Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.589
Filtrar
1.
J Clin Neurophysiol ; 41(5): 444-449, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38935658

RESUMO

SUMMARY: Stereo-EEG is a widely used method to improve the diagnostic precision of presurgical workup in patients with refractory epilepsy. Its ability to detect epileptic activity and identify epileptic networks largely depends on the chosen implantation strategy. Even in an ideal situation, electrodes record activity generated in <10% of the brain and contacts only record from brain tissue in their immediate proximity. In this article, the authors discuss how recording stereo-EEG simultaneously with other diagnostic methods can improve its diagnostic value in clinical and research settings. It can help overcome the limited spatial coverage of intracranial recording and better understand the sources of epileptic activity. Simultaneous scalp EEG is the most widely available method, often used to understand large epileptic networks, seizure propagation, and EEG activity occurring on the contralateral hemisphere. Simultaneous magnetoencephalography allows for more precise source localization and identification of deep sources outside the stereo-EEG coverage. Finally, simultaneous functional MRI can highlight metabolic changes following epileptic activity and help understand the widespread network changes associated with interictal activity. This overview highlights advantages and methodological challenges for all these methods. Clinical use and research applications are presented for each approach.


Assuntos
Eletroencefalografia , Magnetoencefalografia , Humanos , Eletroencefalografia/métodos , Magnetoencefalografia/métodos , Encéfalo/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatologia
2.
Sci Rep ; 14(1): 14680, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918430

RESUMO

Schizophrenia is a severe disruption in cognition and emotion, affecting fundamental human functions. In this study, we applied Multi-Scale Entropy analysis to resting-state Magnetoencephalography data from 54 schizophrenia patients and 98 healthy controls. This method quantifies the temporal complexity of the signal across different time scales using the concept of sample entropy. Results show significantly higher sample entropy in schizophrenia patients, primarily in central, parietal, and occipital lobes, peaking at time scales equivalent to frequencies between 15 and 24 Hz. To disentangle the contributions of the amplitude and phase components, we applied the same analysis to a phase-shuffled surrogate signal. The analysis revealed that most differences originate from the amplitude component in the δ, α, and ß power bands. While the phase component had a smaller magnitude, closer examination reveals clear spatial patterns and significant differences across specific brain regions. We assessed the potential of multi-scale entropy as a schizophrenia biomarker by comparing its classification performance to conventional spectral analysis and a cognitive task (the n-back paradigm). The discriminative power of multi-scale entropy and spectral features was similar, with a slight advantage for multi-scale entropy features. The results of the n-back test were slightly below those obtained from multi-scale entropy and spectral features.


Assuntos
Entropia , Magnetoencefalografia , Esquizofrenia , Humanos , Esquizofrenia/fisiopatologia , Esquizofrenia/diagnóstico , Magnetoencefalografia/métodos , Masculino , Feminino , Adulto , Encéfalo/fisiopatologia , Pessoa de Meia-Idade , Estudos de Casos e Controles
3.
Elife ; 132024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831699

RESUMO

Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - optically pumped magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.


Assuntos
Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Magnetoencefalografia/instrumentação , Criança , Adolescente , Adulto , Adulto Jovem , Masculino , Feminino , Pré-Escolar , Ritmo beta/fisiologia , Encéfalo/fisiologia
4.
Int J Geriatr Psychiatry ; 39(6): e6112, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837281

RESUMO

OBJECTIVES: People with Alzheimer's Disease (AD) experience changes in their level and content of consciousness, but there is little research on biomarkers of consciousness in pre-clinical AD and Mild Cognitive Impairment (MCI). This study investigated whether levels of consciousness are decreased in people with MCI. METHODS: A multi-site site magnetoencephalography (MEG) dataset, BIOFIND, comprising 83 people with MCI and 83 age matched controls, was analysed. Arousal (and drowsiness) was assessed by computing the theta-alpha ratio (TAR). The Lempel-Ziv algorithm (LZ) was used to quantify the information content of brain activity, with higher LZ values indicating greater complexity and potentially a higher level of consciousness. RESULTS: LZ was lower in the MCI group versus controls, indicating a reduced level of consciousness in MCI. TAR was higher in the MCI group versus controls, indicating a reduced level of arousal (i.e. increased drowsiness) in MCI. LZ was also found to be correlated with mini-mental state examination (MMSE) scores, suggesting an association between cognitive impairment and level of consciousness in people with MCI. CONCLUSIONS: A decline in consciousness and arousal can be seen in MCI. As cognitive impairment worsens, measured by MMSE scores, levels of consciousness and arousal decrease. These findings highlight how monitoring consciousness using biomarkers could help understand and manage impairments found at the preclinical stages of AD. Further research is needed to explore markers of consciousness between people who progress from MCI to dementia and those who do not, and in people with moderate and severe AD, to promote person-centred care.


Assuntos
Nível de Alerta , Disfunção Cognitiva , Magnetoencefalografia , Humanos , Disfunção Cognitiva/fisiopatologia , Feminino , Masculino , Idoso , Nível de Alerta/fisiologia , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estado de Consciência/fisiologia , Doença de Alzheimer/fisiopatologia , Biomarcadores/análise , Algoritmos , Pessoa de Meia-Idade , Testes de Estado Mental e Demência
5.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38836408

RESUMO

Sense of touch is essential for our interactions with external objects and fine control of hand actions. Despite extensive research on human somatosensory processing, it is still elusive how involved brain regions interact as a dynamic network in processing tactile information. Few studies probed temporal dynamics of somatosensory information flow and reported inconsistent results. Here, we examined cortical somatosensory processing through magnetic source imaging and cortico-cortical coupling dynamics. We recorded magnetoencephalography signals from typically developing children during unilateral pneumatic stimulation. Neural activities underlying somatosensory evoked fields were mapped with dynamic statistical parametric mapping, assessed with spatiotemporal activation analysis, and modeled by Granger causality. Unilateral pneumatic stimulation evoked prominent and consistent activations in the contralateral primary and secondary somatosensory areas but weaker and less consistent activations in the ipsilateral primary and secondary somatosensory areas. Activations in the contralateral primary motor cortex and supramarginal gyrus were also consistently observed. Spatiotemporal activation and Granger causality analysis revealed initial serial information flow from contralateral primary to supramarginal gyrus, contralateral primary motor cortex, and contralateral secondary and later dynamic and parallel information flows between the consistently activated contralateral cortical areas. Our study reveals the spatiotemporal dynamics of cortical somatosensory processing in the normal developing brain.


Assuntos
Magnetoencefalografia , Córtex Somatossensorial , Humanos , Masculino , Córtex Somatossensorial/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Feminino , Criança , Potenciais Somatossensoriais Evocados/fisiologia , Mapeamento Encefálico , Percepção do Tato/fisiologia , Desenvolvimento Infantil/fisiologia , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Estimulação Física , Córtex Motor/fisiologia , Córtex Motor/crescimento & desenvolvimento
6.
PLoS One ; 19(6): e0303959, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843176

RESUMO

Phase-amplitude coupling (PAC) has been used as a powerful tool to understand the mechanism underlying neural binding by investigating neural synchrony across different frequency bands. This study examined the possibility that dysregulated alpha-gamma modulation may be crucially involved in aberrant brain functioning in autism spectrum disorder (ASD). Magnetoencephalographic data were recorded from 13 adult participants with ASD and 16 controls. The time-coursed sources averaged over a primary visual area 1 and fusiform gyrus area were reconstructed with the minimum-norm estimate method. The alpha-gamma PAC was further calculated based on these sources. The statistical analysis was implemented based on the PAC and directed asymmetry index. The results showed the hyper-activity coupling for ASD at the no-face condition and revealed the importance of alpha-gamma phase modulation in detecting a face. Our data provides novel evidence for the role of the alpha-gamma PAC and suggests that the globe connectivity may be more critical during visual perception.


Assuntos
Transtorno do Espectro Autista , Magnetoencefalografia , Percepção Visual , Humanos , Transtorno do Espectro Autista/fisiopatologia , Masculino , Adulto , Feminino , Percepção Visual/fisiologia , Adulto Jovem , Mapeamento Encefálico/métodos , Estudos de Casos e Controles
7.
Commun Biol ; 7(1): 748, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902370

RESUMO

Human language relies on the correct processing of syntactic information, as it is essential for successful communication between speakers. As an abstract level of language, syntax has often been studied separately from the physical form of the speech signal, thus often masking the interactions that can promote better syntactic processing in the human brain. However, behavioral and neural evidence from adults suggests the idea that prosody and syntax interact, and studies in infants support the notion that prosody assists language learning. Here we analyze a MEG dataset to investigate how acoustic cues, specifically prosody, interact with syntactic representations in the brains of native English speakers. More specifically, to examine whether prosody enhances the cortical encoding of syntactic representations, we decode syntactic phrase boundaries directly from brain activity, and evaluate possible modulations of this decoding by the prosodic boundaries. Our findings demonstrate that the presence of prosodic boundaries improves the neural representation of phrase boundaries, indicating the facilitative role of prosodic cues in processing abstract linguistic features. This work has implications for interactive models of how the brain processes different linguistic features. Future research is needed to establish the neural underpinnings of prosody-syntax interactions in languages with different typological characteristics.


Assuntos
Idioma , Percepção da Fala , Humanos , Percepção da Fala/fisiologia , Masculino , Feminino , Adulto , Encéfalo/fisiologia , Fala/fisiologia , Adulto Jovem , Magnetoencefalografia , Linguística , Sinais (Psicologia)
8.
Neuroimage ; 296: 120661, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838840

RESUMO

Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior spatiotemporal resolution. However, effectively suppressing metallic artifacts, particularly from devices such as orthodontic braces and vagal nerve stimulators remains a major challenge, hindering the wider clinical application of wearable OPM-MEG devices. A comprehensive analysis of metal artifact characteristics from time, frequency, and time-frequency perspectives was conducted for the first time using an OPM-MEG device in clinical medicine. This study focused on patients with metal orthodontics, examining the modulation of metal artifacts by breath and head movement, the incomplete regular sub-Gaussian distribution, and the high absolute power ratio in the 0.5-8 Hz band. The existing metal artifact suppression algorithms applied to SQUID-MEG, such as fast independent component analysis (FastICA), information maximization (Infomax), and algorithms for multiple unknown signal extraction (AMUSE), exhibit limited efficacy. Consequently, this study introduced the second-order blind identification (SOBI) algorithm, which utilized multiple time delays for the component separation of OPM-MEG measurement signals. We modified the time delays of the SOBI method to improve its efficacy in separating artifact components, particularly those in the ultralow frequency range. This approach employs the frequency-domain absolute power ratio, root mean square (RMS) value, and mutual information methods to automate the artifact component screening process. The effectiveness of this method was validated through simulation experiments involving four subjects in both resting and evoked experiments. In addition, the proposed method was also validated by the actual OPM-MEG evoked experiments of three subjects. Comparative analyses were conducted against the FastICA, Infomax, and AMUSE algorithms. Evaluation metrics included normalized mean square error, normalized delta band power error, RMS error, and signal-to-noise ratio, demonstrating that the proposed method provides optimal suppression of metal artifacts. This advancement holds promise for enhancing data quality and expanding the clinical applications of OPM-MEG.


Assuntos
Artefatos , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Magnetoencefalografia/instrumentação , Adulto , Feminino , Masculino , Algoritmos , Metais , Processamento de Sinais Assistido por Computador , Adulto Jovem , Encéfalo/fisiologia
9.
Neuropsychologia ; 199: 108905, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38740179

RESUMO

Linguistic research showed that the depth of syntactic embedding is reflected in brain theta power. Here, we test whether this also extends to non-linguistic stimuli, specifically music. We used a hierarchical model of musical syntax to continuously quantify two types of expert-annotated harmonic dependencies throughout a piece of Western classical music: prolongation and preparation. Prolongations can roughly be understood as a musical analogue to linguistic coordination between constituents that share the same function (e.g., 'pizza' and 'pasta' in 'I ate pizza and pasta'). Preparation refers to the dependency between two harmonies whereby the first implies a resolution towards the second (e.g., dominant towards tonic; similar to how the adjective implies the presence of a noun in 'I like spicy … '). Source reconstructed MEG data of sixty-five participants listening to the musical piece was then analysed. We used Bayesian Mixed Effects models to predict theta envelope in the brain, using the number of open prolongation and preparation dependencies as predictors whilst controlling for audio envelope. We observed that prolongation and preparation both carry independent and distinguishable predictive value for theta band fluctuation in key linguistic areas such as the Angular, Superior Temporal, and Heschl's Gyri, or their right-lateralised homologues, with preparation showing additional predictive value for areas associated with the reward system and prediction. Musical expertise further mediated these effects in language-related brain areas. Results show that predictions of precisely formalised music-theoretical models are reflected in the brain activity of listeners which furthers our understanding of the perception and cognition of musical structure.


Assuntos
Percepção Auditiva , Magnetoencefalografia , Música , Ritmo Teta , Humanos , Ritmo Teta/fisiologia , Masculino , Feminino , Percepção Auditiva/fisiologia , Adulto , Adulto Jovem , Estimulação Acústica , Teorema de Bayes , Encéfalo/fisiologia
10.
J Neurosci ; 44(26)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38760163

RESUMO

Aging is accompanied by a decline of working memory, an important cognitive capacity that involves stimulus-selective neural activity that persists after stimulus presentation. Here, we unraveled working memory dynamics in older human adults (male and female) including those diagnosed with mild cognitive impairment (MCI) using a combination of behavioral modeling, neuropsychological assessment, and MEG recordings of brain activity. Younger adults (male and female) were studied with behavioral modeling only. Participants performed a visuospatial delayed match-to-sample task under systematic manipulation of the delay and distance between sample and test stimuli. Their behavior (match/nonmatch decisions) was fit with a computational model permitting the dissociation of noise in the internal operations underlying the working memory performance from a strategic decision threshold. Task accuracy decreased with delay duration and sample/test proximity. When sample/test distances were small, older adults committed more false alarms than younger adults. The computational model explained the participants' behavior well. The model parameters reflecting internal noise (not decision threshold) correlated with the precision of stimulus-selective cortical activity measured with MEG during the delay interval. The model uncovered an increase specifically in working memory noise in older compared with younger participants. Furthermore, in the MCI group, but not in the older healthy controls, internal noise correlated with the participants' clinically assessed cognitive integrity. Our results are consistent with the idea that the stability of working memory contents deteriorates in aging, in a manner that is specifically linked to the overall cognitive integrity of individuals diagnosed with MCI.


Assuntos
Envelhecimento , Encéfalo , Magnetoencefalografia , Memória de Curto Prazo , Humanos , Masculino , Feminino , Memória de Curto Prazo/fisiologia , Idoso , Envelhecimento/fisiologia , Envelhecimento/psicologia , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Encéfalo/fisiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Cognição/fisiologia , Testes Neuropsicológicos , Idoso de 80 Anos ou mais , Modelos Neurológicos
11.
J Neurosci ; 44(26)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38760162

RESUMO

Human experience is imbued by the sense of being an embodied agent. The investigation of such basic self-consciousness has been hampered by the difficulty of comprehensively modulating it in the laboratory while reliably capturing ensuing subjective changes. The present preregistered study fills this gap by combining advanced meditative states with principled phenomenological interviews: 46 long-term meditators (19 female, 27 male) were instructed to modulate and attenuate their embodied self-experience during magnetoencephalographic monitoring. Results showed frequency-specific (high-beta band) activity reductions in frontoparietal and posterior medial cortices (PMC). Importantly, PMC reductions were driven by a subgroup describing radical embodied self-disruptions, including suspension of agency and dissolution of a localized first-person perspective. Neural changes were correlated with lifetime meditation and interview-derived experiential changes, but not with classical self-reports. The results demonstrate the potential of integrating in-depth first-person methods into neuroscientific experiments. Furthermore, they highlight neural oscillations in the PMC as a central process supporting the embodied sense of self.


Assuntos
Ritmo beta , Magnetoencefalografia , Meditação , Humanos , Feminino , Masculino , Meditação/psicologia , Meditação/métodos , Adulto , Ritmo beta/fisiologia , Pessoa de Meia-Idade , Córtex Cerebral/fisiologia , Autoimagem
12.
Proc Natl Acad Sci U S A ; 121(23): e2320489121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805278

RESUMO

Neural oscillations reflect fluctuations in excitability, which biases the percept of ambiguous sensory input. Why this bias occurs is still not fully understood. We hypothesized that neural populations representing likely events are more sensitive, and thereby become active on earlier oscillatory phases, when the ensemble itself is less excitable. Perception of ambiguous input presented during less-excitable phases should therefore be biased toward frequent or predictable stimuli that have lower activation thresholds. Here, we show such a frequency bias in spoken word recognition using psychophysics, magnetoencephalography (MEG), and computational modelling. With MEG, we found a double dissociation, where the phase of oscillations in the superior temporal gyrus and medial temporal gyrus biased word-identification behavior based on phoneme and lexical frequencies, respectively. This finding was reproduced in a computational model. These results demonstrate that oscillations provide a temporal ordering of neural activity based on the sensitivity of separable neural populations.


Assuntos
Idioma , Magnetoencefalografia , Percepção da Fala , Humanos , Percepção da Fala/fisiologia , Masculino , Feminino , Adulto , Lobo Temporal/fisiologia , Adulto Jovem , Modelos Neurológicos
13.
J Neurosci Methods ; 408: 110180, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795977

RESUMO

BACKGROUND: Accurate identification of abnormal electroencephalographic (EEG) activity is pivotal for diagnosing and treating epilepsy. Recent studies indicate that decomposing brain activity into periodic (oscillatory) and aperiodic (trend across all frequencies) components can illuminate the drivers of spectral activity changes. NEW METHODS: We analysed intracranial EEG (iEEG) data from 234 subjects, creating a normative map. This map was compared to a cohort of 63 patients with refractory focal epilepsy under consideration for neurosurgery. The normative map was computed using three approaches: (i) relative complete band power, (ii) relative band power with the aperiodic component removed, and (iii) the aperiodic exponent. Abnormalities were calculated for each approach in the patient cohort. We evaluated the spatial profiles, assessed their ability to localize abnormalities, and replicated the findings using magnetoencephalography (MEG). RESULTS: Normative maps of relative complete band power and relative periodic band power exhibited similar spatial profiles, while the aperiodic normative map revealed higher exponent values in the temporal lobe. Abnormalities estimated through complete band power effectively distinguished between good and bad outcome patients. Combining periodic and aperiodic abnormalities enhanced performance, like the complete band power approach. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: Sparing cerebral tissue with abnormalities in both periodic and aperiodic activity may result in poor surgical outcomes. Both periodic and aperiodic components do not carry sufficient information in isolation. The relative complete band power solution proved to be the most reliable method for this purpose. Future studies could investigate how cerebral location or pathology influences periodic or aperiodic abnormalities.


Assuntos
Encéfalo , Eletrocorticografia , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Masculino , Feminino , Adulto , Eletrocorticografia/métodos , Adulto Jovem , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Pessoa de Meia-Idade , Adolescente , Processamento de Sinais Assistido por Computador , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/cirurgia , Epilepsia/fisiopatologia , Epilepsia/diagnóstico , Estudos de Coortes , Eletroencefalografia/métodos , Ondas Encefálicas/fisiologia
14.
J Neurosci Methods ; 408: 110160, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38734149

RESUMO

Simultaneous noninvasive and invasive electrophysiological recordings provide a unique opportunity to achieve a comprehensive understanding of human brain activity, much like a Rosetta stone for human neuroscience. In this review we focus on the increasingly-used powerful combination of intracranial electroencephalography (iEEG) with scalp electroencephalography (EEG) or magnetoencephalography (MEG). We first provide practical insight on how to achieve these technically challenging recordings. We then provide examples from clinical research on how simultaneous recordings are advancing our understanding of epilepsy. This is followed by the illustration of how human neuroscience and methodological advances could benefit from these simultaneous recordings. We conclude with a call for open data sharing and collaboration, while ensuring neuroethical approaches and argue that only with a true collaborative approach the promises of simultaneous recordings will be fulfilled.


Assuntos
Encéfalo , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Eletrocorticografia/métodos
15.
Clin Neurophysiol ; 163: 244-254, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820994

RESUMO

OBJECTIVE: Diseases affecting sensorimotor function impair physical independence. Reliable functional clinical biomarkers allowing early diagnosis or targeting treatment and rehabilitation could reduce this burden. Magnetoencephalography (MEG) non-invasively measures brain rhythms such as the somatomotor 'rolandic' rhythm which shows intermittent high-amplitude beta (14-30 Hz) 'events' that predict behavior across tasks and species and are altered by sensorimotor neurological diseases. METHODS: We assessed test-retest stability, a prerequisite for biomarkers, of spontaneous sensorimotor aperiodic (1/f) signal and beta events in 50 healthy human controls across two MEG sessions using the intraclass correlation coefficient (ICC). Beta events were determined using an amplitude-thresholding approach on a narrow-band filtered amplitude envelope obtained using Morlet wavelet decomposition. RESULTS: Resting sensorimotor characteristics showed good to excellent test-retest stability. Aperiodic component (ICC 0.77-0.88) and beta event amplitude (ICC 0.74-0.82) were very stable, whereas beta event duration was more variable (ICC 0.55-0.7). 2-3 minute recordings were sufficient to obtain stable results. Analysis automatization was successful in 86%. CONCLUSIONS: Sensorimotor beta phenotype is a stable feature of an individual's resting brain activity even for short recordings easily measured in patients. SIGNIFICANCE: Spontaneous sensorimotor beta phenotype has potential as a clinical biomarker of sensorimotor system integrity.


Assuntos
Ritmo beta , Magnetoencefalografia , Humanos , Masculino , Feminino , Adulto , Magnetoencefalografia/métodos , Magnetoencefalografia/normas , Ritmo beta/fisiologia , Reprodutibilidade dos Testes , Córtex Sensório-Motor/fisiologia , Adulto Jovem , Descanso/fisiologia , Pessoa de Meia-Idade
16.
Hypertension ; 81(7): 1609-1618, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38690668

RESUMO

BACKGROUND: Chronic hypertension is known to be a major contributor to cognitive decline, with executive function and working memory being among the domains most commonly affected. Despite the growing literature on such dysfunction in patients with hypertension, the underlying neural processes are poorly understood. METHODS: In this cross-sectional study, we examine these neural processes by having participants with controlled hypertension, uncontrolled hypertension, and healthy controls perform a verbal working memory task during magnetoencephalography. Neural oscillations associated with the encoding and maintenance components of the working memory task were imaged and statistically evaluated among the 3 groups. RESULTS: Differences related to hypertension emerged during the encoding phase, where the hypertension groups exhibited weaker α-ß oscillatory responses compared with controls in the left parietal cortices, whereas such oscillatory activity differed between the 2 hypertension groups in the right prefrontal regions. Importantly, these neural responses in the prefrontal and parietal cortices during encoding were also significantly associated with behavioral performance across all participants. CONCLUSIONS: Overall, our data suggest that hypertension is associated with neurophysiological abnormalities during working memory encoding, whereas the neural processes serving maintenance seem to be preserved. The right hemispheric neural responses likely reflected compensatory processing, which patients with controlled hypertension may use to achieve verbal working memory function at the level of controls, as opposed to the uncontrolled hypertension group where diminished resources may have limited such additional recruitment.


Assuntos
Hipertensão , Magnetoencefalografia , Memória de Curto Prazo , Humanos , Memória de Curto Prazo/fisiologia , Masculino , Feminino , Hipertensão/fisiopatologia , Estudos Transversais , Magnetoencefalografia/métodos , Pessoa de Meia-Idade , Adulto , Lobo Parietal/fisiopatologia , Função Executiva/fisiologia , Testes Neuropsicológicos , Córtex Pré-Frontal/fisiopatologia
17.
Clin Neurophysiol ; 163: 90-101, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38714152

RESUMO

OBJECTIVE: To investigate cortical oscillations during a sentence completion task (SC) using magnetoencephalography (MEG), focusing on the semantic control network (SCN), its leftward asymmetry, and the effects of semantic control load. METHODS: Twenty right-handed adults underwent MEG while performing SC, consisting of low cloze (LC: multiple responses) and high cloze (HC: single response) stimuli. Spectrotemporal power modulations as event-related synchronizations (ERS) and desynchronizations (ERD) were analyzed: first, at the whole-brain level; second, in key SCN regions, posterior middle/inferior temporal gyri (pMTG/ITG) and inferior frontal gyri (IFG), under different semantic control loads. RESULTS: Three cortical response patterns emerged: early (0-200 ms) theta-band occipital ERS; intermediate (200-700 ms) semantic network alpha/beta-band ERD; late (700-3000 ms) dorsal language stream alpha/beta/gamma-band ERD. Under high semantic control load (LC), pMTG/ITG showed prolonged left-sided engagement (ERD) and right-sided inhibition (ERS). Left IFG exhibited heightened late (2500-2550 ms) beta-band ERD with increased semantic control load (LC vs. HC). CONCLUSIONS: SC involves distinct cortical responses and depends on the left IFG and asymmetric engagement of the pMTG/ITG for semantic control. SIGNIFICANCE: Future use of SC in neuromagnetic preoperative language mapping and for understanding the pathophysiology of language disorders in neurological conditions.


Assuntos
Magnetoencefalografia , Semântica , Humanos , Masculino , Feminino , Adulto , Magnetoencefalografia/métodos , Córtex Cerebral/fisiologia , Adulto Jovem
18.
Clin Neurophysiol ; 163: 143-151, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744104

RESUMO

OBJECTIVE: Temporally extended signal space separation (tSSS) is a powerful method for artifact suppression in magnetoencephalography (MEG). Because tSSS first separates MEG signals coming from inside and outside a certain sphere, definition of the sphere origin is important. For this study, we explored the influence of origin choice on tSSS performance in spontaneous and evoked activity from epilepsy patients. METHODS: Interictal epileptiform discharges (IEDs) and somatosensory evoked fields (SEFs) were processed with two tSSSs: one with the default origin of (0, 0, 40 mm) in the head coordinate, and the other with an individual origin estimated using each patient's anatomical magnetic resonance imaging (MRI). Equivalent current dipoles (ECDs) were calculated for the data. The ECD location and quality of estimation were compared across conditions. RESULTS: MEG data from 21 patients revealed marginal differences in ECD location, but the estimation quality inferred from goodness of fit (GOF) and confidence volume (CV) was better for the tSSS with individual origins. This choice affected IEDs more than it affected SEFs. CONCLUSIONS: Individual sphere model resulted in better GOF and CV. SIGNIFICANCE: Application of tSSS using an individual origin would be more desirable when available. This parameter might influence spontaneous activity more strongly.


Assuntos
Epilepsia , Potenciais Somatossensoriais Evocados , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Masculino , Feminino , Adulto , Epilepsia/fisiopatologia , Epilepsia/diagnóstico por imagem , Potenciais Somatossensoriais Evocados/fisiologia , Adulto Jovem , Pessoa de Meia-Idade , Artefatos , Imageamento por Ressonância Magnética/métodos , Adolescente , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem
19.
Nat Commun ; 15(1): 4313, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773109

RESUMO

Our brain is constantly extracting, predicting, and recognising key spatiotemporal features of the physical world in order to survive. While neural processing of visuospatial patterns has been extensively studied, the hierarchical brain mechanisms underlying conscious recognition of auditory sequences and the associated prediction errors remain elusive. Using magnetoencephalography (MEG), we describe the brain functioning of 83 participants during recognition of previously memorised musical sequences and systematic variations. The results show feedforward connections originating from auditory cortices, and extending to the hippocampus, anterior cingulate gyrus, and medial cingulate gyrus. Simultaneously, we observe backward connections operating in the opposite direction. Throughout the sequences, the hippocampus and cingulate gyrus maintain the same hierarchical level, except for the final tone, where the cingulate gyrus assumes the top position within the hierarchy. The evoked responses of memorised sequences and variations engage the same hierarchical brain network but systematically differ in terms of temporal dynamics, strength, and polarity. Furthermore, induced-response analysis shows that alpha and beta power is stronger for the variations, while gamma power is enhanced for the memorised sequences. This study expands on the predictive coding theory by providing quantitative evidence of hierarchical brain mechanisms during conscious memory and predictive processing of auditory sequences.


Assuntos
Córtex Auditivo , Percepção Auditiva , Magnetoencefalografia , Humanos , Masculino , Feminino , Adulto , Percepção Auditiva/fisiologia , Adulto Jovem , Córtex Auditivo/fisiologia , Encéfalo/fisiologia , Estimulação Acústica , Mapeamento Encefálico , Música , Giro do Cíngulo/fisiologia , Memória/fisiologia , Hipocampo/fisiologia , Reconhecimento Psicológico/fisiologia
20.
Neuroimage ; 295: 120621, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797383

RESUMO

Although one can recognize the environment by soundscape substituting vision to auditory signal, whether subjects could perceive the soundscape as visual or visual-like sensation has been questioned. In this study, we investigated hierarchical process to elucidate the recruitment mechanism of visual areas by soundscape stimuli in blindfolded subjects. Twenty-two healthy subjects were repeatedly trained to recognize soundscape stimuli converted by visual shape information of letters. An effective connectivity method called dynamic causal modeling (DCM) was employed to reveal how the brain was hierarchically organized to recognize soundscape stimuli. The visual mental imagery model generated cortical source signals of five regions of interest better than auditory bottom-up, cross-modal perception, and mixed models. Spectral couplings between brain areas in the visual mental imagery model were analyzed. While within-frequency coupling is apparent in bottom-up processing where sensory information is transmitted, cross-frequency coupling is prominent in top-down processing, corresponding to the expectation and interpretation of information. Sensory substitution in the brain of blindfolded subjects derived visual mental imagery by combining bottom-up and top-down processing.


Assuntos
Percepção Auditiva , Imaginação , Humanos , Masculino , Feminino , Imaginação/fisiologia , Adulto , Percepção Auditiva/fisiologia , Adulto Jovem , Percepção Visual/fisiologia , Estimulação Acústica , Eletroencefalografia , Magnetoencefalografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA