Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.182
Filtrar
1.
Water Res ; 256: 121638, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691899

RESUMO

In this study, we investigated the recovery of nitrogen (N) and phosphorus (P) from fresh source-separated urine with a novel electrochemical cell equipped with a magnesium (Mg) anode and carbon-based gas-diffusion cathode. Recovery of P, which exists primarily as phosphate (PO43-) in urine, was achieved through pH-driven precipitation. Maximizing N recovery requires simultaneous approaches to address urea and ammonia (NH3). NH3 recovery was possible through precipitation in struvite with soluble Mg supplied by the anode. Urea was stabilized with electrochemically synthesized hydrogen peroxide (H2O2) from the cathode. H2O2 concentrations and resulting urine pH were directly proportional to the applied current density. Concomitant NH3 and PO43- precipitation as struvite and urea stabilization via H2O2 electrosynthesis was possible at lower current densities, resulting in urine pH under 9.2. Higher current densities resulted in urine pH over 9.2, yielding higher H2O2 concentrations and more consistent stabilization of urea at the expense of NH3 recovery as struvite; PO43- precipitation still occurred but in the form of calcium phosphate and magnesium phosphate solids.


Assuntos
Eletrodos , Peróxido de Hidrogênio , Magnésio , Fósforo , Ureia , Ureia/química , Fósforo/química , Magnésio/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Urina/química , Fosfatos/química , Estruvita/química , Amônia/química , Compostos de Magnésio/química , Nitrogênio/química , Humanos
2.
Nat Commun ; 15(1): 4012, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740774

RESUMO

cGAS activates innate immune responses against cytosolic double-stranded DNA. Here, by determining crystal structures of cGAS at various reaction stages, we report a unifying catalytic mechanism. apo-cGAS assumes an array of inactive conformations and binds NTPs nonproductively. Dimerization-coupled double-stranded DNA-binding then affixes the active site into a rigid lock for productive metal•substrate binding. A web-like network of protein•NTP, intra-NTP, and inter-NTP interactions ensures the stepwise synthesis of 2'-5'/3'-5'-linked cGAMP while discriminating against noncognate NTPs and off-pathway intermediates. One divalent metal is sufficient for productive substrate binding, and capturing the second divalent metal is tightly coupled to nucleotide and linkage specificities, a process which manganese is preferred over magnesium by 100-fold. Additionally, we elucidate how mouse cGAS achieves more stringent NTP and linkage specificities than human cGAS. Together, our results reveal that an adaptable, yet precise lock-and-key-like mechanism underpins cGAS catalysis.


Assuntos
Nucleotídeos Cíclicos , Nucleotidiltransferases , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/química , Animais , Humanos , Camundongos , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/química , DNA/metabolismo , DNA/química , Magnésio/metabolismo , Magnésio/química , Domínio Catalítico , Cristalografia por Raios X , Manganês/química , Manganês/metabolismo , Especificidade por Substrato , Modelos Moleculares , Ligação Proteica
3.
Luminescence ; 39(5): e4758, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712530

RESUMO

The ability of heterogeneous photocatalysis to effectively remove organic pollutants from wastewater has shown great promise as a tool for environmental remediation. Pure zinc ferrites (ZnFe2O4) and magnesium-doped zinc ferrites (Mg@ZnFe2O4) with variable percentages of Mg (0.5, 1, 3, 5, 7, and 9 mol%) were synthesized via hydrothermal route and their photocatalytic activity was checked against methylene blue (MB) taken as a model dye. FTIR, XPS, BET, PL, XRD, TEM, and UV-Vis spectroscopy were used for the identification and morphological characterization of the prepared nanoparticles (NPs) and nanocomposites (NCs). The 7% Mg@ZnFe2O4 NPs demonstrated excellent degradation against MB under sunlight. The 7% Mg@ZnFe2O4 NPs were integrated with diverse contents (10, 50, 30, and 70 wt.%) of S@g-C3N4 to develop NCs with better activity. When the NCs were tested to degrade MB dye, it was revealed that the 7%Mg@ZnFe2O4/S@g-C3N4 NCs were more effective at utilizing solar energy than the other NPs and NCs. The synergistic effect of the interface formed between Mg@ZnFe2O4 and S@g-C3N4 was primarily responsible for the boosted photocatalytic capability of the NCs. The fabricated NCs may function as an effective new photocatalyst to remove organic dyes from wastewater.


Assuntos
Compostos Férricos , Azul de Metileno , Compostos de Nitrogênio , Energia Solar , Poluentes Químicos da Água , Zinco , Catálise , Poluentes Químicos da Água/química , Compostos Férricos/química , Azul de Metileno/química , Zinco/química , Magnésio/química , Fotólise , Processos Fotoquímicos , Corantes/química , Nanocompostos/química , Grafite/química , Águas Residuárias/química , Nitrilas/química
4.
J Appl Biomater Funct Mater ; 22: 22808000231214359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38702952

RESUMO

Exploring high strength materials with a higher concentration of reinforcements in the alloy proves to be a challenging task. This research has explored magnesium-based composites (AZ31B alloy) with tungsten carbide reinforcements, enhancing strength for medical joint replacements via league championship optimisation. The primary objective is to enhance medical joint replacement biomaterials employing magnesium-based composites, emphasising the AZ31B alloy with tungsten carbide reinforcements. The stir casting method is utilised in the manufacture of magnesium matrix composites (MMCs), including varied percentages of tungsten carbide (WC). The mechanical characteristics, such as micro-hardness, tensile strength, and yield strength, have been assessed and compared with computational simulations. The wear studies have been carried out to analyse the tribological behaviour of the composites. Additionally, this study investigates the prediction of stress and the distribution of forces inside bone and joint structures, therefore offering significant contributions to the field of biomedical research. This research contemplates the use of magnesium-based MMCs for the discovery of biomaterials suitable for medical joint replacement. The study focuses on the magnesium alloy AZ31B, with particles ranging in size from 40 to 60 microns used as the matrix material. Moreover, the outcomes have revealed that when combined with MMCs based on AZ31B-magnesium matrix, the WC particle emerges as highly effective reinforcements for the fabrication of lightweight, high-strength biomedical composites. This study uses the league championship optimisation (LCO) approach to identify critical variables impacting the synthesis of Mg MMCs from an AZ31B-based magnesium alloy. The scanning electron microscopy (SEM) images are meticulously analysed to depict the dispersion of WC particulates and the interface among the magnesium (Mg) matrix and WC reinforcement. The SEM analysis has explored the mechanisms underlying particle pull-out, the characteristics of inter-particle zones, and the influence of the AZ31B matrix on the enhancement of the mechanical characteristics of the composites. The application of finite element analysis (FEA) is being used in order to make predictions regarding the distribution of stress and the interactions of forces within the model of the hip joint. This study has compared the physico-mechanical and tribological characteristics of WC to distinct combinations of 0%, 5%, 10% and 15%, and its impact on the performance improvements. SEM analysis has confirmed the findings' improved strength and hardness, particularly when 10%-15% of WC was incorporated. Following the incorporation of 10% of WC particles within Mg-alloy matrix, the outcomes of the study has exhibited enhanced strength and hardness, which furthermore has been evident by utilising SEM analysis. Using ANSYS, structural deformation and stress levels are predicted, along with strength characteristics such as additional hardness of 71 HRC, tensile strength of 140-150 MPa, and yield strength closer to 100-110 MPa. The simulations yield significant insights into the behaviour of the joint under various loading conditions, thus enhancing the study's significance in biomedical environments.


Assuntos
Ligas , Magnésio , Teste de Materiais , Ligas/química , Magnésio/química , Compostos de Tungstênio/química , Materiais Biocompatíveis/química , Humanos , Resistência à Tração , Articulação do Quadril
5.
Nutrients ; 16(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732636

RESUMO

(1) Background: parenteral nutrition (PN) is indispensable for patients unable to receive oral or enteral feeding. However, the complexity of PN solutions presents challenges regarding stability and compatibility. Precipitation reactions may occur. The most frequent is the formation of calcium phosphate (Ca-P). The different factors influencing these reactions must be considered to ensure patient safety. (2) Methods: eight paediatric PN solutions were prepared, following standard protocols. Samples were stored at room temperature and in a refrigerator. Electron microscopy, coupled with energy dispersive X-ray spectroscopy (EDS), was employed. Precipitates were analysed for composition and morphology. (3) Results: precipitates were observed in all samples, even at day 0. Crystalline structures, predominantly composed of calcium or magnesium, sometimes associated with chlorine or phosphorus, were detected. Additionally, amorphous precipitates, contained heterogeneous compositions, including unexpected elements, were identified. (4) Conclusions: various precipitates, primarily calcium- or magnesium-based, can form in PN solutions, although it is not expected that they can form under the real conditions of use. Calcium oxalate precipitation has been characterised, but the use of organic calcium and phosphate salts appears to mitigate calcium phosphate precipitation. Electron microscopy provides interesting results on NP precipitation, but sample preparation may present technical limitations that affect the interpretation of the results.


Assuntos
Fosfatos de Cálcio , Precipitação Química , Estabilidade de Medicamentos , Soluções de Nutrição Parenteral , Soluções de Nutrição Parenteral/química , Fosfatos de Cálcio/química , Humanos , Nutrição Parenteral , Espectrometria por Raios X , Microscopia Eletrônica , Magnésio/química , Cálcio/química , Cálcio/análise
6.
Nucleic Acids Res ; 52(8): 4466-4482, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38567721

RESUMO

A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of Escherichia coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37°C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65°C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.


Assuntos
Pareamento de Bases , Escherichia coli , Fluoretos , Conformação de Ácido Nucleico , Riboswitch , Transcrição Gênica , Riboswitch/genética , Fluoretos/química , Escherichia coli/genética , Simulação de Dinâmica Molecular , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Dobramento de RNA , Magnésio/química , Sequência de Bases , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Thermus/genética , Thermus/enzimologia
7.
Colloids Surf B Biointerfaces ; 238: 113880, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581836

RESUMO

In the field of orthopedics, it's crucial to effectively slow down the degradation rate of Mg alloys. This study aims to improve the degradation behavior of Mg-Zn-Ca alloys by electrodepositing fluorohydroxyapatite (FHA). We investigated the microstructure and bond strength of the deposition, as well as degradation and cellular reactions. After 15-30 days of degradation in Hanks solution, FHA deposited alloys showed enhanced stability and less pH change. The strong interfacial bond between FHA and the Mg-Zn-Ca substrate was verified through scratch tests (Critical loads: 10.73 ± 0.014 N in Mg-Zn-0.5Ca alloys). Cellular studies demonstrated that FHA-coated alloys exhibited good cytocompatibility and promoted the growth of MC3T3-E1 cells. Further tests showed FHA-coated alloys owed improved early bone mineralization and osteogenic properties, especially in Mg-Zn-0.5Ca. This research highlighted the potential of FHA-coated Mg-Zn-0.5Ca alloys in orthopedics applications.


Assuntos
Ligas , Cálcio , Magnésio , Zinco , Ligas/química , Ligas/farmacologia , Corrosão , Animais , Zinco/química , Zinco/farmacologia , Magnésio/química , Camundongos , Cálcio/química , Cálcio/metabolismo , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Propriedades de Superfície , Teste de Materiais , Proliferação de Células/efeitos dos fármacos , Hidroxiapatitas/química , Linhagem Celular , Durapatita/química , Durapatita/farmacologia
8.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673967

RESUMO

Breast cancer is one of the leading causes of death in the female population because of the resistance of cancer cells to many anticancer drugs used. Curcumin has cytotoxic activities against breast cancer cells, although it has limited use due to its poor bioavailability and rapid metabolic elimination. The synthesis of metal complexes of curcumin and curcuminoids is a relevant topic in the search for more active and selective derivatives of these molecular scaffolds. However, solubility and bioavailability are concomitant disadvantages of these types of molecules. To overcome such drawbacks, the preparation of inclusion complexes offers a chemical and pharmacologically safe option for improving the aqueous solubility of organic molecules. Herein, we describe the preparation of the inclusion complex of dimethoxycurcumin magnesium complex (DiMeOC-Mg, (4)) with beta-cyclodextrin (DiMeOC-Mg-BCD, (5)) in the stoichiometric relationship 1:1. This new inclusion complex's solubility in aqueous media phosphate buffer saline (PBS) was improved by a factor of 6x over the free metal complex (4). Furthermore, 5 affects cell metabolic rate, cell morphology, cell migration, induced apoptosis, and downregulation of the matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), interleukin-6 (IL-6), and signal transducer and activator of transcription-3 (STAT3) expression levels on MD Anderson metastasis breast-231 cancer (MDA-MB-231) cell lines. Results of an antitumor assay in an in ovo model showed up to 30% inhibition of tumor growth for breast cancer (MDA-MB-231) when using (5) (0.650 mg/kg dose) and 17.29% inhibition with the free homoleptic metal complex (1.5 mg/kg dose, (4)). While the formulation of inclusion complexes from metal complexes of curcuminoids demonstrates its usefulness in improving the solubility and bioavailability of these metallodrugs, the new compound (5) exhibits excellent potential for use as a therapeutic agent in the battle against breast cancer.


Assuntos
Antineoplásicos , Curcumina , Curcumina/análogos & derivados , Magnésio , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Curcumina/farmacologia , Curcumina/química , Curcumina/farmacocinética , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Magnésio/química , Apoptose/efeitos dos fármacos , Feminino , Linhagem Celular Tumoral , Fator de Transcrição STAT3/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Movimento Celular/efeitos dos fármacos , Solubilidade , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Embrião de Galinha , Metaloproteinase 9 da Matriz/metabolismo
9.
Int J Biol Macromol ; 267(Pt 1): 131273, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569994

RESUMO

The nanopore-based translocation of a single-stranded RNA (ssRNA) in mixed salt solution has garnered increasing interest for its biological and technological significance. However, it is challenging to comprehensively understand the effects of the mixed ion species on the translocation dynamics due to their cooperation and competition, which can be directly reflected by the ion screening and neutralizing effects, respectively. In this study, Langevin dynamics simulation is employed to investigate the properties of ssRNA conformation and translocation in mixed Na+-Mg2+ ion environments. Simulation results reveal that the ion screening effect dominates the change in the ssRNA conformational size, the ion neutralizing effect controls the capture rate of the ssRNA by the nanopore, and both of them take charge of the different changes in translocation time of the ssRNA under various mixed ion environments. Under high Na+ ion concentration, as Mg2+ concentration increases, the ion neutralizing effect strengthens, weakening the driving force inside the nanopore, leading to longer translocation time. Conversely, at low Na+ concentration, an increase in Mg2+ concentration enhances the ion screening effect, aiding in faster translocation. Furthermore, these simulation results will be explained by quantitative analysis, advancing a deeper understanding of the complicated effects of the mixed Na+-Mg2+ ions.


Assuntos
Magnésio , Conformação de Ácido Nucleico , Sódio , Sódio/química , Sódio/metabolismo , Magnésio/química , Nanoporos , Simulação de Dinâmica Molecular , Íons/química , RNA/química
10.
Soft Matter ; 20(19): 3980-3986, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38686506

RESUMO

In this paper we investigate the effects of varying cation valency and concentration on the rheology of entangled λDNA solutions. We show that monovalent cations moderately increase the viscoelasticty of the solutions mainly by stabilising linear concatenation of λDNA "monomers" via hybridisation of their sticky ends. On the contrary, divalent cations have a far more complex and dramatic effect on the rheology of the solution and we observe evidence of inter-molecular DNA-DNA bridging by Mg2+. We argue that these results may be interesting in the context of dense solutions of single and double stranded DNA, e.g. in vivo or in biotechnology applications such as DNA origami and DNA hydrogels.


Assuntos
Cátions Bivalentes , DNA , Reologia , DNA/química , Cátions Bivalentes/química , Cátions Monovalentes/química , Viscosidade , Magnésio/química
11.
Sci Total Environ ; 926: 172172, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38575019

RESUMO

To improve the retention and slow-release abilities of nitrogen (N) and phosphorus (P), an 82 %-purity struvite fertilizer (MAP-BC) was synthesized using magnesium-modified biochar and a solution with a 2:1 concentration ratio of NH4+ to PO43- at a pH of 8. Batch microscopic characterizations and soil column leaching experiments were conducted to study the retention and slow-release mechanisms and desorption kinetics of MAP-BC. The slow-release mechanism revealed that the dissolution rate of high-purity struvite was the dominant factor of NP slow release. The re-adsorption of NH4+ and PO43- by biochar and unconsumed MgO prolonged slow release. Mg2+ ionized by MgO could react with PO43- released from struvite to form Mg3(PO4)2. The internal biochar exhibited electrostatic attraction and pore restriction towards NH4+, while magnesium modification and nutrient loading formed a physical antioxidant barrier that ensured long-term release. The water diffusion experiment showed a higher cumulative release rate for PO43- compared to NH4+, whereas in soil column leaching, the trend was reversed, suggesting that soil's competitive adsorption facilitated the desorption of NH4+ from MAP-BC. During soil leaching, cumulative release rates of NH4+ and PO43- from chemical fertilizers were 3.55-3.62 times faster than those from MAP-BC. The dynamic test data for NH4+ and PO43- in MAP-BC fitted the Ritger-Peppas model best, predicting release periods of 163 days and 166 days, respectively. The leaching performances showed that MAP-BC reduced leaching solution volume by 5.58 % and significantly increased soil large aggregates content larger than 0.25 mm by 24.25 %. The soil nutrients retention and pH regulation by MAP-BC reduced leaching concentrations of NP. Furthermore, MAP-BC significantly enhanced plant growth, and it is more suitable as a NP source for long-term crops. Therefore, MAP-BC is expected to function as a long-term and slow-release fertilizer with the potential to minimize NP nutrient loss and replace part of quick-acting fertilizer.


Assuntos
Fertilizantes , Magnésio , Estruvita/química , Magnésio/química , Fertilizantes/análise , Óxido de Magnésio , Fósforo/química , Carvão Vegetal/química , Solo/química , Nitrogênio/análise
12.
Sci Total Environ ; 928: 172499, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38631645

RESUMO

In this work, a novel 3D-DNA walker signal amplification strategy was designed to construct a fluorescent aptasensor for the detection of kanamycin (KAN). The aptasensor utilizes split aptamers for the synergistic recognition of KAN. The presence of KAN induces the split aptamers recombination to form the Mg2+-DNAzyme structure, which is activated by Mg2+ to drive the 3D-DNA walker process for cascading signal amplification. Employing gold nanoflowers (AuNFs) as walking substrate material increases the local DNA concentration to enhance the walker efficiency. The prepared fluorescent aptasensor achieved efficient and sensitive detection of KAN with satisfactory results in the concentration range of 1 × 10-8 - 1 × 10-3 µg/kg and the detection limit of 5.63 fg/kg. Meanwhile, the designed fluorescent aptasensor exhibited favorable specificity, anti-interference, storage stability and reproducibility, and verified the feasibility of its application in milk samples. The present work provides an effective tool for the regulation of KAN contamination in animal-derived foods with promising prospects.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Catalítico , Canamicina , Canamicina/análise , Aptâmeros de Nucleotídeos/química , DNA Catalítico/química , Técnicas Biossensoriais/métodos , Ouro/química , Limite de Detecção , Fluorescência , Magnésio/química , Leite/química
13.
Shanghai Kou Qiang Yi Xue ; 33(1): 6-12, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38583018

RESUMO

PURPOSE: Bioactive magnesium ions were successfully incorporated into the nanoporous titanium base coating by micro-arc oxidation(MAO), and its physical properties and osteogenic effects were explored. METHODS: Non-magnesium-containing and magnesium-containing titanium porous titanium coatings(MAO, MAO-mg) were prepared by changing the composition of MAO electrolyte and controlling the doping of magnesium in porous titanium coatings. The samples were characterized by scanning electron microscope (SEM), roughness, contact angle and energy dispersive X-ray spectrometer (EDS). Mg2+ release ability of magnesium-doped nanoporous titanium coatings was determined by inductively coupled plasma/optical emission spectrometer(ICP-OES). The structure of the cytoskeleton was determined by live/dead double staining, CCK-8 detection of material proliferation-toxicity, and staining of ß-actin using FITC-phalloidin. The effects of the coating on osteogenic differentiation in vitro were determined by alizarin red (ARS), alkaline phosphatase (ALP) staining and real-time polymerase chain reaction (qRT-PCR). SPSS 25.0 software package was used for statistical analysis. RESULTS: The MAO electrolyte with magnesium ions did not change the surface characteristics of the porous titanium coating. Each group prepared by MAO had similar microporous structure(P>0.05). There was no significant difference in surface roughness and contact angle between MAO treatment group (MAO, MAO-mg)(P>0.05), but significantly higher than that of Ti group (P<0.05). With the passage of cell culture time, MAO-mg group promoted cell proliferation (P<0.05). MAO-mg group was significantly higher than other groups in ALP and ARS staining. The expression of Runx2 mRNA (P<0.05), ALP(P<0.05) and osteocalcin OCN(P<0.05) in MAO-mg group was significantly higher than that in Ti and MAO groups. CONCLUSIONS: MAO successfully prepared magnesium-containing nanoporous titanium coating, and showed a significant role in promoting osteogenic differentiation.


Assuntos
Nanoporos , Titânio , Titânio/farmacologia , Magnésio/química , Magnésio/farmacologia , Osteogênese/genética , Eletrólitos/farmacologia , Íons/farmacologia , Propriedades de Superfície , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
14.
J Colloid Interface Sci ; 667: 624-639, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38663278

RESUMO

Quick scarless healing remains a key issue for diabetic wounds. Here, a stretchable elastomeric hydrogel dressing composed of hydroxyethylcellulose (HEC), silk nano fiber-magnesium ion complex (Mg2+-SNF) and glycerol (Gly) was developed to optimize mechanical niche, anti-inflammatory and angiogenic behavior simultaneously. The composite hydrogel dressing exhibited skin-like elasticity (175.1 ± 23.9 %) and modulus (156.7 ± 2.5 KPa) while Mg2+-SNF complex endowed the dressing with angiogenesis, both favoring quick scarless skin regeneration. In vitro cell studies revealed that the hydrogel dressing stimulated fibroblast proliferation, endothelial cell migration and vessel-like tube formation, and also induced anti-inflammatory behavior of macrophages. In vivo results revealed accelerated healing of diabetic wounds. The improved granulation ingrowth and collagen deposition suggested high quality repair. Both thinner epidermal layer and low collagen I/III ratio of the regenerated skin confirmed scarless tissue formation. This bioactive hydrogel dressing has promising potential to address the multifaceted challenges of diabetic wound management.


Assuntos
Glicerol , Magnésio , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Glicerol/química , Glicerol/farmacologia , Magnésio/química , Magnésio/farmacologia , Camundongos , Seda/química , Hidrogéis/química , Hidrogéis/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Bandagens , Humanos , Ratos , Nanofibras/química , Proliferação de Células/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Masculino , Células Endoteliais da Veia Umbilical Humana , Celulose/química , Celulose/farmacologia , Celulose/análogos & derivados
15.
Acta Biomater ; 180: 171-182, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570108

RESUMO

Metallic bioresorbable orthopaedic implants based on magnesium, iron and zinc-based alloys that provide rigid internal fixation without foreign-body complications associated with permanent implants have great potential as next-generation orthopaedic devices. Magnesium (Mg) based alloys exhibit excellent biocompatibility. However, the mechanical performance of such implants for orthopaedic applications is contingent on limiting the rate of corrosion in vivo throughout the bone healing process. Additionally, the surgical procedure for the implantation of internal bone fixation devices may impart plastic deformation to the device, potentially altering the corrosion rate of the device. The primary objective of this study was to develop a computer-based model for predicting the in vivo corrosion behaviour of implants manufactured from a Mg-1Zn-0.25Ca ternary alloy (ZX10). The proposed corrosion model was calibrated with an extensive range of mechanical and in vitro corrosion testing. Finally, the model was validated by comparing the in vivo corrosion performance of the implants during preliminary animal testing with the corrosion performance predicted by the model. The proposed model accurately predicts the in vitro corrosion rate, while overestimating the in vivo corrosion rate of ZX10 implants. Overall, the model provides a "first-line of design" for the development of new bioresorbable Mg-based orthopaedic devices. STATEMENT OF SIGNIFICANCE: Biodegradable metallic orthopaedic implant devices have emerged as a potential alternative to permanent implants, although successful adoption is contingent on achieving an acceptable degradation profile. A reliable computational method for accurately estimating the rate of biodegradation in vivo would greatly accelerate the development of resorbable orthopaedic implants by highlighting the potential risk of premature implant failure at an early stage of the device development. Phenomenological corrosion modelling approach is a promising computational tool for predicting the biodegradation of implants. However, the validity of the models for predicting the in vivo biodegradation of Mg alloys is yet to be determined. Present study investigates the validity of the phenomenological modelling approach for simulating the biodegradation of resorbable metallic orthopaedic implants by using a porcine model that targets craniofacial applications.


Assuntos
Implantes Absorvíveis , Magnésio , Corrosão , Magnésio/química , Animais , Calibragem , Ligas/química , Teste de Materiais
16.
Acta Biomater ; 180: 183-196, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604465

RESUMO

The utilization of biodegradable magnesium (Mg) alloys in the fabrication of temporary non-vascular stents is an innovative trend in biomedical engineering. However, the heterogeneous degradation profiles of these biomaterials, together with potential bacterial colonization that could precipitate infectious or stenotic complications, are critical obstacles precluding their widespread clinical application. In pursuit of overcoming these limitations, this study applies the principles of biomimicry, particularly the hydrophobic and anti-fouling characteristics of lotus leaves, to pioneer the creation of nanocomposite coatings. These coatings integrate poly-trimethylene carbonate (PTMC) with covalent organic frameworks (COFs), to modify the stent's surface property. The strategic design of the coating's topography, porosity, and self-polishing capabilities collectively aims to decelerate degradation processes and minimize biological adhesion. The protective qualities of the coatings were substantiated through rigorous testing in both in vitro dynamic bile tests and in vivo New Zealand rabbit choledochal models. Empirical findings from these trials confirmed that the implementation of COF-based nanocomposite coatings robustly fortifies Mg implantations, conferring heightened resistance to both biocorrosion and biofouling as well as improved biocompatibility within bodily environments. The outcomes of this research elucidate a comprehensive framework for the multifaceted strategies against stent corrosion and fouling, thereby charting a visionary pathway toward the systematic conception of a new class of reliable COF-derived surface modifications poised to amplify the efficacy of Mg-based stents. STATEMENT OF SIGNIFICANCE: Biodegradable magnesium (Mg) alloys are widely utilized in temporary stents, though their rapid degradation and susceptibility to bacterial infection pose significant challenges. Our research has developed a nanocomposite coating inspired by the lotus, integrating poly-trimethylene carbonate with covalent organic frameworks (COF). The coating achieved self-polishing property and optimal surface energy on the Mg substrate, which decelerates stent degradation and reduces biofilm formation. Comprehensive evaluations utilizing dynamic bile simulations and implantation in New Zealand rabbit choledochal models reveal that the coating improves the durability and longevity of the stent. The implications of these findings suggest the potential COF-based Mg alloy stent surface treatments and a leap forward in advancing stent performance and endurance in clinical applications.


Assuntos
Implantes Absorvíveis , Materiais Revestidos Biocompatíveis , Magnésio , Nanocompostos , Stents , Animais , Coelhos , Magnésio/química , Magnésio/farmacologia , Nanocompostos/química , Corrosão , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Incrustação Biológica/prevenção & controle , Dioxanos/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Polímeros/química , Polímeros/farmacologia , Ligas/química , Ligas/farmacologia
17.
Biomed Mater ; 19(3)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38636501

RESUMO

Palygorskite (Pal) is a naturally available one-dimensional clay mineral, featuring rod-shaped morphology, nanoporous structure, permanent negative charges as well as abundant surface hydroxyl groups, exhibiting promising potential as a natural hemostatic material. In this study, the hemostatic performance and mechanisms of Pal were systematically investigated based on the structural regulate induced by oxalic acid (OA) gradient leaching from perspectives of structure, surface attributes and ion release.In vitroandin vivohemostasis evaluation showed that Pal with OA leaching for 1 h exhibited a superior blood procoagulant effect compared with the raw Pal as well as the others leached for prolonging time. This phenomenon might be ascribed to the synergistic effect of the intact nanorod-like morphology, the increase in the surface negative charge, the release of metal ions (Fe3+and Mg2+), and the improved blood affinity, which promoted the intrinsic coagulation pathway, the fibrinogenesis and the adhesion of blood cells, thereby accelerating the formation of robust blood clots. This work is expected to provide experimental and theoretical basis for the construction of hemostatic biomaterials based on clay minerals.


Assuntos
Coagulação Sanguínea , Hemostáticos , Compostos de Magnésio , Ácido Oxálico , Compostos de Silício , Compostos de Magnésio/química , Ácido Oxálico/química , Animais , Compostos de Silício/química , Coagulação Sanguínea/efeitos dos fármacos , Hemostáticos/química , Hemostáticos/farmacologia , Materiais Biocompatíveis/química , Hemostasia/efeitos dos fármacos , Teste de Materiais , Humanos , Propriedades de Superfície , Argila/química , Magnésio/química , Ratos
18.
Biomater Adv ; 160: 213864, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642519

RESUMO

Although calcium phosphate has been extensively utilized in orthopedic applications such as spine, limbs, dentistry, and maxillofacial surgery, the lack of osteoinductive properties often hinders its effectiveness in treating bone defects resulting from pathological micro-environment such as tumor surgery, osteoporosis, osteomyelitis, and diabetic. Therefore, a novel bone cement based on magnesium-doped bioactive glass was developed in this study. The moderate release of magnesium ions improved the mechanical properties by controlling the crystal size of hydroxyapatite. Through detailed discussion of element content and heat treatment temperature, it was found that 2Mg-BG-800 was suitable for the construction of bone cement. 2Mg-BG-BC exhibited favorable initial (15 min) and final (30 min) setting time, compressive strength (29.45 MPa), compressive modulus (1851.49 MPa), injectability, and shape-adaptability. Furthermore, Mg-BG-BC demonstrated the ability to enhance the osteogenic differentiation of BMSCs, and induce macrophage polarization towards the M2 phenotype, suggesting its potential for osteoporotic fracture regeneration.


Assuntos
Cimentos Ósseos , Vidro , Magnésio , Osteogênese , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Magnésio/química , Magnésio/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Vidro/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Diferenciação Celular/efeitos dos fármacos , Camundongos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Força Compressiva
19.
Environ Sci Pollut Res Int ; 31(20): 29132-29147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568311

RESUMO

Layered double hydroxides (LDH) hold great promise as phosphate adsorbents; however, the conventional binary LDH exhibits low adsorption rate and adsorption capacity. In this study, Mg and La were chosen as binary metals in the synthesis of Mg-La LDH to enhance phosphate efficient adsorption. Different molar ratios of Mg to La (2:1, 3:1, and 4:1) were investigated to further enhance P adsorption. The best performing Mg-La LDH, with Mg to La ratio is 4:1 (LDH-4), presented a larger adsorption capacity and faster adsorption rate than other Mg-La LDH. The maximum adsorption capacity (87.23 mg/g) and the rapid adsorption rate in the initial 25 min of LDH-4 (70 mg/(g·h)) were at least 1.6 times and 1.8 times higher than the others. The kinetics, isotherms, the effect of initial pH and co-existing anions, and the adsorption-desorption cycle experiment were studied. The batch experiment results proved that the chemisorption progress occurred on the single-layered LDH surface and the optimized LDH exhibited strong anti-interference capability. Furthermore, the structural characteristics and adsorption mechanism were further investigated by SEM, BET, FTIR, XRD, and XPS. The characterization results showed that the different metal ratios could lead to changes in the metal hydroxide layer and the main ions inside. At lower Mg/La ratios, distortion occurred in the hydroxide layer, resulting in lower crystallinity and lower performance. The characterization results also proved that the main mechanisms of phosphate adsorption are electrostatic adsorption, ion exchange, and inner-sphere complexation. The results emphasized that the Mg-La LDH was efficient in phosphate removal and could be successfully used for this purpose.


Assuntos
Hidróxidos , Magnésio , Fosfatos , Adsorção , Hidróxidos/química , Fosfatos/química , Magnésio/química , Cinética , Lantânio/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
20.
Environ Sci Pollut Res Int ; 31(18): 27318-27328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38507166

RESUMO

The presence of HCl and SO2 gas imposes limitations on syngas utilization obtained from household waste in a wide range of applications. The hydrotalcite-like compounds (HTLs) have been proved that could remove HCl efficiency. However, the research on impact of synthesis conditions of HTLs and SO2 on HCl removal was limited. In this study, a range of Ca-Mg-Al mixed oxide sorbents was synthesized by calcining HTLs, with variations in crystallization temperature, solution pH, and the Ca/Mg molar ratio. These sorbents were examined for their effectiveness in removing HCl at medium-high temperatures under diverse conditions. The adsorption performance of selected sorbents for the removal of HCl, SO2, and HCl-SO2 mixed gas at temperature of 350 °C, 450 °C, and 550 °C, respectively, was evaluated using thermogravimetric analysis (TGA). It was observed that the HTL synthesis parameters significantly influenced the HCl adsorption capacity of Ca-Mg-Al mixed oxides. Notably, HTLs synthesized at 60 °C, a solution pH of 10-11, and a Ca/Mg ratio of 4 exhibited superior crystallinity and optimal adsorption characteristics. For individual HCl and SO2 removal, temperature had a minor effect on HCl adsorption but significantly impacted SO2 adsorption rates. At temperatures above 550 °C, SO2 removal efficiency substantially decreased. When exposed to a mixed gas, the Ca-Mg-Al mixed oxides could efficiently remove both HCl and SO2 at temperatures below 550 °C, with HCl dominating the adsorption process at higher temperatures. This dual-action capability is attributed to several mechanisms through which HTL sorbents interacted with HCl, including pore filling, ion exchange, and cation exchange. Initially, HCl absorbed onto specific sites created by water and CO2 removal due to the surface's polarity. Subsequently, HCl reacted with CaCO3 and CaO formed during HTL decomposition.


Assuntos
Ácido Clorídrico , Óxidos , Adsorção , Óxidos/química , Ácido Clorídrico/química , Temperatura , Magnésio/química , Cálcio/química , Alumínio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA