RESUMO
Tumor-associated inflammation drives cancer progression and therapy resistance, often linked to the infiltration of monocyte-derived tumor-associated macrophages (TAMs), which are associated with poor prognosis in various cancers. To advance immunotherapies, testing on immunocompetent pre-clinical models of human tissue is crucial. We have developed an in vitro model of microvascular networks with tumor spheroids or patient tissues to assess monocyte trafficking into tumors and evaluate immunotherapies targeting the human tumor microenvironment. Our findings demonstrate that macrophages in vascularized breast and lung tumor models can enhance monocyte recruitment via CCL7 and CCL2, mediated by CSF-1R. Additionally, a multispecific antibody targeting CSF-1R, CCR2, and neutralizing TGF-ß (CSF1R/CCR2/TGF-ß Ab) repolarizes TAMs towards an anti-tumoral M1-like phenotype, reduces monocyte chemoattractant protein secretion, and blocks monocyte migration. This antibody also inhibits monocyte recruitment in patient-specific vascularized tumor models. In summary, this vascularized tumor model recapitulates the monocyte recruitment cascade, enabling functional testing of innovative therapeutic antibodies targeting TAMs in the tumor microenvironment.
Assuntos
Monócitos , Receptor de Fator Estimulador de Colônias de Macrófagos , Receptores CCR2 , Microambiente Tumoral , Humanos , Receptores CCR2/metabolismo , Receptores CCR2/antagonistas & inibidores , Monócitos/metabolismo , Monócitos/imunologia , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Camundongos , Movimento Celular/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/patologiaRESUMO
Tumor-associated macrophages (TAMs) undergo metabolic reprogramming, encompassing glucose, amino acid, fatty acid metabolism, tricarboxylic acid (TCA) cycle, purine metabolism, and autophagy, within the tumor microenvironment (TME). The metabolic interdependencies between TAMs and tumor cells critically influence macrophage recruitment, differentiation, M2 polarization, and secretion of epithelial-mesenchymal transition (EMT)-related factors, thereby activating intratumoral EMT pathways and enhancing tumor cell invasion and metastasis. Tumor cell metabolic alterations, including hypoxia, metabolite secretion, aerobic metabolism, and autophagy, affect the TME's metabolic landscape, driving macrophage recruitment, differentiation, M2 polarization, and metabolic reprogramming, ultimately facilitating EMT, invasion, and metastasis. Additionally, macrophages can induce tumor cell EMT by reprogramming their aerobic glycolysis. Recent experimental and clinical studies have focused on the metabolic interactions between macrophages and tumor cells to control metastasis and inhibit tumor progression. This review highlights the regulatory role of TAM-tumor cell metabolic codependencies in EMT, offering valuable insights for TAM-targeted therapies in highly metastatic tumors. Modulating the metabolic interplay between tumors and TAMs represents a promising therapeutic strategy for treating patients with metastatic cancers.
Assuntos
Transição Epitelial-Mesenquimal , Metástase Neoplásica , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Macrófagos Associados a Tumor/metabolismo , Macrófagos/metabolismoRESUMO
BACKGROUND: Arginase is abundantly expressed in colorectal cancer and disrupts arginine metabolism, promoting the formation of an immunosuppressive tumor microenvironment. This significant factor contributes to the insensitivity of colorectal cancer to immunotherapy. Tumor-associated macrophages (TAMs) are major immune cells in this environment, and aberrant arginine metabolism in tumor tissues induces TAM polarization toward M2-like macrophages. The natural compound piceatannol 3'-O-glucoside inhibits arginase activity and activates nitric oxide synthase, thereby reducing M2-like macrophages while promoting M1-like macrophage polarization. METHODS: The natural compounds piceatannol 3'-O-glucoside and indocyanine green were encapsulated within microparticles derived from tumor cells, termed PG/ICG@MPs. The enhanced cancer therapeutic effect of PG/ICG@MP was assessed both in vitro and in vivo. RESULTS: PG/ICG@MP precisely targets the tumor site, with piceatannol 3'-O-glucoside concurrently inhibiting arginase activity and activating nitric oxide synthase. This process promotes increased endogenous nitric oxide production through arginine metabolism. The combined actions of nitric oxide and piceatannol 3'-O-glucoside facilitate the repolarization of tumor-associated macrophages toward the M1 phenotype. Furthermore, the increase in endogenous nitric oxide levels, in conjunction with the photodynamic effect induced by indocyanine green, increases the quantity of reactive oxygen species. This dual effect not only enhances tumor immunity but also exerts remarkable inhibitory effects on tumors. CONCLUSION: Our research results demonstrate the excellent tumor-targeting effect of PG/ICG@MPs. By modulating arginine metabolism to improve the tumor immune microenvironment, we provide an effective approach with clinical translational significance for combined cancer therapy.
Assuntos
Arginina , Neoplasias Colorretais , Macrófagos Associados a Tumor , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Arginina/metabolismo , Animais , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Arginase/metabolismo , Estilbenos/farmacologia , Óxido Nítrico/metabolismo , Camundongos , Micropartículas Derivadas de Células/metabolismo , Verde de Indocianina/metabolismo , Camundongos Endogâmicos BALB C , Polaridade Celular/efeitos dos fármacos , Microambiente TumoralRESUMO
Immunotherapy is a promising cancer treatment because of its ability to sustainably enhance the natural immune response. However, the effects of multiple immunotherapies, including ICIs, are limited by resistance to these agents, immune-related adverse events, and a lack of reasonable therapeutic targets available at the right time and place. The tumor microenvironment (TME), which features tumor-associated macrophages (TAMs), plays a significant role in resistance owing to its hypoxic microenvironment and lack of blood vessels, resulting in cancer immune evasion. To enhance immunotherapy, photodynamic therapy (PDT) can increase innate and adaptive immune responses through immunogenic cell death (ICD) and improve the TME. Traditional photosensitizers (PSs) also include novel nanomedicines to precisely target tumor cells or TAMs. Here, we reviewed and summarized current strategies and possible influencing factors for nanomedicines for cancer photoimmunotherapy.
Assuntos
Imunoterapia , Nanomedicina , Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Fotoquimioterapia/métodos , Imunoterapia/métodos , Neoplasias/terapia , Neoplasias/imunologia , Microambiente Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Fármacos Fotossensibilizantes/farmacologia , Animais , Terapia Combinada/métodosRESUMO
Autophagy-mediated chemoresistance is the core mechanism for therapeutic failure and poor prognosis in breast cancer. Breast cancer chemotherapy resistance is believed to be influenced by tumor-associated macrophages (TAMs), by which C-X-C motif chemokine ligand 1 (CXCL1) is the most abundant cytokine secreted. Yet, its role in mediating autophagy-related chemoresistance is still unknown. This study aimed to explore the molecular mechanisms by which TAMs/CXCL1 induced autophagy-mediated chemoresistance in breast cancer. It was found that TAMs/CXCL1 promoted chemoresistance of breast cancer cells through autophagy activation in vitro, and CXCL1 silence could enhance the chemosensitivity of paclitaxel-resistant breast cancer cells via autophagy inhibition. A high-throughput quantitative PCR chip and subsequent target validation showed that CXCL1 induced autophagy-mediated chemoresistance by inhibiting VHL-mediated IGF1R ubiquitination. The elevated IGF1R then promoted STAT3/HMGB1 signaling to facilitate autophagy. Additionally, TAMs/CXCL1 silence improved paclitaxel chemosensitivity by suppressing autophagy in breast cancer mice xenografts, and clinical studies further linked CXCL1 to IGF1R/HMGB1 signaling, as well as shorter free survival of recurrence. Taken together, these results not only uncover the crucial role of TAMs/CXCL1 signaling in mediating breast cancer chemoresistance through enhancing autophagy, but also shed novel light on the molecular mechanism of IGF1R/STAT3/HMGB1 pathway in regulating autophagy and its impact on cancer prognosis.
Assuntos
Autofagia , Neoplasias da Mama , Quimiocina CXCL1 , Resistencia a Medicamentos Antineoplásicos , Proteína HMGB1 , Receptor IGF Tipo 1 , Fator de Transcrição STAT3 , Transdução de Sinais , Macrófagos Associados a Tumor , Humanos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Proteína HMGB1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Camundongos , Fator de Transcrição STAT3/metabolismo , Receptor IGF Tipo 1/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Paclitaxel/farmacologia , Paclitaxel/uso terapêuticoRESUMO
Tumor associated macrophages (TAMs) are one of the most prominent immune cells in the breast tumor microenvironment (TME). TAMs are categorised into classically activated anti-tumorigenic M1 and alternatively activated pro-tumorigenic M2 macrophages. TAMs are known to promote cancer pathogenesis by facilitating cancer cell and cancer stem cell growth, angiogenesis, immune evasion, invasion, and migration. Consequently, TAMs drive cancer progression towards metastasis. This chapter describes the role of TME in driving monocyte recruitment and polarization toward the M2 phenotype. We also illustrate the modalities of intercellular networking such as paracrine signaling, exosomes, and tunneling nanotubes (TNTs) that TAMs and cancer cells employ within TME to communicate with each other and with other cells of TME to facilitate the dynamic process of cancer progression. Finally, we discuss the clinical implications of TAMs in breast cancer and potential therapeutic strategies targeting TAM recruitment, polarization, and TAM-mediated immune evasion for effective cancer therapy.
Assuntos
Neoplasias da Mama , Macrófagos , Microambiente Tumoral , Humanos , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Feminino , Microambiente Tumoral/imunologia , Macrófagos/imunologia , Animais , Comunicação Celular/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismoRESUMO
Tumor-associated macrophages (TAMs) constitute the largest number of immune cells in the tumor microenvironment (TME). They play an essential role in promoting tumor progression and metastasis, which makes them a potential therapeutic target for cancer treatment. TAMs are usually divided into two categories: pro-tumoral M2-like TAMs and antitumoral M1 phenotypes at either extreme. The reprogramming of M2-like TAMs toward a tumoricidal M1 phenotype is of particular interest for the restoration of antitumor immunity in cancer immunotherapy. Notably, nanomedicines have shown great potential for cancer therapy due to their unique structures and properties. This review will briefly describe the biological features and roles of TAMs in tumor, and then discuss recent advances in nanomedicine-mediated repolarization of TAMs for cancer immunotherapy. Finally, perspectives on nanomedicine-mediated repolarization of TAMs for effective cancer immunotherapy are also presented.
Assuntos
Imunoterapia , Nanomedicina , Neoplasias , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Macrófagos Associados a Tumor/imunologia , Neoplasias/terapia , Neoplasias/imunologia , AnimaisRESUMO
Non-muscle-invasive bladder cancer (NMIBC) presents management challenges due to its high recurrence rate and a complex tumor microenvironment (TME). This study investigated the effects of OncoTherad® (MRB-CFI1) nanoimmunotherapy on the TME of BCG-unresponsive NMIBC, focusing on alterations in monoamine oxidases (MAO-A and MAO-B) and immune markers: CD163, FOXP3, CD8, and CX3CR1. A comparative analysis of immunoreactivities was made before and after OncoTherad® treatment and an immune score (IS) was established to evaluate the correlation between immunological changes and clinical outcomes. Forty bladder biopsies of twenty patients were divided into 2 groups (n = 20/group): 1 (pre-treatment biopsies); and 2 (post-treatment biopsies). Our results showed stable MAO-A levels but a significant (p < 0.05) decrease in MAO-B immunoreactivity after treatment, suggesting OncoTherad®'s efficacy in targeting the tumor-promoting and immunosuppressive functions of MAO-B. Significant (p < 0.05) reductions in CD163 and FOXP3 immunoreactivities were seen in post-treatment biopsies, indicating a decreased presence of M2 macrophages and Tregs. Corroborating with these results, we observed reductions in tumor histological grading, focality and size, factors that collectively enhanced recurrence-free survival (RFS) and pathological complete response (PCR). Moreover, elevated IFN-γ immunoreactivities in treated biopsies correlated with increased counts of CD8+ T cells and higher CX3CR1 expression, underscoring OncoTherad®'s enhancement of cytotoxic T cell functionality and overall antitumor immunity. The IS revealed improvements in immune responses post-treatment, with higher scores associated with better RFS and PCR outcomes. These findings validate OncoTherad®'s capability to modify the bladder cancer microenvironment favorably, promoting effective immune surveillance and response.
Assuntos
Imunoterapia , Linfócitos do Interstício Tumoral , Monoaminoxidase , Microambiente Tumoral , Macrófagos Associados a Tumor , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Masculino , Feminino , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Pessoa de Meia-Idade , Idoso , Imunoterapia/métodos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Monoaminoxidase/metabolismo , Idoso de 80 Anos ou mais , Neoplasias não Músculo Invasivas da BexigaRESUMO
Triple-negative breast cancer (TNBC) is a challenging subtype of breast cancer characterized by the absence of estrogen and progesterone receptors and HER2 expression, leading to limited treatment options and a poorer prognosis. TNBC is particularly prevalent in premenopausal African-descent women and is associated with aggressive tumor behavior and higher metastatic potential. Tumor-associated macrophages (TAMs) are abundantly present within the TNBC microenvironment and play pivotal roles in promoting tumor growth, progression, and metastasis through various mechanisms, including immune suppression and enhancement of angiogenesis. This review provides an in-depth overview of TNBC, focusing on its epidemiology, its molecular characteristics, and the critical influence of TAMs. It discusses the pathological and molecular aspects that define TNBC's aggressive nature and reviews current and emerging therapeutic strategies aimed at targeting these dynamics. Special attention is given to the role of TAMs, exploring their potential as therapeutic targets due to their significant impact on tumor behavior and patient outcomes. This review aims to highlight the complexities of the TNBC landscape and to present the innovative approaches that are currently being pursued to improve therapeutic efficacy and patient survival.
Assuntos
Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Feminino , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , AnimaisRESUMO
Tumor-associated macrophages (TAMs) have been implicated as a tumor microenvironment (TME) cell population, which may be playing a vital role in the inhibition of effective T cell responses in the prostate TME. In this manuscript, we leverage a novel microscale cell culture platform, known as Stacks, to investigate mono-, co-, and tri-culture TME models comprised of prostate tumor cell lines, primary macrophages, and autologous T cells from patients with prostate cancer. Through multiplexed analysis of these multi-cellular prostate tumor models, we capture a dynamic interaction between primary TAMs and activated T cells that resulted in reciprocal proinflammatory activation of both cell populations upon interaction. These findings suggest that activated T cells are capable of reprogramming immunosuppressive TAMs in the context of prostate tumor models and that TAM reprogramming may play a key supportive role in restoring proinflammatory T cell tumor responses in the prostate TME.
Assuntos
Movimento Celular , Reprogramação Celular , Ativação Linfocitária , Neoplasias da Próstata , Linfócitos T , Microambiente Tumoral , Macrófagos Associados a Tumor , Masculino , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Humanos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Reprogramação Celular/imunologia , Ativação Linfocitária/imunologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Comunicação Celular/imunologia , Macrófagos/imunologia , Macrófagos/metabolismoRESUMO
Background: Hypoxic conditions in glioma are linked to tumor aggressiveness, poor prognosis, and treatment resistance. Long non-coding RNAs (lncRNAs) play key roles in the hypoxic and immune microenvironment of cancers, but their link to hypoxia-induced immunosuppression in high-grade glioma (HGG) is not well-studied. Methods: Gene expression profiles from TCGA and CGGA, along with clinical and genomic data, were analyzed. Bioinformatics methods including Consensus Clustering, Pearson correlation, and Cox regression analyses were used. Cell proliferation was assessed using cell counting kit-8 and colony formation assays. Glioma-macrophage interactions were evaluated using a co-culture model. Results: Hypoxia subtype clustering showed hypoxic stress correlates with worse HGG prognosis. Eight hypoxia-related lncRNAs (AP000695.4, OSMR-AS1, AC078883.3, RP11-545E17.3, LINC01057, LINC01503, TP73-AS1, and LINC00672) with prognostic value were identified, forming a risk signature that separated patients into distinct prognostic groups. Multivariate Cox regression confirmed the signature as an independent prognostic factor. High-risk patients had greater hypoxia, leading to an immunosuppressive environment and immunotherapy resistance via tumor-associated macrophages (TAMs). TP73-AS1 significantly influenced hypoxia-induced TAM infiltration and M2 polarization. Conclusions: We profiled hypoxic stress in HGG and developed an 8-lncRNA hypoxia-related signature predicting patient survival and immunotherapy response, emphasizing its role in hypoxia-induced immunosuppression.
Assuntos
Neoplasias Encefálicas , Regulação Neoplásica da Expressão Gênica , Glioma , RNA Longo não Codificante , Microambiente Tumoral , RNA Longo não Codificante/genética , Glioma/genética , Glioma/imunologia , Glioma/mortalidade , Glioma/patologia , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Prognóstico , Perfilação da Expressão Gênica , Transdução de Sinais , Linhagem Celular Tumoral , Hipóxia/genética , Hipóxia/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Feminino , Masculino , Gradação de Tumores , Transcriptoma , Hipóxia Tumoral/genética , Tolerância Imunológica/genéticaRESUMO
Macrophages in the tumor microenvironment, termed tumor-associated macrophages (TAMs), promote the progression of various cancer types. However, many mechanisms related to tumor-stromal interactions in epithelial ovarian cancer (EOC) progression remain unclear. High-grade serous ovarian carcinoma (HGSOC) is the most malignant EOC subtype. Herein, immunohistochemistry was performed on 65 HGSOC tissue samples, revealing that patients with a higher infiltration of CD68+, CD163+, and CD204+ macrophages had a poorer prognosis. We subsequently established an indirect co-culture system between macrophages and EOC cells, including HGSOC cells. The co-cultured macrophages showed increased expression of the TAM markers CD163 and CD204, and the co-cultured EOC cells exhibited enhanced proliferation, migration, and invasion. Cytokine array analysis revealed higher YKL40 secretion in the indirect co-culture system. The addition of YKL40 increased proliferation, migration, and invasion via extracellular signal-regulated kinase (Erk) signaling in EOC cells. The knockdown of integrin ß4, one of the YKL40 receptors, suppressed YKL40-induced proliferation, migration, and invasion, as well as Erk phosphorylation in some EOC cells. Database analysis showed that high-level expression of YKL40 and integrin ß4 correlated with a poor prognosis in patients with serous ovarian carcinoma. Therefore, the YKL40/integrin ß4 axis may play a role in ovarian cancer progression.
Assuntos
Proliferação de Células , Proteína 1 Semelhante à Quitinase-3 , Cistadenocarcinoma Seroso , Progressão da Doença , Integrina beta4 , Neoplasias Ovarianas , Macrófagos Associados a Tumor , Feminino , Humanos , Pessoa de Meia-Idade , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Movimento Celular , Proteína 1 Semelhante à Quitinase-3/metabolismo , Proteína 1 Semelhante à Quitinase-3/genética , Técnicas de Cocultura , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Integrina beta4/metabolismo , Integrina beta4/genética , Gradação de Tumores , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prognóstico , Transdução de Sinais , Microambiente Tumoral , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologiaRESUMO
The limited efficacy of cancer immunotherapy occurs due to the lack of spatiotemporal orchestration of adaptive immune response stimulation and immunosuppressive tumor microenvironment modulation. Herein, we report a nanoplatform fabricated using a pH-sensitive triblock copolymer synthesized by reversible addition-fragmentation chain transfer polymerization enabling in situ tumor vaccination and tumor-associated macrophages (TAMs) polarization. The nanocarrier itself can induce melanoma immunogenic cell death (ICD) via tertiary amines and thioethers concentrating on mitochondria to regulate metabolism in triggering endoplasmic reticulum stress and upregulating gasdermin D for pyroptosis as well as some features of ferroptosis and apoptosis. After the addition of ligand cyclic arginine-glycine-aspartic acid (cRGD) and mannose, the mixed nanocarrier with immune adjuvant resiquimod encapsulation can target B16F10 cells for in situ tumor vaccination and TAMs for M1 phenotype polarization. In vivo studies indicate that the mixed targeting nanoplatform elicits tumor ICD, dendritic cell maturation, TAM polarization, and cytotoxic T lymphocyte infiltration and inhibits melanoma volume growth. In combination with immune checkpoint blockade, the survival time of mice is markedly prolonged. This study provides a strategy for utilizing immunoactive materials in the innate and adaptive immune responses to augment cancer therapy.
Assuntos
Morte Celular Imunogênica , Imunoterapia , Melanoma Experimental , Nanopartículas , Polímeros , Animais , Morte Celular Imunogênica/efeitos dos fármacos , Camundongos , Imunoterapia/métodos , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Nanopartículas/química , Polímeros/química , Linhagem Celular Tumoral , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Feminino , Portadores de Fármacos/química , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Humanos , Apoptose/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismoRESUMO
Tumor associated macrophages (TAMs) are the predominant innate immune cells in the tumor microenvironment (TME). Cytokines induce the differentiation of macrophages into distinct types of TAMs, primarily characterized by two phenotypes: M1-polarized and M2-polarized. Cancer growth is suppressed by M1-polarized macrophages and promoted by M2-polarized macrophages. The regulation of macrophage M1 polarization has emerged as a promising strategy for cancer immunotherapy. Polysaccharides are important bioactive substances found in numerous plants, manifesting a wide range of noteworthy biological actions, such as immunomodulation, anti-tumor effects, antioxidant capabilities, and antiviral functions. In recent years, there has been a significant increase in interest regarding the immunomodulatory and anti-tumor properties of polysaccharides derived from plants. The regulatory impact of polysaccharides on the immune system is mainly associated with the natural immune response, especially with the regulation of macrophages. This review provides a thorough analysis of the regulatory effects and mechanisms of plant polysaccharides on TAMs. Additionally, an analysis of potential opportunities for clinical translation of plant polysaccharides as immune adjuvants is presented. These insights have greatly advanced the research of plant polysaccharides for immunotherapy in tumor-related applications.
Assuntos
Imunoterapia , Neoplasias , Polissacarídeos , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Polissacarídeos/farmacologia , Imunoterapia/métodos , Animais , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismoRESUMO
Glycolytic metabolic reprogramming in cancer is regulated by both cancer intrinsic variations like isocitrate dehydrogenase 1 (IDH1) status and non-cancerous microenvironment components like tumor associated macrophages (TAMs). However, the detailed mechanism remains elusive. Here, we identify hexosaminidase B (HEXB) as a key regulator for glycolysis in glioblastoma (GBM). HEXB intercellularly manipulates TAMs to promote glycolysis in GBM cells, while intrinsically enhancing cancer cell glycolysis. Mechanistically, HEXB elevation augments tumor HIF1α protein stability through activating ITGB1/ILK/YAP1; Subsequently, HIF1α promotes HEXB and multiple glycolytic gene transcription in GBM cells. Genetic ablation and pharmacological inhibition of HEXB elicits substantial therapeutic effects in preclinical GBM models, while targeting HEXB doesn't induce significant reduction in IDH1 mutant glioma and inhibiting IDH1 mutation-derived 2-hydroxyglutaric acid (2-HG) significantly restores HEXB expression in glioma cells. Our work highlights a HEXB driven TAMs-associated glycolysis-promoting network in GBM and provides clues for developing more effective therapies against it.
Assuntos
Neoplasias Encefálicas , Carcinogênese , Glioblastoma , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , Isocitrato Desidrogenase , beta-N-Acetil-Hexosaminidases , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Carcinogênese/genética , Camundongos , beta-N-Acetil-Hexosaminidases/metabolismo , beta-N-Acetil-Hexosaminidases/genética , Microambiente Tumoral/imunologia , Regulação Neoplásica da Expressão Gênica , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Integrina beta1/metabolismo , Integrina beta1/genética , Glutaratos/metabolismo , Mutação , Proteínas de Sinalização YAP/metabolismoRESUMO
Despite our increasing understanding of macrophage heterogeneity, drivers of macrophage phenotypic and functional polarization in the microenvironment are not fully elucidated. Here, our single-cell RNA sequencing data identify a subpopulation of macrophages expressing high levels of the phagocytic receptor MER proto-oncogene tyrosine kinase (MerTK+ macrophages), which is closely associated with melanoma progression and immunotherapy resistance. Adoptive transfer of the MerTK+ macrophages into recipient mice notably accelerated tumor growth regardless of macrophage depletion. Mechanistic studies further revealed that ALK And LTK Ligand 1 (ALKAL1), a target gene of aryl hydrocarbon receptor (AhR), facilitated MerTK phosphorylation, resulting in heightened phagocytic activity of MerTK+ macrophages and their subsequent polarization toward an immunosuppressive phenotype. Specifically targeted delivery of AhR antagonist to tumor-associated macrophages with mannosylated micelles could suppress MerTK expression and improved the therapeutic efficacy of anti-programmed cell death ligand 1 therapy. Our findings shed light on the regulatory mechanism of MerTK+ macrophages and provide strategies for improving the efficacy of melanoma immunotherapy.
Assuntos
Imunoterapia , Macrófagos , Melanoma , Receptores de Hidrocarboneto Arílico , c-Mer Tirosina Quinase , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , c-Mer Tirosina Quinase/metabolismo , c-Mer Tirosina Quinase/genética , Linhagem Celular Tumoral , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Imunoterapia/métodos , Macrófagos/metabolismo , Macrófagos/imunologia , Melanoma/terapia , Melanoma/imunologia , Melanoma/patologia , Melanoma/metabolismo , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Fosforilação , Proto-Oncogene Mas , Receptores de Hidrocarboneto Arílico/metabolismo , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismoRESUMO
Tumor immune microenvironment (TIME) spatial organization predicts outcome and therapy response in triple-negative breast cancer (TNBC). An immunosuppressive TIME containing elevated tumor-associated macrophages (TAM) and scarce CD8+ T cells is associated with poor outcome, but the regulatory mechanisms are poorly understood. Here we show that ETS1-driven caspase-1 expression, required for IL1ß processing and TAM recruitment, is negatively regulated by estrogen receptors alpha (ERα) and a defining feature of TNBC. Elevated tumoral caspase-1 is associated with a distinct TIME characterized by increased pro-tumoral TAMs and CD8+ T cell exclusion from tumor nests. Mouse models prove the functional importance of ERα, ETS1, caspase-1 and IL1ß in TIME conformation. Caspase-1 inhibition induces an immunoreactive TIME and reverses resistance to immune checkpoint blockade, identifying a therapeutically targetable mechanism that governs TNBC spatial organization.
Assuntos
Caspase 1 , Imunoterapia , Neoplasias de Mama Triplo Negativas , Macrófagos Associados a Tumor , Animais , Feminino , Humanos , Camundongos , Caspase 1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Interleucina-1beta/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Proto-Oncogênica c-ets-1/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismoRESUMO
The efficacy of immunotherapy targeting the PD-1/PD-L1 pathway in hepatocellular carcinoma (HCC) is limited. NOD-like receptors (NLRs) comprise a highly evolutionarily conserved family of cytosolic bacterial sensors, yet their impact on antitumor immunity against HCC remains unclear. In this study, we uncovered that NOD1, a well-studied member of NLR family, exhibits predominant expression in tumor-associated macrophages (TAMs) and correlates positively with improved prognosis and responses to anti-PD-1 treatments in patients with HCC. Activation of NOD1 in vivo augments antitumor immunity and enhances the effectiveness of anti-PD-1 therapy. Mechanistically, NOD1 activation resulted in diminished expression of perilipin 5, thereby hindering fatty acid oxidation and inducing free fatty acid accumulation in TAMs. This metabolic alteration promoted membrane localization of the costimulatory molecule OX40L in a lipid modification-dependent manner, thereby activating CD8+ T cells. These findings unveil a previously unrecognized role for NOD1 in fortifying antitumor T cell immunity in HCC, potentially advancing cancer immunotherapy.
Assuntos
Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteína Adaptadora de Sinalização NOD1 , Macrófagos Associados a Tumor , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Animais , Humanos , Camundongos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Linhagem Celular Tumoral , Imunoterapia/métodos , Masculino , Microambiente Tumoral/imunologiaRESUMO
Mitochondrial dysfunction, a hallmark of immune cell failure, affects the antitumor effects of immune cells through metabolic reprogramming, fission, fusion, biogenesis, and immune checkpoint signal transduction of mitochondria. According to researchers, restoring damaged mitochondrial function can enhance the efficacy of immune cells. Nevertheless, the mechanism of mitochondrial dysfunction in immune cells in patients with cancer is unclear. In this review, we recapitulate the impact of mitochondrial dysfunction on the antitumor effects of T cells, natural killer cells, dendritic cells, and tumor-associated macrophage and propose that targeting mitochondria can provide new strategies for antitumor therapy.
Assuntos
Mitocôndrias , Neoplasias , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Imunoterapia/métodos , Transdução de SinaisRESUMO
Purpose: The infiltration of immune cells and their roles of the infiltrating-immune cells in gastrointestinal stromal tumor (GIST) is still unclear. We aimed to discover the infiltration cell types and the relationship between the infiltrating-immune cells and the progression of GIST. Experimental design: Single-cell RNA sequencing were performed to discover types of the infiltrating-immune cells and to analyze CellChat between cells. Immunohistochemistry of 80 GIST samples were used to clarify the relation between macrophages and recurrence risk. In vitro, flow cytometry and Real-time PCR were performed to uncover a potential mechanism of tumor cell regulation of macrophages. Results: Tumor cells, macrophages, and T-cells were the predominant cell types. The MIF/CXCR4 axis was the most common ligand-receptor interaction between macrophages and tumor cells. As the risk increased, expression levels of CD68, CD206, MIF, and CXCR4 gradually increased. In vitro, we found that GIST882 was able to secrete MIF and GIST882 cell supernatant upregulated M2 polarization. Real-time PCR showed that expression levels of IL-10 mRNA and Arginase-1 mRNA were also the highest in the GIST882 cell supernatant group. Conclusions: These findings identify that macrophages are the most abundant infiltrating cells in GIST. The MIF/CXCR4 axis is the most common ligand-receptor interaction between macrophages and tumor cells. GIST cells can regulate macrophage M2 polarization through the MIF/CXCR4 axis.