative analyses provide the basis for understanding cerebellar evolution and function.
Assuntos
Atlas como Assunto , Callithrix , Córtex Cerebelar , Conectoma , Macaca , Receptores de Glutamato , Transcriptoma , Animais , Masculino , Camundongos , Callithrix/anatomia & histologia , Callithrix/genética , Córtex Cerebelar/metabolismo , Córtex Cerebelar/ultraestrutura , Interneurônios/metabolismo , Macaca/anatomia & histologia , Macaca/genética , Imageamento por Ressonância Magnética , Células de Purkinje/metabolismo , Receptores de Glutamato/metabolismo , Receptores de Glutamato/genética , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Análise de Célula Única , Especificidade da EspécieRESUMO
The role of hybridization in morphological diversification is a fundamental topic in evolutionary biology. However, despite the accumulated knowledge on adult hybrid variation, how hybridization affects ontogenetic allometry is less well understood. Here, we investigated the effects of hybridization on postnatal ontogenetic allometry in the skulls of a putative hybrid population of introduced Taiwanese macaques (Macaca cyclopis) and native Japanese macaques (Macaca fuscata). Genomic analyses indicated that the population consisted of individuals with varying degrees of admixture, formed by male migration from Japanese to Taiwanese macaques. For overall skull shape, ontogenetic trajectories were shifted by hybridization in a nearly additive manner, with moderate transgressive variation observed throughout development. In contrast, for the maxillary sinus (hollow space in the face), hybrids grew as fast as Taiwanese macaques, diverging from Japanese macaques, which showed slow growth. Consequently, adult hybrids showed a mosaic pattern, that is, the maxillary sinus is as large as that of Taiwanese macaques, while the overall skull shape is intermediate. Our findings suggest that the transgressive variation can be caused by prenatal shape modification and nonadditive inheritance on regional growth rates, highlighting the complex genetic and ontogenetic bases underlying hybridization-induced morphological diversification.
Assuntos
Macaca fuscata , Crânio , Animais , Masculino , Crânio/anatomia & histologia , Macaca/anatomia & histologia , Macaca/genética , Evolução BiológicaRESUMO
Motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down the precentral gyrus from foot to face representations1,2, despite evidence for concentric functional zones3 and maps of complex actions4. Here, using precision functional magnetic resonance imaging (fMRI) methods, we find that the classic homunculus is interrupted by regions with distinct connectivity, structure and function, alternating with effector-specific (foot, hand and mouth) areas. These inter-effector regions exhibit decreased cortical thickness and strong functional connectivity to each other, as well as to the cingulo-opercular network (CON), critical for action5 and physiological control6, arousal7, errors8 and pain9. This interdigitation of action control-linked and motor effector regions was verified in the three largest fMRI datasets. Macaque and pediatric (newborn, infant and child) precision fMRI suggested cross-species homologues and developmental precursors of the inter-effector system. A battery of motor and action fMRI tasks documented concentric effector somatotopies, separated by the CON-linked inter-effector regions. The inter-effectors lacked movement specificity and co-activated during action planning (coordination of hands and feet) and axial body movement (such as of the abdomen or eyebrows). These results, together with previous studies demonstrating stimulation-evoked complex actions4 and connectivity to internal organs10 such as the adrenal medulla, suggest that M1 is punctuated by a system for whole-body action planning, the somato-cognitive action network (SCAN). In M1, two parallel systems intertwine, forming an integrate-isolate pattern: effector-specific regions (foot, hand and mouth) for isolating fine motor control and the SCAN for integrating goals, physiology and body movement.
Assuntos
Mapeamento Encefálico , Cognição , Córtex Motor , Mapeamento Encefálico/métodos , Mãos/fisiologia , Imageamento por Ressonância Magnética , Córtex Motor/anatomia & histologia , Córtex Motor/fisiologia , Humanos , Recém-Nascido , Lactente , Criança , Animais , Macaca/anatomia & histologia , Macaca/fisiologia , Pé/fisiologia , Boca/fisiologia , Conjuntos de Dados como AssuntoRESUMO
Night monkeys (Aotus) are the only genus of monkeys within the Simian lineage that successfully occupy a nocturnal environmental niche. Their behavior is supported by their sensory organs' distinctive morphological features; however, little is known about their evolutionary adaptations in sensory regions of the cerebral cortex. Here, we investigate this question by exploring the cortical organization of night monkeys using high-resolution in-vivo brain MRI and comparative cortical-surface T1w/T2w myeloarchitectonic mapping. Our results show that the night monkey cerebral cortex has a qualitatively similar but quantitatively different pattern of cortical myelin compared to the diurnal macaque and marmoset monkeys. T1w/T2w myelin and its gradient allowed us to parcellate high myelin areas, including the middle temporal complex (MT +) and auditory cortex, and a low-myelin area, Brodmann area 7 (BA7) in the three species, despite species differences in cortical convolutions. Relative to the total cortical-surface area, those of MT + and the auditory cortex are significantly larger in night monkeys than diurnal monkeys, whereas area BA7 occupies a similar fraction of the cortical sheet in all three species. We propose that the selective expansion of sensory areas dedicated to visual motion and auditory processing in night monkeys may reflect cortical adaptations to a nocturnal environment.
Assuntos
Aotidae , Bainha de Mielina , Animais , Córtex Cerebral , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Macaca/anatomia & histologia , Mapeamento EncefálicoRESUMO
Mandibular morphology is determined not only by dietary habits, but also by sexual selection and allometry in primates. It is well-known that African papionins show intra- and interspecific variations through varied extensions of a common ontogenetic allometric trajectory in the face. Here, we used geometric morphometrics to compare the ontogenetic trajectories of large-bodied Japanese macaques and small-bodied long-tailed macaques in the sister clade of African papionins. The two species showed a major common allometric trend that was comparable to that of African papionins, but the allometric trajectory was transposed parallel to each other with few interspecies differences in mandibular shape. A minor allometric trend occurred before the eruption of the first molar. During extensino of this allometric trend in Japanese macaques, mandibular shape becomes mechanically suitable for processing tough food items in their dietary repertoire in winter. The decoupling of size and shape in the major allometric trend can allow for adaptive modifications in mandibular shape, which in turn may play a central role in speciation in macaques. Compared to other African papionins, macaques are widely distributed in temperate areas and have survived in fluctuating climates and habitats. Thus, evolutionary modifications that occur in different ontogenetic bases can result in variations in size and shape that are uniquely adaptive for a given clade.
Assuntos
Macaca , Crânio , Animais , Macaca/anatomia & histologia , Crânio/anatomia & histologia , Macaca fuscata , Mandíbula/anatomia & histologia , Evolução BiológicaRESUMO
The connectivity among architectonically defined areas of the frontal, parietal, and temporal cortex of the macaque has been extensively mapped through tract-tracing methods. To investigate the statistical organization underlying this connectivity, and identify its underlying architecture, we performed a hierarchical cluster analysis on 69 cortical areas based on their anatomically defined inputs. We identified 10 frontal, four parietal, and five temporal hierarchically related sets of areas (clusters), defined by unique sets of inputs and typically composed of anatomically contiguous areas. Across the cortex, clusters that share functional properties were linked by dominant information processing circuits in a topographically organized manner that reflects the organization of the main fiber bundles in the cortex. This led to a dorsal-ventral subdivision of the frontal cortex, where dorsal and ventral clusters showed privileged connectivity with parietal and temporal areas, respectively. Ventrally, temporofrontal circuits encode information to discriminate objects in the environment, their value, emotional properties, and functions such as memory and spatial navigation. Dorsal parietofrontal circuits encode information for selecting, generating, and monitoring appropriate actions based on visual-spatial and somatosensory information. This organization may reflect evolutionary antecedents, in which the vertebrate pallium, which is the ancestral cortex, was defined by a ventral and lateral olfactory region and a medial hippocampal region.NEW & NOTEWORTHY The study of cortical connectivity is crucial for understanding brain function and disease. We show that temporofrontal and parietofrontal networks in the macaque can be described in terms of circuits among clusters of areas that share similar inputs and functional properties. The resulting overall architecture described a dual subdivision of the frontal cortex, consistent with the main cortical fiber bundles and an evolutionary trend that underlies the organization of the cortex in the macaque.
Assuntos
Lobo Frontal , Macaca , Rede Nervosa , Lobo Parietal , Lobo Temporal , Animais , Análise por Conglomerados , Lobo Frontal/anatomia & histologia , Lobo Frontal/fisiologia , Macaca/anatomia & histologia , Macaca/fisiologia , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Lobo Parietal/anatomia & histologia , Lobo Parietal/fisiologia , Lobo Temporal/anatomia & histologia , Lobo Temporal/fisiologiaAssuntos
Fósseis , Macaca/anatomia & histologia , Ulna/anatomia & histologia , Animais , Hominidae , ItáliaRESUMO
The facial muscles have significant roles for vocalization, feeding, and facial expression in both human and non-human primates. Of these, the anatomy of the incisivus labii superioris (ILS) and incisivus labii inferioris (ILI), which are considered as the accessory bundle of the orbicularis oris (OO) in humans, has rarely been documented in the literature. Our current understanding of the function of the ILS and ILI is that they probably retract the upper and lower lips. Also, there is no account of these muscles in non-human primates in the current literature. The aim of this study was to reveal the ILS and ILI in non-human primates. Five Macaca fascicularis, one Macaca fuscata, one Macaca fuscata yakui, and one Pan troglodytes were dissected. Seven formalin-fixed cadavers and one fresh cadaver were included. Both the ILS and ILI were observed in all specimens. The ILS originated from the incisive fossa of the maxilla and inserted into the OO. The mentalis (MT) and ILI arose from the incisive fossa of the mandible and inserted into the OO and the skin of the chin area. The MT and ILI in the P. troglodytes examined were thicker than in the other three non-human species, and the ILS and ILI in the three macaques were similar in shape to those of humans. The difference of these muscles may result in different functions of the lip such as during vocalization, feeding, and facial expression.
Assuntos
Músculos Faciais/anatomia & histologia , Macaca/anatomia & histologia , Pan troglodytes/anatomia & histologia , Animais , Expressão Facial , Lábio/anatomia & histologia , Vocalização AnimalRESUMO
BACKGROUND: Recently, some studies about primates have claimed the importance of the vessels to maintain the muscles working; in fact, the arterial supply could suggest how strenuous the muscular performance is associated to locomotor behavior. The aim of this work was to study the anatomy of the arteries of the forelimbs of different groups of primates to evidence a general arterial model in comparative terms. METHODS: We propose a biophysical explanation for the arterial pattern of the forelimbs of primates' groups. RESULTS: Three pattern of the forelimb arteries in Primates were descript and the differences were explained using mathematical formulas. CONCLUSIONS: The anatomical study about the comparative anatomy of the arteries of the forelimbs of primates provided hypothesis about the three observed models, mainly in relation to brachial artery division and the number of the palmar arches, in mathematical models' terms.
Assuntos
Membro Anterior/irrigação sanguínea , Macaca/anatomia & histologia , Pan troglodytes/anatomia & histologia , Papio/anatomia & histologia , Sapajus/anatomia & histologia , Animais , Feminino , Humanos , Masculino , Modelos BiológicosRESUMO
The present study aimed to conduct a comparative assessment of the external morphology, relative tail length and colour variation (RGB additive colour model) of Macaca munzala, Tawang and Macaca assamensis, Goalpara (southern Brahmaputra population), using a non-invasive photogrammetry method. The study revealed that the relative tail length of M. munzala (0.43 ± 0.03) is similar to that of M. assamensis assamensis, a subspecies of M. assamensis. On the other hand, the relative tail length of M. assamensis, Goalpara (0.61 ± 0.04) is similar to M. assamensis pelops, the other subspecies of M. assamensis. A total of 12 external morphological traits were observed and similarities found between the two studied populations. The study also found that the species-specific traits of M. munzala such as "dark patch of the crown whorl", "dark patch of hair at the temporal side", "spectacle appearance around eyes" and "whip-like tail appearance" in the infant and "stocky tail" are present in M. assamensis, Goalpara as well. Likewise, the "chin and cheek whiskers" are found in adult female individuals of both species. The comparative assessment of the dorsal coat colour (RGB value) revealed a darker brown dorsal coat in M. munzala (R 123.14 ± 11.62; G 107.71 ± 10.37, B 89.43 ± 9.21) than in M. assamensis, Goalpara (R 136 ± 23.57, G 112 ± 15.63, B 97.83 ± 13.04). The comparative assessment of facial skin colour among the adult individuals showed that the male M. munzala has darker brown facial skin than that of M. assamensis, whereas the female M. munzala shows darker reddish facial skin compared to M. assamensis, Goalpara. The species-specific traits of M. leucogenys were also compared, and the traits "chin and cheek whiskers", "darker dorsal coat" and "round penile" appearance have a striking resemblance to those of the M. munzala population of Tawang. Thus, the external morphological traits that are being used to distinguish these macaque species are highly variable even within the same species, and there is an urgent need to identify more precise species-specific morphological traits.
Assuntos
Macaca/anatomia & histologia , Macaca/classificação , Pelo Animal , Animais , Cor , Feminino , Índia , Masculino , Fotogrametria , Especificidade da Espécie , Cauda/anatomia & histologiaRESUMO
The temporal association cortex is considered a primate specialization and is involved in complex behaviors, with some, such as language, particularly characteristic of humans. The emergence of these behaviors has been linked to major differences in temporal lobe white matter in humans compared with monkeys. It is unknown, however, how the organization of the temporal lobe differs across several anthropoid primates. Therefore, we systematically compared the organization of the major temporal lobe white matter tracts in the human, gorilla, and chimpanzee great apes and in the macaque monkey. We show that humans and great apes, in particular the chimpanzee, exhibit an expanded and more complex occipital-temporal white matter system; additionally, in humans, the invasion of dorsal tracts into the temporal lobe provides a further specialization. We demonstrate the reorganization of different tracts along the primate evolutionary tree, including distinctive connectivity of human temporal gray matter.
Assuntos
Conectoma , Hominidae/anatomia & histologia , Macaca/anatomia & histologia , Lobo Temporal/anatomia & histologia , Substância Branca/anatomia & histologia , Animais , HumanosRESUMO
OBJECTIVES: The cranium is generally considered more reliable than the postcranium for assessing primate taxonomy, although recent research suggests that pelvic shape may be equally reliable. However, little research has focused on intrageneric taxonomic discrimination. Here, we test the relative taxonomic efficacy of the cranium and os coxa for differentiating two macaque species, with and without considering sexual dimorphism. MATERIALS AND METHODS: Geometric morphometric analyses were performed on cranial and os coxa landmarks for 119 adult Macaca fascicularis, M. mulatta, and Chlorocebus pygerythrus. Among-group shape variation was examined using canonical variates analyses. Cross-validated discriminant function analysis provided rates of correct group classification. Additionally, average morphological distances were compared with neutral genetic distances. RESULTS: Macaque species were clearly differentiated, both cranially and pelvically, when sex was not considered. Males were more often correctly classified based on the os coxa, while female classification rates were high for both morphologies. Female crania and male os coxa were differentiated approximately the same as genetic distance, while male crania were more similar (convergent), and female os coxa were more divergent than expected based on genetic distance. DISCUSSION: The hypothesis that cranial and os coxal shape can be used to discriminate among macaque species was supported. The cranium was better at differentiating females, while the os coxa was better at differentiating male macaques. Hence, there is no a priori reason for preferring the cranium when assessing intragenetic taxonomic relationships, but the effects of high levels of sexual dimorphism must be corrected for to accurately assess taxonomic signatures.
Assuntos
Macaca/anatomia & histologia , Macaca/classificação , Ossos Pélvicos/anatomia & histologia , Crânio/anatomia & histologia , Animais , Antropologia Física , Chlorocebus aethiops/anatomia & histologia , Chlorocebus aethiops/classificação , Feminino , Masculino , FilogeniaRESUMO
Evolutionary adaptations of temporo-parietal cortex are considered to be a critical specialization of the human brain. Cortical adaptations, however, can affect different aspects of brain architecture, including local expansion of the cortical sheet or changes in connectivity between cortical areas. We distinguish different types of changes in brain architecture using a computational neuroanatomy approach. We investigate the extent to which between-species alignment, based on cortical myelin, can predict changes in connectivity patterns across macaque, chimpanzee, and human. We show that expansion and relocation of brain areas can predict terminations of several white matter tracts in temporo-parietal cortex, including the middle and superior longitudinal fasciculus, but not the arcuate fasciculus. This demonstrates that the arcuate fasciculus underwent additional evolutionary modifications affecting the temporal lobe connectivity pattern. This approach can flexibly be extended to include other features of cortical organization and other species, allowing direct tests of comparative hypotheses of brain organization.
How did language evolve? Since the human lineage diverged from that of the other great apes millions of years ago, changes in the brain have given rise to behaviors that are unique to humans, such as language. Some of these changes involved alterations in the size and relative positions of brain areas, while others required changes in the connections between those regions. But did these changes occur independently, or can the changes observed in one actually explain the changes we see in the other? One way to answer this question is to use neuroimaging to compare the brains of related species, using different techniques to examine different aspects of brain structure. Imaging a fatty substance called myelin, for example, can produce maps showing the size and position of brain areas. Measuring how easily water molecules diffuse through brain tissue, by contrast, provides information about connections between areas. Eichert et al. performed both types of imaging in macaques and healthy human volunteers, and compared the results to existing data from chimpanzees. Computer simulations were used to manipulate the myelin-based images so that equivalent brain areas in each species occupied the same positions. In most cases, the distortions or 'warping' needed to superimpose brain regions on top of one another also predicted the differences between species in the connections between those regions. This suggests that movement of brain regions over the course of evolution explain the differences previously observed in brain connectivity. But there was one notable exception, namely a bundle of fibers with a key role in language called the arcuate fasciculus. This structure follows a slightly different route through the brain in humans compared to chimpanzees and macaques. Eichert et al. show that this difference cannot be explained solely by changes in the positions of brain regions. Instead, the arcuate fasciculus underwent additional changes in its course, which may have contributed to the evolution of language. The framework developed by Eichert et al. can be used to study evolution in many different species. Interspecies comparisons can provide clues to how brain structure and activity relate to each other and to behavior, and this knowledge could ultimately help to understand and treat brain disorders.
Assuntos
Mapeamento Encefálico/veterinária , Macaca/anatomia & histologia , Pan troglodytes/anatomia & histologia , Lobo Temporal/anatomia & histologia , Animais , Evolução Biológica , Mapeamento Encefálico/métodos , Humanos , Bainha de Mielina/metabolismo , Especificidade da EspécieRESUMO
Allen's rule (1877) predicts ecogeographical anatomical variation in appendage proportions as a function of body temperature regulation. This phenomenon has been tested in a variety of animal species. In macaques, relative tail length (RTL) is one of the most frequently measured appendages to test Allen's rule. These studies have relied on museum specimens or the invasive and time-consuming capturing of free-ranging individuals. To augment sample size and lessen these logistical limitations, we designed and validated a novel noninvasive technique using digitalized photographs processed using LibreCAD, an open-source 2D-computer-aided design (CAD) application. This was used to generate pixelated measurements to calculate an RTL equivalent, the Tail to Trunk Index (TTI) = (tail [tail base to anterior tip] pixel count/trunk [neck to tail base] pixel count). The TTI of 259 adult free-ranging toque macaques (Macaca sinica) from 36 locations between 7 and 2,087 m above sea level (m.a.s.l.) was used in the analysis. Samples were collected from all three putative subspecies (M. s. sinica, aurifrons, and opisthomelas), at locations representing all altitudinal climatic zones where they are naturally distributed. These data were used to test whether toque macaque tail length variation across elevation follows Allen's rule, predicting that RTL decreases with increasing elevation and lower temperature. Our results strongly supported this prediction. There was also a statistically significant, negative correlation between elevation and annual average temperature. The best predictor for the TTI index was elevation. Significant subspecies differences in RTL are linked in part to their ecological and altitudinal niche separation, but overall the variation is seen as the species' adaptation to climate. The method developed for the quick morphometric assessment of relative body proportions, applicable for use on unhabituated free-ranging animals, widens the range of materials available for research studying morphological characteristics and their evolution in primates.
Assuntos
Altitude , Tamanho Corporal , Macaca/anatomia & histologia , Cauda/anatomia & histologia , Animais , Clima , Macaca/fisiologia , Fotografação/métodos , Sri LankaRESUMO
Close human-wildlife interactions are rapidly growing, particularly due to wildlife tourism popularity. Using both laboratory and ecological observation studies we explored potential interspecies communication signalling mechanisms underpinning human-animal approach behaviour, which to date have been unclear. First impression ratings (n = 227) of Barbary macaques' social and health traits were related to the macaques' facial morphology and their observed behaviour supporting a shared facial signalling system in primates. These ratings significantly predicted intended approach to the macaques during hypothetical interactions. Finally, real-world interspecies proximity was observed and found to be best predicted by the interaction between human first impression perception and animal behaviour. Specifically, perceived macaque health in interaction with actual macaque dominance drives close interactions despite human proclivity to avoid dominant animals, raising safety concerns in interspecies interactions.
Assuntos
Animais Selvagens/psicologia , Julgamento , Macaca/psicologia , Comunicação não Verbal/fisiologia , Comportamento Social , Adolescente , Adulto , Idoso , Comunicação Animal , Animais , Animais Selvagens/anatomia & histologia , Face/anatomia & histologia , Reconhecimento Facial/fisiologia , Feminino , Humanos , Macaca/anatomia & histologia , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Inquéritos e Questionários/estatística & dados numéricos , Adulto JovemRESUMO
Although the relative expansion of the frontal cortex in primate evolution is generally accepted, the nature of the human uniqueness, if any, and between-species anatomo-functional comparisons of the frontal areas remain controversial. To provide a novel interpretation of the evolution of primate brains, sulcal morphological variability of the medial frontal cortex was assessed in Old World monkeys (macaque/baboon) and Hominoidea (chimpanzee/human). We show that both Hominoidea possess a paracingulate sulcus, which was previously thought to be unique to the human brain and linked to higher cognitive functions, such as mentalizing. Also, we show systematic sulcal morphological organization of the medial frontal cortex that can be traced from Old World monkeys to Hominoidea species, demonstrating an evolutionarily conserved organizational principle. These data provide a new framework to compare sulcal morphology, cytoarchitectonic areal distribution, connectivity, and function across the primate order, leading to clear predictions about how other primate brains might be anatomo-functionally organized.
Assuntos
Mapeamento Encefálico , Macaca/anatomia & histologia , Pan troglodytes/anatomia & histologia , Papio/anatomia & histologia , Córtex Pré-Frontal/anatomia & histologia , Animais , Evolução Biológica , Cognição/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , NeuroimagemRESUMO
Macaques are one of the most successful nonhuman primates, and morphological distinctions from their close relatives, African papionins, are easily detected by the naked eye. Nevertheless, evolutionary allometry often accounts for a large amount of the total variation and potentially hides and precludes the detection of morphological distinctions that exist between macaques and African papionins, thus distorting their phyletic comparison. Geometric morpgometric analyses were performed using landmark coordinates in cranial samples from macaques (N = 135) and African papionins (N = 152) to examine the variation in their facial shape. A common allometric trend was confirmed to represent a moderately long face in macaques as being small-to-moderate-bodied papionins. Macaques possessed many features that were distinct from those of African papionins, while they simultaneously showed a large intrageneric variation in every feature, which precluded the separation of some groups of macaques from African papionins. This study confirmed that a moderately smooth sagittal profile is present in non-Sulawesi macaques. It also confirmed that a well-developed anteorbital drop is distinct in Mandrillus and Theropithecus, but it showed that Papio resembles macaques regarding this feature. This finding showed that apparently equivalent features which can be detected by the naked eye were probably formed by different combinations of the principal patterns. It should be noted that the differences detected here between macaques and African papionins are revealed after appropriate adjustments are made to eliminate the allometric effects over the shape features. While landmark data sets still need to be customized for specific studies, the information provided by this article is expected to help such customization and to improve future phyletic evaluation of the fossil papionins.
Assuntos
Cercopithecinae/anatomia & histologia , Face/anatomia & histologia , Crânio/anatomia & histologia , África , Animais , Feminino , Macaca/anatomia & histologia , Masculino , Papio/anatomia & histologiaRESUMO
The common marmoset, a New World (platyrrhine) monkey, is currently being fast-tracked as a non-human primate model species, especially for genetic modification but also as a general-purpose model for research on the brain and behavior bearing on the human condition. Compared to the currently dominant primate model, the catarrhine macaque monkey, marmosets are notable for certain evolutionary specializations, including their propensity for twin births, their very small size (a result of phyletic dwarfism), and features related to their small size (rapid development and relatively short lifespan), which result in these animals yielding experimental results more rapidly and at lower cost. Macaques, however, have their own advantages. Importantly, macaques are more closely related to humans (which are also catarrhine primates) than are marmosets, sharing approximately 20 million more years of common descent, and are demonstrably more similar to humans in a variety of genomic, molecular, and neurobiological characteristics. Furthermore, the very specializations of marmosets that make them attractive as experimental subjects, such as their rapid development and short lifespan, are ways in which marmosets differ from humans and in which macaques more closely resemble humans. These facts warrant careful consideration of the trade-offs between convenience and cost, on the one hand, and biological realism, on the other, in choosing between non-human primate models of human biology. Notwithstanding the advantages marmosets offer as models, prudence requires continued commitment to research on macaques and other primate species.
Assuntos
Evolução Biológica , Callithrix/anatomia & histologia , Macaca/anatomia & histologia , Modelos Animais , Sistema Nervoso/anatomia & histologia , Animais , Callithrix/fisiologia , Macaca/fisiologiaRESUMO
The precuneus (PCun) is one of the most expanded areas of the association cortex and plays an important role in integrating information from different modalities. However, whether the functional architecture of PCun is shared by humans and macaques is an open question. We used both anatomical connectivity and task-dependent coactivation patterns to parcellate the human PCun and consistently identified three subregions in the human PCun using two independent datasets. Two subregions were located in the dorsal PCun and one subregion was located in the ventral PCun. This parcellation scheme for the PCun was supported by identifying the subregion-specific networks and by functional characterization. Then, the absolute and relative gray matter volume of precuneus in human and macaque was calculated and significantly smaller absolute and relative gray matter volume in macaque was identified. Next, three macaque PCun subregions were defined based on our tractographic atlas. Finally, the whole brain anatomical connectivity patterns and connectivity fingerprints with 17 predefined homologous target brain areas were mapped for each PCun subregion and revealed that the PCun shares similar anatomical connectivity patterns in humans and macaques. The similar anatomical connectivity patterns of PCun were validated by an independent in-house dataset. Our findings demonstrated that anatomical connectivity patterns can reflect the functional architecture of the PCun in humans and that the functional architecture of the PCun is similar in humans and macaques.
Assuntos
Conectoma , Substância Cinzenta/anatomia & histologia , Macaca/anatomia & histologia , Macaca/fisiologia , Imageamento por Ressonância Magnética , Lobo Parietal/anatomia & histologia , Lobo Parietal/fisiologia , Adulto , Animais , Atlas como Assunto , Substância Cinzenta/diagnóstico por imagem , Humanos , Lobo Parietal/diagnóstico por imagemRESUMO
Neuroscience models come in a wide range of scales and specificity, from mean-field rate models to large-scale networks of spiking neurons. There are potential trade-offs between simplicity and realism, versatility and computational speed. This paper is about large-scale cortical network models, and the question we address is one of scalability: would scaling down cell density impact a network's ability to reproduce cortical dynamics and function? We investigated this problem using a previously constructed realistic model of the monkey visual cortex that is true to size. Reducing cell density gradually up to 50-fold, we studied changes in model behavior. Size reduction without parameter adjustment was catastrophic. Surprisingly, relatively minor compensation in synaptic weights guided by a theoretical algorithm restored mean firing rates and basic function such as orientation selectivity to models 10-20 times smaller than the real cortex. Not all was normal in the reduced model cortices: intracellular dynamics acquired a character different from that of real neurons, and while the ability to relay feedforward inputs remained intact, reduced models showed signs of deficiency in functions that required dynamical interaction among cortical neurons. These findings are not confined to models of the visual cortex, and modelers should be aware of potential issues that accompany size reduction. Broader implications of this study include the importance of homeostatic maintenance of firing rates, and the functional consequences of feedforward versus recurrent dynamics, ideas that may shed light on other species and on systems suffering cell loss.