Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67.732
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Food Res Int ; 186: 114336, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729713

RESUMO

Alternative milk products such as A2 milk are gaining popular stand within consumer market, for their healthy profile and expected greater digestibility characteristics. However, total mineral content and its bioaccessible profile have lacked in studies through the years, even more because of their relevance in public health. The present study aimed to evaluate the mineral profile of commercial A2 bovine milk (AT) and estimate the bioaccessibility of calcium, phosphorus and magnesium using the INFOGEST protocol. Non-A2 samples (NAT) were evaluated for comparison purpose. The determination of Ca, Mg, Na and K was performed by FAAS and total P was quantified by colorimetric method. Total protein content was determined by Kjeldahl method. Free amino acids were quantified by OPA method along the in vitro digestion stages. Total content of Ca, Na and P exhibited equivalent results between samples, although A2 milk showed elevated levels of total Mg and K in the analyzed batches. AT showed protein content equivalent to NAT. In addition, levels of free NH2 were observed 2 times higher in AT, during the first hour of pancreatic phase in the intestinal digestion. Bioaccessibility of Ca showed equivalent percentages for AT (12-42 %) and NAT (10-39 %). The observed low values were possibly derived from interferences with saturated fatty acids and standardized electrolytes during digestion. Similar amounts of bioaccessible Mg were found for all milk samples (35-97 %), while A2 samples evidenced percentages of bioaccessible P exceeding 60 % across the three batches. Despite the health benefits associated to A2 milk, the study did not evidence clear distinction from non-A2 milk in terms of enhanced essential mineral solubility in digestive tract simulation, considering the association of greater digestibility expected for A2 milk.


Assuntos
Aminoácidos , Disponibilidade Biológica , Digestão , Leite , Minerais , Animais , Leite/química , Aminoácidos/análise , Minerais/análise , Bovinos , Magnésio/análise
2.
ACS Appl Mater Interfaces ; 16(19): 24384-24397, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709640

RESUMO

Vascularization and inflammation management are essential for successful bone regeneration during the healing process of large bone defects assisted by artificial implants/fillers. Therefore, this study is devoted to the optimization of the osteogenic microenvironment for accelerated bone healing through rapid neovascularization and appropriate inflammation inhibition that were achieved by applying a tantalum oxide (TaO)-based nanoplatform carrying functional substances at the bone defect. Specifically, TaO mesoporous nanospheres were first constructed and then modified by functionalized metal ions (Mg2+) with the following deferoxamine (DFO) loading to obtain the final product simplified as DFO-Mg-TaO. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the product was homogeneously dispersed hollow nanospheres with large specific surface areas and mesoporous shells suitable for loading Mg2+ and DFO. The biological assessments indicated that DFO-Mg-TaO could enhance the adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The DFO released from DFO-Mg-TaO promoted angiogenetic activity by upregulating the expressions of hypoxia-inducible factor-1 (HIF-1α) and vascular endothelial growth factor (VEGF). Notably, DFO-Mg-TaO also displayed anti-inflammatory activity by reducing the expressions of pro-inflammatory factors, benefiting from the release of bioactive Mg2+. In vivo experiments demonstrated that DFO-Mg-TaO integrated with vascular regenerative, anti-inflammatory, and osteogenic activities significantly accelerated the reconstruction of bone defects. Our findings suggest that the optimized DFO-Mg-TaO nanospheres are promising as multifunctional fillers to speed up the bone healing process.


Assuntos
Regeneração Óssea , Desferroxamina , Magnésio , Células-Tronco Mesenquimais , Óxidos , Tantálio , Desferroxamina/química , Desferroxamina/farmacologia , Regeneração Óssea/efeitos dos fármacos , Tantálio/química , Animais , Óxidos/química , Óxidos/farmacologia , Magnésio/química , Magnésio/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Camundongos , Ratos Sprague-Dawley , Proliferação de Células/efeitos dos fármacos , Angiogênese
3.
Eur Rev Med Pharmacol Sci ; 28(9): 3403-3413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38766796

RESUMO

OBJECTIVE: Cisplatin is a widely used and potent cytotoxic chemotherapy agent, but its nephrotoxicity is a significant limiting side effect. Various premedication approaches have been implemented to preserve renal function, including magnesium (Mg) preloading. However, the optimal Mg dosage is still unknown. Our study aimed to assess the protective effects of different Mg doses as premedication in cisplatin-based chemoradiotherapy for patients with local/locally advanced cervical and head-neck cancers. PATIENTS AND METHODS: This retrospective, multicenter study involved premedication with saline infusion containing potassium chloride and magnesium sulfate (MgSO4) for all patients before cisplatin treatment. Patients were divided into two groups: 12 mEq MgSO4 (low-dose Mg preload group, low-Mg) and 24 mEq MgSO4 (high-dose Mg preload group, high-Mg). Renal function was evaluated using serum creatinine (sCr, mg/dl) and estimated glomerular filtration rate (eGFR, ml/min). Acute kidney injury (AKI) was defined per the Common Terminology Criteria for Adverse Events (CTCAE) version 5.0. Renal outcomes and efficacy were compared between the groups. RESULTS: In the low-Mg group (n = 159), sCr levels were significantly higher compared to baseline, various weeks during treatment, and at the 1st, 3rd, 6th, and 12th months post-treatment (p < 0.001). In the high-Mg group (n = 128), no significant changes were observed during treatment and at 1st, 3rd, and 12th months post-treatment (p > 0.05). A significant reduction in mean sCr level from baseline to 6 months was noted in the high-Mg group (p < 0.001). eGFR values are generally correlated with sCr levels. AKI occurred in 21 (13.2%) and 22 (17.7%) patients in the low-Mg and high-Mg groups, respectively (p = 0.292). There was no difference in progression-free or overall survival between the groups. CONCLUSIONS: We clearly demonstrated that saline hydration with 24 mEql MgSO4 supplementation before cisplatin treatment has a better renal protective effect than 12 mEql MgSO4 without reducing efficacy, especially in patients with local/local advanced cervical and head-neck cancer receiving cisplatin with concurrent radiotherapy.


Assuntos
Injúria Renal Aguda , Cisplatino , Sulfato de Magnésio , Cisplatino/efeitos adversos , Cisplatino/administração & dosagem , Humanos , Estudos Retrospectivos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Feminino , Pessoa de Meia-Idade , Sulfato de Magnésio/administração & dosagem , Sulfato de Magnésio/farmacologia , Masculino , Antineoplásicos/efeitos adversos , Antineoplásicos/administração & dosagem , Taxa de Filtração Glomerular/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Adulto , Magnésio/administração & dosagem , Relação Dose-Resposta a Droga , Idoso
4.
J Nanobiotechnology ; 22(1): 268, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764056

RESUMO

The development of cost-effective and eco-friendly fertilizers is crucial for enhancing iron (Fe) uptake in crops and can help alleviate dietary Fe deficiencies, especially in populations with limited access to meat. This study focused on the application of MgFe-layered double hydroxide nanoparticles (MgFe-LDHs) as a potential solution. We successfully synthesized and characterized MgFe-LDHs and observed that 1-10 mg/L MgFe-LDHs improved cucumber seed germination and water uptake. Notably, the application of 10 mg/L MgFe-LDHs to roots significantly increased the seedling emergence rate and growth under low-temperature stress. The application of 10 mg/L MgFe-LDHs during sowing increased the root length, lateral root number, root fresh weight, aboveground fresh weight, and hypocotyl length under low-temperature stress. A comprehensive analysis integrating plant physiology, nutrition, and transcriptomics suggested that MgFe-LDHs improve cold tolerance by upregulating SA to stimulate CsFAD3 expression, elevating GA3 levels for enhanced nitrogen metabolism and protein synthesis, and reducing levels of ABA and JA to support seedling emergence rate and growth, along with increasing the expression and activity of peroxidase genes. SEM and FTIR further confirmed the adsorption of MgFe-LDHs onto the root hairs in the mature zone of the root apex. Remarkably, MgFe-LDHs application led to a 46% increase (p < 0.05) in the Fe content within cucumber seedlings, a phenomenon not observed with comparable iron salt solutions, suggesting that the nanocrystalline nature of MgFe-LDHs enhances their absorption efficiency in plants. Additionally, MgFe-LDHs significantly increased the nitrogen (N) content of the seedlings by 12% (p < 0.05), promoting nitrogen fixation in the cucumber seedlings. These results pave the way for the development and use of LDH-based Fe fertilizers.


Assuntos
Temperatura Baixa , Cucumis sativus , Ferro , Plântula , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/metabolismo , Cucumis sativus/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/efeitos dos fármacos , Ferro/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Hidróxidos/farmacologia , Hidróxidos/metabolismo , Fertilizantes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nanopartículas/química , Estresse Fisiológico , Magnésio/metabolismo
5.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732212

RESUMO

The skin wound healing process consists of hemostatic, inflammatory, proliferative, and maturation phases, with a complex cellular response by multiple cell types in the epidermis, dermis, and immune system. Magnesium is a mineral essential for life, and although magnesium treatment promotes cutaneous wound healing, the molecular mechanism and timing of action of the healing process are unknown. This study, using human epidermal-derived HaCaT cells and human normal epidermal keratinocyte cells, was performed to investigate the mechanism involved in the effect of magnesium on wound healing. The expression levels of epidermal differentiation-promoting factors were reduced by MgCl2, suggesting an inhibitory effect on epidermal differentiation in the remodeling stage of the late wound healing process. On the other hand, MgCl2 treatment increased the expression of matrix metalloproteinase-7 (MMP7), a cell migration-promoting factor, and enhanced cell migration via the MEK/ERK pathway activation. The enhancement of cell migration by MgCl2 was inhibited by MMP7 knockdown, suggesting that MgCl2 enhances cell migration which is mediated by increased MMP7 expression. Our results revealed that MgCl2 inhibits epidermal differentiation but promotes cell migration, suggesting that applying magnesium to the early wound healing process could be beneficial.


Assuntos
Diferenciação Celular , Movimento Celular , Queratinócitos , Magnésio , Metaloproteinase 7 da Matriz , Cicatrização , Cicatrização/efeitos dos fármacos , Humanos , Movimento Celular/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Magnésio/farmacologia , Magnésio/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Metaloproteinase 7 da Matriz/genética , Pele/metabolismo , Pele/efeitos dos fármacos , Pele/lesões , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Linhagem Celular , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Cloreto de Magnésio/farmacologia
6.
Int J Mol Sci ; 25(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732240

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) infection has rapidly spread through various routes. A genomic analysis of clinical MRSA samples revealed an unknown protein, Sav2152, predicted to be a haloacid dehalogenase (HAD)-like hydrolase, making it a potential candidate for a novel drug target. In this study, we determined the crystal structure of Sav2152, which consists of a C2-type cap domain and a core domain. The core domain contains four motifs involved in phosphatase activity that depend on the presence of Mg2+ ions. Specifically, residues D10, D12, and D233, which closely correspond to key residues in structurally homolog proteins, are responsible for binding to the metal ion and are known to play critical roles in phosphatase activity. Our findings indicate that the Mg2+ ion known to stabilize local regions surrounding it, however, paradoxically, destabilizes the local region. Through mutant screening, we identified D10 and D12 as crucial residues for metal binding and maintaining structural stability via various uncharacterized intra-protein interactions, respectively. Substituting D10 with Ala effectively prevents the interaction with Mg2+ ions. The mutation of D12 disrupts important structural associations mediated by D12, leading to a decrease in the stability of Sav2152 and an enhancement in binding affinity to Mg2+ ions. Additionally, our study revealed that D237 can replace D12 and retain phosphatase activity. In summary, our work uncovers the novel role of metal ions in HAD-like phosphatase activity.


Assuntos
Proteínas de Bactérias , Hidrolases , Magnésio , Monoéster Fosfórico Hidrolases , Magnésio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Hidrolases/metabolismo , Hidrolases/química , Hidrolases/genética , Modelos Moleculares , Staphylococcus aureus Resistente à Meticilina/enzimologia , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus/enzimologia , Cristalografia por Raios X , Ligação Proteica
7.
Nutrients ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732615

RESUMO

Adequate diet, physical activity, and dietary supplementation with muscle-targeted food for special medical purposes (FSMP) or dietary supplement (DS) are currently considered fundamental pillars in sarcopenia treatment. The aim of this study is to evaluate the effectiveness of a DS (containing hydroxy-methyl-butyrate, carnosine, and magnesium, for its action on muscle function and protein synthesis and butyrate and lactoferrin for their contribution to the regulation of gut permeability and antioxidant/anti-inflammation activity) on muscle mass (assessed by dual X-ray absorptiometry (DXA)), muscle function (by handgrip test, chair test, short physical performance battery (SPPB) test, and walking speed test), inflammation (tumor necrosis factor-alpha (TNF-a), C-reactive protein (CRP), and visceral adipose tissue (VAT)) and gut axis (by zonulin). A total of 59 participants (age 79.7 ± 4.8 years, body mass index 20.99 ± 2.12 kg/m2) were enrolled and randomly assigned to intervention (n = 30) or placebo (n = 28). The skeletal muscle index (SMI) significantly improved in the supplemented group compared to the placebo one, +1.02 (CI 95%: -0.77; 1.26), p = 0.001; a significant reduction in VAT was observed in the intervention group, -70.91 g (-13.13; -4.70), p = 0.036. Regarding muscle function, all the tests significantly improved (p = 0.001) in the supplemented group compared to the placebo one. CRP, zonulin, and TNF-alpha significantly decreased (p = 0.001) in intervention, compared to placebo, -0.74 mg/dL (CI 95%: -1.30; -0.18), -0.30 ng/mL (CI 95%: -0.37; -0.23), -6.45 pg/mL (CI 95%: -8.71; -4.18), respectively. This DS improves muscle mass and function, and the gut muscle has emerged as a new intervention target for sarcopenia.


Assuntos
Carnosina , Suplementos Nutricionais , Lactoferrina , Magnésio , Músculo Esquelético , Permeabilidade , Sarcopenia , Humanos , Masculino , Idoso , Feminino , Sarcopenia/tratamento farmacológico , Sarcopenia/prevenção & controle , Carnosina/administração & dosagem , Lactoferrina/administração & dosagem , Lactoferrina/farmacologia , Magnésio/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Permeabilidade/efeitos dos fármacos , Idoso de 80 Anos ou mais , Valeratos/administração & dosagem , Valeratos/farmacologia , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo , Butiratos , Método Duplo-Cego , Haptoglobinas , Proteína C-Reativa/metabolismo , Proteína C-Reativa/análise , Precursores de Proteínas
8.
Nutrients ; 16(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732636

RESUMO

(1) Background: parenteral nutrition (PN) is indispensable for patients unable to receive oral or enteral feeding. However, the complexity of PN solutions presents challenges regarding stability and compatibility. Precipitation reactions may occur. The most frequent is the formation of calcium phosphate (Ca-P). The different factors influencing these reactions must be considered to ensure patient safety. (2) Methods: eight paediatric PN solutions were prepared, following standard protocols. Samples were stored at room temperature and in a refrigerator. Electron microscopy, coupled with energy dispersive X-ray spectroscopy (EDS), was employed. Precipitates were analysed for composition and morphology. (3) Results: precipitates were observed in all samples, even at day 0. Crystalline structures, predominantly composed of calcium or magnesium, sometimes associated with chlorine or phosphorus, were detected. Additionally, amorphous precipitates, contained heterogeneous compositions, including unexpected elements, were identified. (4) Conclusions: various precipitates, primarily calcium- or magnesium-based, can form in PN solutions, although it is not expected that they can form under the real conditions of use. Calcium oxalate precipitation has been characterised, but the use of organic calcium and phosphate salts appears to mitigate calcium phosphate precipitation. Electron microscopy provides interesting results on NP precipitation, but sample preparation may present technical limitations that affect the interpretation of the results.


Assuntos
Fosfatos de Cálcio , Precipitação Química , Estabilidade de Medicamentos , Soluções de Nutrição Parenteral , Soluções de Nutrição Parenteral/química , Fosfatos de Cálcio/química , Humanos , Nutrição Parenteral , Espectrometria por Raios X , Microscopia Eletrônica , Magnésio/química , Cálcio/química , Cálcio/análise
9.
Cell Mol Life Sci ; 81(1): 213, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727814

RESUMO

Trimeric G proteins transduce signals from a superfamily of receptors and each G protein controls a wide range of cellular and systemic functions. Their highly conserved alpha subunits fall in five classes, four of which have been well investigated (Gs, Gi, G12, Gq). In contrast, the function of the fifth class, Gv is completely unknown, despite its broad occurrence and evolutionary ancient origin (older than metazoans). Here we show a dynamic presence of Gv mRNA in several organs during early development of zebrafish, including the hatching gland, the pronephros and several cartilage anlagen, employing in situ hybridisation. Next, we generated a Gv frameshift mutation in zebrafish and observed distinct phenotypes such as reduced oviposition, premature hatching and craniofacial abnormalities in bone and cartilage of larval zebrafish. These phenotypes could suggest a disturbance in ionic homeostasis as a common denominator. Indeed, we find reduced levels of calcium, magnesium and potassium in the larvae and changes in expression levels of the sodium potassium pump atp1a1a.5 and the sodium/calcium exchanger ncx1b in larvae and in the adult kidney, a major osmoregulatory organ. Additionally, expression of sodium chloride cotransporter slc12a3 and the anion exchanger slc26a4 is altered in complementary ways in adult kidney. It appears that Gv may modulate ionic homeostasis in zebrafish during development and in adults. Our results constitute the first insight into the function of the fifth class of G alpha proteins.


Assuntos
Homeostase , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Homeostase/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Larva/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Cálcio/metabolismo , Rim/metabolismo , Magnésio/metabolismo
10.
J Prim Care Community Health ; 15: 21501319241252570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725390

RESUMO

BACKGROUND: Depression is considered the fourth-leading cause of health problems. It is the fourth-leading cause of health problems and disability, which causes 16% of the worldwide burden of disease and injury among adolescents. OBJECTIVE: The aim of the present study was to evaluate the possible association of magnesium (Mg) and ferritin deficiency with depression in adolescent students. PATIENTS AND METHODS: This case control study in secondary schools at Al-Ghanayem discrete. The total number included was 358 students. All were screened for depression by the Arabic version of the Beck questionnaire. The students who had positive score was selected as cases 86 and a matched same number of students with negative score was selected as controls. Serum level of ferritin and magnesium was measured in the 2 groups. RESULTS: There was statistically significant difference between the studied groups when comparing depression grade with each of ferritin and Mg Depressed group cases had lower mean values of ferritin and Mg. The ferritin cut-off level for the prediction of depression was (35.5 µg/dL, which had a sensitivity of 74.4% and a specificity of 75.6%. The magnesium cut-off levels for the prediction of depression were1.95 mg/dL and 104.5 ng/dL which had a sensitivity of 70% and 64%, respectively. CONCLUSION: There was a statistically significant negative correlation between depression severity and each of socio-economic status ferritin and Mg. Each of ferritin and Mg were predictors for depression.


Assuntos
Depressão , Ferritinas , Deficiência de Magnésio , Magnésio , Humanos , Ferritinas/sangue , Adolescente , Feminino , Masculino , Estudos de Casos e Controles , Depressão/epidemiologia , Depressão/sangue , Deficiência de Magnésio/sangue , Deficiência de Magnésio/epidemiologia , Magnésio/sangue , Estudantes/psicologia
11.
Water Res ; 256: 121638, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691899

RESUMO

In this study, we investigated the recovery of nitrogen (N) and phosphorus (P) from fresh source-separated urine with a novel electrochemical cell equipped with a magnesium (Mg) anode and carbon-based gas-diffusion cathode. Recovery of P, which exists primarily as phosphate (PO43-) in urine, was achieved through pH-driven precipitation. Maximizing N recovery requires simultaneous approaches to address urea and ammonia (NH3). NH3 recovery was possible through precipitation in struvite with soluble Mg supplied by the anode. Urea was stabilized with electrochemically synthesized hydrogen peroxide (H2O2) from the cathode. H2O2 concentrations and resulting urine pH were directly proportional to the applied current density. Concomitant NH3 and PO43- precipitation as struvite and urea stabilization via H2O2 electrosynthesis was possible at lower current densities, resulting in urine pH under 9.2. Higher current densities resulted in urine pH over 9.2, yielding higher H2O2 concentrations and more consistent stabilization of urea at the expense of NH3 recovery as struvite; PO43- precipitation still occurred but in the form of calcium phosphate and magnesium phosphate solids.


Assuntos
Eletrodos , Peróxido de Hidrogênio , Magnésio , Fósforo , Ureia , Ureia/química , Fósforo/química , Magnésio/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Urina/química , Fosfatos/química , Estruvita/química , Amônia/química , Compostos de Magnésio/química , Nitrogênio/química , Humanos
12.
Sci Rep ; 14(1): 10959, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745034

RESUMO

Molecular hydrogen is an emerging broad-spectrum antioxidant molecule that can be used to treat myocardial infarction (MI). However, with hydrogen inhalation, the concentration that can be reached within target organs is low and the duration of action is short, which makes it difficult to achieve high dose targeted delivery of hydrogen to the heart, seriously limiting the therapeutic potential of hydrogen for MI. As a result of reactions with the internal environment of the body, subcutaneous implantation of magnesium slices leads to continuous endogenous hydrogen production, leading to a higher hydrogen concentration and a longer duration of action in target organs. In this study, we propose magnesium implant-based hydrogen therapy for MI. After subcutaneous implantation of magnesium slices in the dorsum of rats, we measured hydrogen production and efficiency, and evaluated the safety of this approach. Compared with hydrogen inhalation, it significantly improved cardiac function in rats with MI. Magnesium implantation also cleared free radicals that were released as a result of mitochondrial dysfunction, as well as suppressing cardiomyocyte apoptosis.


Assuntos
Hidrogênio , Magnésio , Infarto do Miocárdio , Animais , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Magnésio/metabolismo , Ratos , Masculino , Ratos Sprague-Dawley , Apoptose/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Modelos Animais de Doenças
13.
Nat Commun ; 15(1): 4115, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750013

RESUMO

RyR1 is an intracellular Ca2+ channel important in excitable cells such as neurons and muscle fibers. Ca2+ activates it at low concentrations and inhibits it at high concentrations. Mg2+ is the main physiological RyR1 inhibitor, an effect that is overridden upon activation. Despite the significance of Mg2+-mediated inhibition, the molecular-level mechanisms remain unclear. In this work we determined two cryo-EM structures of RyR1 with Mg2+ up to 2.8 Å resolution, identifying multiple Mg2+ binding sites. Mg2+ inhibits at the known Ca2+ activating site and we propose that the EF hand domain is an inhibitory divalent cation sensor. Both divalent cations bind to ATP within a crevice, contributing to the precise transmission of allosteric changes within the enormous channel protein. Notably, Mg2+ inhibits RyR1 by interacting with the gating helices as validated by molecular dynamics. This structural insight enhances our understanding of how Mg2+ inhibition is overcome during excitation.


Assuntos
Cálcio , Microscopia Crioeletrônica , Magnésio , Canal de Liberação de Cálcio do Receptor de Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Magnésio/metabolismo , Cálcio/metabolismo , Sítios de Ligação , Animais , Simulação de Dinâmica Molecular , Trifosfato de Adenosina/metabolismo , Humanos , Coelhos
14.
Chemosphere ; 358: 142212, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714251

RESUMO

The process of removing Ca2+ and Mg2+ ions typically results in the co-precipitation of Ca2+ and Mg2+ along with other salt waste. To improve water treatment efficiency towards a zero-waste goal, it is crucial to separate Ca2+ and Mg2+, and recover them in their purified form. This study proposes a two-step electrochemical approach that separately recovers Ca2+ as CaCO3 and Mg2+ as Mg(OH)2. The first step uses an undivided cell with 3D electrodes and controlled flow directions to selectively precipitate CaCO3 on the electrode, keeping the cell removal efficiency. The second step employs a two-compartment cell with a cationic exchange membrane to recover Mg(OH)2. This approach was evaluated on RO reject water with high Ca2+ to Mg2+ ratio and industrial effluent-polluted groundwater with a low ratio. Treatment of domestic RO reject water using undivided cell specifically recovered 64% of CaCO3, although the low conductivity of the RO reject water limited further Mg2+ recovery. Conversely, treating industrial effluent-polluted groundwater with this two-step process successfully recovered 80% of CaCO3 and 94% of Mg(OH)2. SEM, EDAX, and XRD analysis confirmed the quality of the recovered products.


Assuntos
Carbonato de Cálcio , Técnicas Eletroquímicas , Água Subterrânea , Hidróxido de Magnésio , Poluentes Químicos da Água , Purificação da Água , Carbonato de Cálcio/química , Água Subterrânea/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos , Técnicas Eletroquímicas/métodos , Hidróxido de Magnésio/química , Magnésio/química , Eliminação de Resíduos Líquidos/métodos
15.
Nat Commun ; 15(1): 4218, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760331

RESUMO

DNAzymes - synthetic enzymes made of DNA - have long attracted attention as RNA-targeting therapeutic agents. Yet, as of now, no DNAzyme-based drug has been approved, partially due to our lacking understanding of their molecular mode of action. In this work we report the solution structure of 8-17 DNAzyme bound to a Zn2+ ion solved through NMR spectroscopy. Surprisingly, it turned out to be very similar to the previously solved Pb2+-bound form (catalytic domain RMSD = 1.28 Å), despite a long-standing literature consensus that Pb2+ recruits a different DNAzyme fold than other metal ion cofactors. Our follow-up NMR investigations in the presence of other ions - Mg2+, Na+, and Pb2+ - suggest that at DNAzyme concentrations used in NMR all these ions induce a similar tertiary fold. Based on these findings, we propose a model for 8-17 DNAzyme interactions with metal ions postulating the existence of only a single catalytically-active structure, yet populated to a different extent depending on the metal ion cofactor. Our results provide structural information on the 8-17 DNAzyme in presence of non-Pb2+ cofactors, including the biologically relevant Mg2+ ion.


Assuntos
DNA Catalítico , Chumbo , Magnésio , Zinco , DNA Catalítico/química , DNA Catalítico/metabolismo , Magnésio/metabolismo , Magnésio/química , Zinco/metabolismo , Zinco/química , Chumbo/química , Chumbo/metabolismo , Conformação de Ácido Nucleico , Domínio Catalítico , Modelos Moleculares , Sódio/metabolismo , Sódio/química , Metais/metabolismo , Metais/química , Espectroscopia de Ressonância Magnética , Íons
16.
J Appl Biomater Funct Mater ; 22: 22808000231214359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38702952

RESUMO

Exploring high strength materials with a higher concentration of reinforcements in the alloy proves to be a challenging task. This research has explored magnesium-based composites (AZ31B alloy) with tungsten carbide reinforcements, enhancing strength for medical joint replacements via league championship optimisation. The primary objective is to enhance medical joint replacement biomaterials employing magnesium-based composites, emphasising the AZ31B alloy with tungsten carbide reinforcements. The stir casting method is utilised in the manufacture of magnesium matrix composites (MMCs), including varied percentages of tungsten carbide (WC). The mechanical characteristics, such as micro-hardness, tensile strength, and yield strength, have been assessed and compared with computational simulations. The wear studies have been carried out to analyse the tribological behaviour of the composites. Additionally, this study investigates the prediction of stress and the distribution of forces inside bone and joint structures, therefore offering significant contributions to the field of biomedical research. This research contemplates the use of magnesium-based MMCs for the discovery of biomaterials suitable for medical joint replacement. The study focuses on the magnesium alloy AZ31B, with particles ranging in size from 40 to 60 microns used as the matrix material. Moreover, the outcomes have revealed that when combined with MMCs based on AZ31B-magnesium matrix, the WC particle emerges as highly effective reinforcements for the fabrication of lightweight, high-strength biomedical composites. This study uses the league championship optimisation (LCO) approach to identify critical variables impacting the synthesis of Mg MMCs from an AZ31B-based magnesium alloy. The scanning electron microscopy (SEM) images are meticulously analysed to depict the dispersion of WC particulates and the interface among the magnesium (Mg) matrix and WC reinforcement. The SEM analysis has explored the mechanisms underlying particle pull-out, the characteristics of inter-particle zones, and the influence of the AZ31B matrix on the enhancement of the mechanical characteristics of the composites. The application of finite element analysis (FEA) is being used in order to make predictions regarding the distribution of stress and the interactions of forces within the model of the hip joint. This study has compared the physico-mechanical and tribological characteristics of WC to distinct combinations of 0%, 5%, 10% and 15%, and its impact on the performance improvements. SEM analysis has confirmed the findings' improved strength and hardness, particularly when 10%-15% of WC was incorporated. Following the incorporation of 10% of WC particles within Mg-alloy matrix, the outcomes of the study has exhibited enhanced strength and hardness, which furthermore has been evident by utilising SEM analysis. Using ANSYS, structural deformation and stress levels are predicted, along with strength characteristics such as additional hardness of 71 HRC, tensile strength of 140-150 MPa, and yield strength closer to 100-110 MPa. The simulations yield significant insights into the behaviour of the joint under various loading conditions, thus enhancing the study's significance in biomedical environments.


Assuntos
Ligas , Magnésio , Teste de Materiais , Ligas/química , Magnésio/química , Compostos de Tungstênio/química , Materiais Biocompatíveis/química , Humanos , Resistência à Tração , Articulação do Quadril
17.
Yakugaku Zasshi ; 144(5): 521-526, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38692927

RESUMO

Neural activity generates essential responses, such as thinking, memory formation, and muscle contraction. It is controlled by the well-coordinated activity of various cation-selective channels of the cell membrane. The divalent cation block plays an essential role in various tetrameric ion channels. For example, N-methyl-D-aspartic acid receptors, which are tetrameric ion channels involved in memory formation, are inhibited by magnesium ions. Divalent cations are thought to bind in the ion pathway of the ion channel and as a consequence block the channel current, however, direct observation of such a block has not been reported yet. As a consequence, the behavior of these blocking divalent cations remains poorly understood. NavAb, a similar tetrameric sodium channel cloned from Arcobacter butzleri, is one of the most structurally analyzed tetrameric channels that is not inhibited by divalent cations. In this study, we elucidated the molecular mechanism of the divalent cation block by reproducing the divalent cation block in NavAb. The X-ray crystal structure of divalent-cation-block mutants show electron density in the ion transmission pathway of the divalent cation blocked mutants, indicating that the mutations increasing the hydrophilicity of the inner vestibule of the pore domain enable a divalent cation to stack into the ion pathway. In molecular dynamics simulations, the stacked calcium ion repels the sodium ions near the channel lumen's entrance at the selective filter's bottom. These results suggest the primary process of the divalent cation block mechanism in tetrameric cation channels and suggest a process of functional acquisition in ion channel evolution.


Assuntos
Arcobacter , Cátions Bivalentes , Simulação de Dinâmica Molecular , Cristalografia por Raios X , Magnésio , Canais de Sódio/metabolismo , Mutação
18.
Front Endocrinol (Lausanne) ; 15: 1382844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689728

RESUMO

Equine metabolic syndrome (EMS) is a critical endocrine condition in horses, characterized by hyperinsulinemia, hyperlipidemia, and insulin resistance, posing a significant threat to their health. This study investigates the efficacy of supplementing EMS-affected horses with Arthrospira platensis enriched with Cr(III), Mg(II), and Mn(II) ions using biosorption process in improving insulin sensitivity and glucose tolerance, reducing inflammation, and mitigating obesity-related fat accumulation. Our results demonstrate that Arthrospira supplementation reduces baseline insulin and glucose levels, contributing to decreased adipose tissue inflammation. Furthermore, Arthrospira supplementation results in a decrease in body weight and improvements in overall body condition scores and cresty neck scores. Additionally, administration of Arthrospira leads to reduced levels of triglycerides and aspartate aminotransferase, indicating a decrease in hepatic adiposity and inflammation. These findings suggest that Arthrospira, enriched with essential micro- and macroelements, can be an advanced feed additive to enhance insulin sensitivity, promote weight reduction, and alleviate inflammatory processes, thereby improving the overall condition of horses affected by EMS. The use of Arthrospira as a feed additive has the potential to complement conventional management strategies for EMS.


Assuntos
Ração Animal , Cromo , Suplementos Nutricionais , Doenças dos Cavalos , Inflamação , Resistência à Insulina , Magnésio , Manganês , Síndrome Metabólica , Spirulina , Animais , Cavalos , Inflamação/metabolismo , Síndrome Metabólica/veterinária , Síndrome Metabólica/metabolismo , Doenças dos Cavalos/metabolismo , Doenças dos Cavalos/prevenção & controle , Ração Animal/análise , Magnésio/metabolismo , Masculino , Feminino
19.
Am J Med Qual ; 39(3): 118-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713599

RESUMO

Electrolyte replacement protocols are routinely used in intensive care units (ICU) to guide magnesium replacement. Guided by serum levels, these protocols include no patient-specific factors despite a literature showing ICU patients routinely have significant deficits despite normal serum levels. The authors developed a checklist to help identify patients requiring more aggressive magnesium replacement than the electrolyte replacement protocol would provide. The checklist included risk factors for having significant magnesium deficits and for developing arrhythmias. The checklist was retrospectively applied to 364 medical ICU patients. Diabetic patients prescribed outpatient diuretics were defined as the highest-risk population. A total of 88% of patients in this subgroup had normal magnesium levels. Despite averaging 3.4 risk factors per patient, only 3 of 32 patients received magnesium. Applying the checklist would have suggested additional repletion for at least 85% of patients. A checklist can help identify ICU patients who may require more aggressive magnesium supplementation than protocols will provide.


Assuntos
Lista de Checagem , Unidades de Terapia Intensiva , Magnésio , Humanos , Unidades de Terapia Intensiva/organização & administração , Estudos Retrospectivos , Feminino , Masculino , Pessoa de Meia-Idade , Magnésio/administração & dosagem , Magnésio/sangue , Idoso , Fatores de Risco , Deficiência de Magnésio , Hidratação/métodos
20.
Arch Insect Biochem Physiol ; 116(1): e22118, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38713637

RESUMO

We detected enzymatic activity that generates 20-nucleotide (nt) RNA from double-stranded RNAs (dsRNAs) in crude extracts prepared from various silkworm (Bombyx mori) organs. The result using knocked-down cultured cells indicated that this dicing activity originated from B. mori Dicer-2 (BmDcr2). Biochemical analyses revealed that BmDcr2 preferentially cleaves 5'-phosphorylated dsRNAs at the 20-nt site-counted from the 5'-phosphorylated end-and required ATP and magnesium ions for the dicing reaction. This is the first report of the biochemical characterization of Dicer-2 in lepidopteran insects. This enzymatic property of BmDcr2 in vitro is consistent with the in vivo small interfering RNA profile in virus-infected silkworm cells.


Assuntos
Bombyx , RNA de Cadeia Dupla , Ribonuclease III , Animais , Bombyx/genética , Bombyx/metabolismo , RNA de Cadeia Dupla/metabolismo , Ribonuclease III/metabolismo , Ribonuclease III/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , RNA Interferente Pequeno/metabolismo , Magnésio/metabolismo , Larva/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA