Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.143
Filtrar
1.
Int J Med Mushrooms ; 26(6): 13-23, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801085

RESUMO

Brazil-grown outdoor-cultivated Agaricus brasiliensis KA21 fruiting body (KA21) significantly increases the production of serum anti-beta-glucan antibody. Therefore, KA21 ingestion may be useful for the prevention and alleviation of fungal infections. This study aimed to determine the effects of KA21 in fungal infections in animals. KA21 was administered to nine dogs infected with Malassezia. Notably, the anti-beta-glucan antibody titer remained unchanged or tended to decrease in the oral steroid arm, whereas in the non-steroid arm, antibody titer increased in almost all animals after KA21 ingestion. Dogs showing improved clinical symptoms exhibited increased anti-beta-glucan antibody titers. The results of this study suggest that KA21 ingestion may alleviate the symptoms of Malassezia and other fungal infections and that continuous ingestion may help prolong recurrence-free intervals. Additionally, the ingestion of KA21 during oral steroid dosage reduction or discontinuation may enable smoother steroid withdrawal.


Assuntos
Agaricus , Doenças do Cão , Carpóforos , Malassezia , Animais , Cães , Agaricus/química , Carpóforos/química , Malassezia/efeitos dos fármacos , Doenças do Cão/microbiologia , Doenças do Cão/tratamento farmacológico , Dermatomicoses/veterinária , Dermatomicoses/prevenção & controle , Dermatomicoses/tratamento farmacológico , Dermatomicoses/microbiologia , beta-Glucanas/administração & dosagem , beta-Glucanas/farmacologia , Masculino , Brasil , Dermatite/tratamento farmacológico , Dermatite/veterinária , Dermatite/microbiologia , Dermatite/prevenção & controle , Feminino , Anticorpos Antifúngicos/sangue
2.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(5): 711-718, 2024 May 06.
Artigo em Chinês | MEDLINE | ID: mdl-38715514

RESUMO

The human body, as a highly complex ecosystem, harbors diverse microbial communities, with major factors triggering allergic reactions encompassing the skin microbiome and fungi. The global diversity of fungi is estimated to range from approximately 600 000 to 1 million species, and theoretically, IgE-mediated sensitization may occur to any fungal species. As of now, the World Health Organization/IUIS official database records 113 fungal allergens originating from 30 different fungi species, covering 42 allergen families. Regarding the skin microbiome, 14 distinct Malassezia allergens have been identified, all derived from three different Malassezia fungi species--M. furfur, M. sympodialis, and M. globosa. The conditions of patients with these allergies are exceptionally complex. This article extensively discusses the latest research advancements and clinical applications related to skin microbiome and fungal allergies from the European Academy of Allergy and Clinical Immunology (EAACI) publication, "Molecular Allergology User's Guide 2.0". Additionally, it compiles information on the sources of fungal allergens, characteristics of allergen component protein families, clinical relevance, and management strategies, both domestically and internationally. The aim is to enhance the profound understanding of allergen components among relevant professionals. Through the application of advanced allergen component diagnostic techniques, the goal is to achieve precise diagnosis and treatment of fungal allergy patients and explore the mechanisms underlying fungal sensitization and pathogenesis, laying the foundation for studying the fungal allergen protein sensitization spectrum in the Chinese population.


Assuntos
Alérgenos , Fungos , Hipersensibilidade , Microbiota , Alérgenos/imunologia , Humanos , Fungos/imunologia , Hipersensibilidade/diagnóstico , Proteínas Fúngicas/imunologia , Pele/microbiologia , Malassezia/imunologia
3.
Med Mycol ; 62(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38684473

RESUMO

Malassezia yeasts belong to the normal skin microbiota of a wide range of warm-blooded animals. However, their significance in cattle is still poorly understood. In the present study, the mycobiota of the external ear canal of 20 healthy dairy Holstein cows was assessed by cytology, culture, PCR, and next-generation sequencing. The presence of Malassezia was detected in 15 cows by cytology and PCR. The metagenomic analysis revealed that Ascomycota was the predominant phylum but M. pachydermatis the main species. The Malassezia phylotype 131 was detected in low abundance. Nor M. nana nor M. equina were detected in the samples.


The mycobiota of the external ear canal of healthy cows was assessed by cytology, culture, PCR, and NGS. The presence of Malassezia was detected by cytology and PCR. Ascomycota was the main phylum and M. pachydermatis the main species. The Malassezia phylotype 131 was also detected in the samples.


Assuntos
Meato Acústico Externo , Malassezia , Micobioma , Animais , Bovinos , Meato Acústico Externo/microbiologia , Malassezia/isolamento & purificação , Malassezia/classificação , Malassezia/genética , Sequenciamento de Nucleotídeos em Larga Escala , Feminino , Metagenômica , Reação em Cadeia da Polimerase
4.
J Photochem Photobiol B ; 255: 112909, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669741

RESUMO

Many common skin diseases are associated with changes in the microbiota. This applies for the commensal yeast Malassezia, which is linked to a wide range of skin disorders ranging from mild dandruff to severe seborrheic and atopic dermatitis, all of which have a detrimental impact on the individuals' quality of life. While antifungal medications offer relief in many cases, the challenges of disease recurrence and the emergence of resistance to the limited range of available antifungal drugs poses a pressing need for innovative therapeutic options. Here we examined the activity of water-filtered infrared A (wIRA) irradiation against Malassezia. wIRA's antimicrobial and wound healing properties make it an attractive option for localized, non-invasive, and contact-free treatment of superficial skin infections. Irradiation of Malassezia furfur with wIRA (570-1400 nm) resulted in a reduction of the yeast's metabolic activity. When put in contact with immune cells, wIRA-irradiated M. furfur was recovered at lower counts than non-irradiated M. furfur. Likewise, wIRA irradiation of M. furfur put in contact with keratinocytes, the primary host interface of the fungus in the skin, reduced the fungal counts, while the keratinocytes were not affected by the irradiation. The combination of wIRA with the photosensitizer methyl aminolevulinate exerted an additional antifungal effect on M. furfur, irrespective of the presence or absence of keratinocytes, suggesting an enhancement of the treatment effect when used in combination. These findings suggest that wIRA holds promise as a potential therapy for skin disorders associated with Malassezia.


Assuntos
Antifúngicos , Raios Infravermelhos , Malassezia , Água , Malassezia/efeitos da radiação , Malassezia/efeitos dos fármacos , Humanos , Água/química , Antifúngicos/farmacologia , Antifúngicos/química , Pele/efeitos da radiação , Pele/microbiologia , Queratinócitos/efeitos da radiação , Queratinócitos/efeitos dos fármacos
5.
J Cosmet Dermatol ; 23(6): 2078-2083, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38544350

RESUMO

OBJECTIVES: Malassezia species are common, clinically relevant, and lipid-dependent yeasts of humans. They are also the leading causes of the dandruff problem of humans, and the azoles are used primarily in their topical and systemic treatment. Resistance to azoles is an emerging problem among Malassezia sp., which indicates the need of new drug assessments that will be effective against dandruff and limit the use of azoles and other agents in treatment. Among them, the efficacy of various combinations of piroctone olamine and climbazole against Malassezia sp. is highly important. Here, we assessed the efficacies of various piroctone olamine and climbazole formulations against Malassezia sp. in comparison with ketoconazole. METHODS: A total of nine formulations were included in the study, where each formulation was prepared from different concentrations of piroctone olamine and climbazole and both. All formulations contained the same ingredients as water, surfactants, hair conditioning agents, and preservatives. Malassezia furfur CBS1878, Malassezia globosa CBS7874, and Malassezia sympodialis CBS9570 were tested for antifungal susceptibility of each formulation by agar diffusion method. Sizes of the inhibition zones were compared with standard medical shampoo containing 2% ketoconazole, and the data were analyzed by Dunnett's multiple-comparison test. RESULTS: For all Malassezia sp. strains, climbazole 0.5% and piroctone olamine/climbazole (0.1%/0.1% and 0.1%/0.5%) combinations were found to have the same effect as the medical shampoo containing 2% ketoconazole. Piroctone olamine/climbazole 1.0%/0.1% formulation showed the same efficacy as 2% ketoconazole on M. furfur and M. sympodialis, while 0.1%/0.5% formulation to only M. furfur. For M. globosa, none of the formulations tested were as effective as ketoconazole. CONCLUSION: The species distribution of Malassezia sp. varies depending on the anatomical location on the host. According to the results of this study, climbazole and piroctone olamine combinations seem to be promising options against the dandruff problem with their high antifungal/anti dandruff efficacy.


Assuntos
Antifúngicos , Caspa , Preparações para Cabelo , Cetoconazol , Malassezia , Malassezia/efeitos dos fármacos , Preparações para Cabelo/farmacologia , Humanos , Antifúngicos/farmacologia , Caspa/microbiologia , Caspa/tratamento farmacológico , Cetoconazol/farmacologia , Imidazóis/farmacologia , Testes de Sensibilidade Microbiana , Combinação de Medicamentos , Etanolaminas , Piridonas
6.
Arch Dermatol Res ; 316(4): 100, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472524

RESUMO

Seborrheic dermatitis (SD) is an inflammatory skin disorder and eczema subtype increasingly recognized to be associated with significant physical, psychosocial, and financial burden. The full spectrum of SD, including dandruff localized to the scalp, is estimated to affect half of the world's population. Despite such high prevalence, the exact etiopathogenesis of SD remains unclear. Historically, many researchers have theorized a central, causative role of Malassezia spp. based on prior studies including the proliferation of Malassezia yeast on lesional skin of some SD patients and empiric clinical response to antifungal therapy. However, upon closer examination, many of these findings have not been reproducible nor consistent. Emerging data from novel, targeted anti-inflammatory therapeutics, as well as evidence from genome-wide association studies and murine models, should prompt a reevaluation of the popular yeast-centered hypothesis. Here, through focused review of the literature, including laboratory studies, clinical trials, and expert consensus, we examine and synthesize the data arguing for and against a primary role for Malassezia in SD. We propose an expansion of SD pathogenesis and suggest reframing our view of SD to be based primarily on dysregulation of the host immune system and skin epidermal barrier, like other eczemas.


Assuntos
Dermatite Seborreica , Malassezia , Humanos , Camundongos , Animais , Saccharomyces cerevisiae , Estudo de Associação Genômica Ampla , Pele/patologia
7.
J Dermatol Sci ; 114(1): 34-43, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508974

RESUMO

BACKGROUND: Vitiligo is an acquired pigmentary disorder characterized by depigmented patches on the skin that majorly impact patients' quality of life. Although its etiology involves genetic and environmental factors, the role of microorganisms as environmental factors in vitiligo pathology remains under-researched. OBJECTIVES: Our study explored the presence of characteristic bacterial and fungal flora in vitiligo-affected skin and investigated their potential roles in vitiligo pathogenesis. METHODS: We sequenced bacterial 16S rRNA and the fungal ITS1 region from skin swabs collected at frequently affected sites, namely the forehead and back, of patients with vitiligo. We analyzed bacterial and fungal flora in lesional and non-lesional areas of patients with vitiligo compared with corresponding sites in age- and sex-matched healthy subjects. RESULTS: Our findings revealed elevated α-diversity in both bacterial and fungal flora within vitiligo lesions compared with healthy controls. Notably, bacterial flora exhibited a distinctive composition in patients with vitiligo, and the proportional representation of Enterococcus was inversely correlated with the degree of vitiligo progression. Gammaproteobacteria, Staphylococcus spp., and Corynebacterium spp. were more abundant in vitiligo patients, with notable Staphylococcus spp. prevalence during the stable phase on the forehead. Conversely, the proportion of Malassezia sympodialis was lower and that of Malassezia globosa was higher in the progressive phase on the back of vitiligo patients. CONCLUSION: Our study identified some characteristic bacterial and fungal groups associated with vitiligo activity and prognosis, highlighting the potential roles of microorganisms in pathogenesis and offering insights into personalized disease-management approaches.


Assuntos
Microbiota , Micobioma , RNA Ribossômico 16S , Pele , Vitiligo , Humanos , Vitiligo/microbiologia , Feminino , Masculino , Adulto , Pele/microbiologia , Pele/patologia , Pessoa de Meia-Idade , Japão , RNA Ribossômico 16S/genética , Estudos de Casos e Controles , Adulto Jovem , Testa/microbiologia , Dorso/microbiologia , Malassezia/isolamento & purificação , Corynebacterium/isolamento & purificação , Staphylococcus/isolamento & purificação , População do Leste Asiático
8.
Vet J ; 304: 106084, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38431127

RESUMO

Malassezia are members of the mycobiome of dogs and cats. In the presence of an underlying disease, these yeasts can proliferate, attach to the skin or mucosa to induce a secondary Malassezia dermatitis, otitis externa or paronychia. Since allergic dermatitis is one of the most common underlying causes, diagnostic investigation for allergy is often indicated. Cats may suffer from various other underlying problems, especially where Malassezia dermatitis is generalised. Malassezia dermatitis in dogs and cats is chronic, relapsing and pruritic. Direct cytology from dermatological lesions and the ear canal, showing "peanut-shaped" budding yeasts, facilitates a rapid and reliable diagnosis. Topical treatment includes antiseptic and antifungal azole-based products. Systemic treatment with oral antifungals is indicated only in severe or refractory disease. Identification and treatment of the underlying cause is essential for an optimal response. In this evidence-based narrative review, we discuss the clinical presentation of Malassezia dermatitis in dogs and cats, underlying comorbidities, and diagnostic considerations. Treatment is discussed in light of emerging evidence of antifungal resistance and the authors' clinical experience.


Assuntos
Doenças do Gato , Dermatite , Dermatomicoses , Doenças do Cão , Malassezia , Animais , Gatos , Cães , Dermatomicoses/diagnóstico , Dermatomicoses/tratamento farmacológico , Dermatomicoses/veterinária , Doenças do Gato/diagnóstico , Doenças do Gato/tratamento farmacológico , Doenças do Gato/microbiologia , Antifúngicos/uso terapêutico , Doenças do Cão/diagnóstico , Doenças do Cão/tratamento farmacológico , Doenças do Cão/microbiologia , Recidiva Local de Neoplasia/veterinária , Dermatite/tratamento farmacológico , Dermatite/veterinária
9.
Sci Rep ; 14(1): 2722, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302693

RESUMO

Seborrheic dermatitis (SD) affects 2-5% of the global population, with imbalances in the skin microbiome implicated in its development. This study assessed the impact of an oily suspension containing Lactobacillus crispatus P17631 and Lacticaseibacillus paracasei I1688 (termed EUTOPLAC) on SD symptoms and the skin mycobiome-bacteriome modulation. 25 SD patients were treated with EUTOPLAC for a week. Symptom severity and skin mycobiome-bacteriome changes were measured at the start of the treatment (T0), after seven days (T8), and three weeks post-treatment (T28). Results indicated symptom improvement post-EUTOPLAC, with notable reductions in the Malassezia genus. Concurrently, bacterial shifts were observed, including a decrease in Staphylococcus and an increase in Lactobacillus and Lacticaseibacillus. Network analysis highlighted post-EUTOPLAC instability in fungal and bacterial interactions, with increased negative correlations between Malassezia and Lactobacillus and Lacticaseibacillus genera. The study suggests EUTOPLAC's potential as a targeted SD treatment, reducing symptoms and modulating the mycobiome-bacteriome composition.


Assuntos
Dermatite Seborreica , Malassezia , Microbiota , Micobioma , Probióticos , Humanos , Dermatite Seborreica/terapia , Dermatite Seborreica/microbiologia , Pele , Bactérias , Probióticos/uso terapêutico
10.
J Dermatol ; 51(4): 518-525, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217001

RESUMO

Dandruff and scalp discomfort are common concerns for women and men in Africa. Moreover, women with afro-textured hair are prone to scalp discomfort owing to irregular hair washing, frequent use of oil-based products on their scalp, and harsh chemical treatments. Current literature does not, however, provide data on the pathophysiological mechanisms of these conditions in this population. In this study, we investigated the mechanisms behind scalp discomfort and dandruff in women of African descent before and after hair washing. We conducted the in Durban, South Africa, over a 3-week period with 60 women of African descent aged 20-40 years. The respondents were equally divided into a "dandruff" and a "no dandruff" group, based on clinical grading of adherent dandruff by a dermatologist. Malassezia spp. and bacterial loads were quantified by quantitative polymerase chain reaction. Evaluations of scalp condition and sample collection were performed at five time points during the 3 weeks. Data on discomfort symptoms were collected via a self-assessment questionnaire. We observed that the dandruff severity peaked at the end of the first week after hair washing and plateaued from thereon in both groups. Dandruff was associated with higher Malassezia and bacterial load counts and there was a direct correlation between the Malassezia spp. load and dandruff score. Via self-assessment questionnaire responses submitted by participants, we observed that itching was the most pronounced scalp discomfort, compared with the sensation of tingling and burning at baseline, while an improvement of the scalp symptoms of dandruff and itch was observed in both groups after one hair wash. The study also showed that higher colonization with Malassezia spp. and bacteria is associated with dandruff independently of the time point, confirming a scalp microbiome contribution to the dandruff pathophysiology in the study population. The benefits of washing were, however, not sustained after 1 week and we thus recommend weekly hair washing for long-term management of dandruff and scalp itchiness in this population.


Assuntos
Caspa , Malassezia , Pitiríase , Masculino , Humanos , Feminino , Caspa/terapia , Couro Cabeludo , África do Sul , Cabelo , Prurido/etiologia , Prurido/terapia , Parestesia
11.
Mycoses ; 67(1): e13680, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38214420

RESUMO

CIITA, a member of NOD-like receptor (NLR) family, is the major MHC II trans-activator and mediator of Th1 immunity, but its function and interaction with NLRP3 have been little studied. We found activation of NLRP3 inflammasome, increased expression of CIITA, CBP, pSTAT1, STAT1, MHC II, IFN-γ and IFN-γ-inducible chemokines (CCL1 and CXCL8), and colocalisation of NLRP3 with CIITA in Malassezia folliculitis lesions, Malassezia globosa-infected HaCaT cells and mouse skin. CoIP with anti-CIITA or anti-NLRP3 antibody pulled down NLRP3 or both CIITA and ASC. NLRP3 silencing or knockout caused CIITA downexpression and their colocalisation disappearance in HaCaT cells and mouse skin of Nlrp3-/- mice, while CIITA knockdown had no effect on NLRP3, ASC, IL-1ß and IL-18 expression. NLRP3 inflammasome inhibitors and knockdown significantly suppressed IFN-γ, CCL1, CXCL8 and CXCL10 levels in M. globosa-infected HaCaT cells. CCL1 and CXCL8 expression was elevated in Malassezia folliculitis lesions and reduced in Nlrp3-/- mice. These results demonstrate that M. globosa can activate NLRP3 inflammasome, CIITA/MHC II signalling and IFN-γ-inducible chemokines in human keratinocytes and mouse skin. NLRP3 may regulate CIITA by their binding and trigger Th1 immunity by secreting CCL1 and CXCL8/IL-8, contributing to the pathogenesis of Malassezia-associated skin diseases.


Assuntos
Quimiocinas C , Foliculite , Malassezia , Humanos , Camundongos , Animais , Interferon gama , Interferons , Antígenos de Histocompatibilidade Classe II/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamassomos , Regiões Promotoras Genéticas , Transativadores/genética , Transativadores/metabolismo , Quimiocinas/genética , Queratinócitos
12.
PLoS Pathog ; 20(1): e1011668, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38215167

RESUMO

Stable microbial colonization of the skin depends on tight control by the host immune system. The lipid-dependent yeast Malassezia typically colonizes skin as a harmless commensal and is subject to host type 17 immunosurveillance, but this fungus has also been associated with diverse skin pathologies in both humans and animals. Using a murine model of Malassezia exposure, we show that Vγ4+ dermal γδ T cells expand rapidly and are the major source of IL-17A mediating fungal control in colonized skin. A pool of memory-like Malassezia-responsive Vγ4+ T cells persisted in the skin, were enriched in draining lymph nodes even after fungal clearance, and were protective upon fungal re-exposure up to several weeks later. Induction of γδT17 immunity depended on IL-23 and IL-1 family cytokine signalling, whereas Toll-like and C-type lectin receptors were dispensable. Furthermore, Vγ4+ T cells from Malassezia-exposed hosts were able to respond directly and selectively to Malassezia-derived ligands, independently of antigen-presenting host cells. The fungal moieties detected were shared across diverse species of the Malassezia genus, but not conserved in other Basidiomycota or Ascomycota. These data provide novel mechanistic insight into the induction and maintenance of type 17 immunosurveillance of skin commensal colonization that has significant implications for cutaneous health.


Assuntos
Malassezia , Humanos , Camundongos , Animais , Saccharomyces cerevisiae , Interleucina-17 , Linfócitos T , Alérgenos
13.
ACS Infect Dis ; 10(2): 624-637, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38295002

RESUMO

The colonizing microbiota on the body surface play a crucial role in barrier function. Staphylococcus aureus (S. aureus) is a significant contributor to skin infection, and the utilization of colonization resistance of skin commensal microorganisms to counteract the invasion of pathogens is a viable approach. However, most studies on colonization resistance have focused on skin bacteria, with limited research on the resistance of skin fungal communities to pathogenic bacteria. Extracellular vehicles (EVs) play an important role in the colonization of microbial niches and the interaction between distinct strains. This paper explores the impact of Malassezia restricta (M. restricta), the fungus that dominates the normal healthy skin microbiota, on the proliferation of S. aureus by examining the distribution disparities between the two microorganisms. Based on the extraction of EVs, the bacterial growth curve, and biofilm formation, it was determined that the EVs of M. restricta effectively suppressed the growth and biofilm formation of S. aureus. The presence of diverse metabolites was identified as the primary factor responsible for the growth inhibition of S. aureus, specifically in relation to glycerol phospholipid metabolism, ABC transport, and arginine synthesis. These findings offer valuable experimental evidence for understanding microbial symbiosis and interactions within healthy skin.


Assuntos
Malassezia , Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Simbiose , Biofilmes , Proliferação de Células
14.
J Oleo Sci ; 73(2): 215-218, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38233114

RESUMO

Microbial conversion of some natural unsaturated fatty acids can produce polyhydroxy fatty acids, giving them new properties, such as higher viscosity and reactivity. Pseudomonas aeruginosa has been intensively studied to produce a novel 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) from oleic acid and natural vegetable oils containing oleic acid. Recently, the antibacterial activities of DOD against food-borne pathogenic bacteria were reported; however, the action of such antibacterial properties against eucaryotic cells remains poorly known. In this study, we determined the antifungal activities of DOD against Malassezia furfur KCCM 12679 quantitatively and qualitatively. The antifungal activity of DOD against M. furfur KCCM 12679 was approximately five times higher than that of ketoconazole, a commercial antifungal agent. The MIC 90 value of DOD against M. furfur KCCM 12679 was 50 µg/mL. In addition, we confirmed that the antifungal property of DOD was exerted through fungicidal activity.


Assuntos
Malassezia , Ácidos Oleicos , Antifúngicos/farmacologia , Ácido Oleico/farmacologia , Antibacterianos , Testes de Sensibilidade Microbiana
15.
Vet Dermatol ; 35(3): 284-295, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38169074

RESUMO

BACKGROUND: No reports have compared the clinical therapeutic efficacy of fluconazole and itraconazole in canine Malassezia dermatitis. OBJECTIVES: The study aimed to compare the clinical therapeutic efficacy of fluconazole and itraconazole and to evaluate the adverse effects of fluconazole in canine Malassezia dermatitis. ANIMALS: Sixty-one client-owned dogs with Malassezia dermatitis. MATERIALS AND METHODS: The enrolled animals were randomly divided into groups receiving 5 mg/kg fluconazole (5FZ), 10 mg/kg fluconazole (10FZ) or 5 mg/kg itraconazole (5IZ). The drugs were orally administered once daily for 28 days. Cytological examination, clinical index score (CIS), pruritus Visual Analog Scale (PVAS) evaluation and blood analysis (for 5FZ only) were performed on Day (D)0, D14 and D28. RESULTS: On D14, significant reductions in mean yeast count (MYC), CIS and PVAS were observed in the 5FZ (n = 20, p < 0.01), 10FZ (n = 17, p < 0.01) and 5IZ (n = 16, p < 0.05) groups. In all three groups, a significant reduction (p < 0.001) in MYC, CIS and PVAS expression was observed on D28. There was no significant difference in the percentage reduction of MYC, CIS and PVAS among the groups. Moreover, there was a significant difference (p < 0.05) in each group between D14 and D28, except for the percentage reduction in MYC in the 10FZ and 5IZ groups. No adverse effects of fluconazole were observed in the 5FZ or 10FZ groups. CONCLUSIONS AND CLINICAL RELEVANCE: This study indicates that 5FZ and 10FZ are as effective as itraconazole in canine Malassezia dermatitis.


Assuntos
Antifúngicos , Dermatomicoses , Doenças do Cão , Fluconazol , Itraconazol , Malassezia , Animais , Cães , Itraconazol/uso terapêutico , Itraconazol/administração & dosagem , Doenças do Cão/tratamento farmacológico , Doenças do Cão/microbiologia , Fluconazol/uso terapêutico , Fluconazol/administração & dosagem , Antifúngicos/uso terapêutico , Antifúngicos/administração & dosagem , Malassezia/efeitos dos fármacos , Masculino , Feminino , Dermatomicoses/veterinária , Dermatomicoses/tratamento farmacológico , Método Simples-Cego , Resultado do Tratamento
16.
Vet Dermatol ; 35(3): 325-336, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38169122

RESUMO

BACKGROUND: Norway spruce (Picea abies) resin-based products are used in human medicine. A resin-based otic rinse also could be useful in supportive care of canine otitis externa (COE), yet information on its antimicrobial effect against canine pathogens or ototoxicity is lacking. OBJECTIVES: To investigate the antimicrobial properties and ototoxicity of a commercial resin-based otic product. MATERIALS AND METHODS: Antimicrobial effect was evaluated using a standardised challenge test on Staphylococcus pseudintermedius, Corynebacterium auriscanis, Pseudomonas aeruginosa, Escherichia coli, Malassezia pachydermatis, and Streptococcus halichoeri strains to measure reduction in growth after 24 h exposure to the product. Effect on cell morphology was investigated by exposing S. pseudintermedius, C. auriscanis, P. aeruginosa and M. pachydermatis to the product in 20% and 100% (v/v) concentrations for 6, 24 and 48 h, and evaluating cells by transmission (TEM) and scanning (SEM) electron microscopy. An in vitro microbial kill-rate assay also was performed. Auditory brain stem response test, clinical evaluation and postmortem histological evaluation of ear canals were undertaken on experimental guinea pigs treated with the test product or saline controls. RESULTS: The product showed >log 5 growth reduction for all strains in the challenge test. TEM and SEM images showed clear changes in the cells' inner structures and deterioration of cells, and 100% (v/v) test product exposure induced microbial killing in 1-2 h. Ototoxicity was not detected in guinea pigs. CONCLUSIONS AND CLINICAL RELEVANCE: The product may be an option in supportive care of COE because of antimicrobial effects and lack of ototoxic properties in a guinea pig model.


Assuntos
Doenças do Cão , Picea , Animais , Cães , Projetos Piloto , Doenças do Cão/tratamento farmacológico , Otite Externa/veterinária , Otite Externa/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Corynebacterium/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Malassezia/efeitos dos fármacos , Staphylococcus/efeitos dos fármacos , Ototoxicidade , Cobaias , Anti-Infecciosos/farmacologia , Anti-Infecciosos/toxicidade , Masculino , Testes de Sensibilidade Microbiana , Feminino
17.
Biochimie ; 216: 181-193, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37748748

RESUMO

Malassezia globosa is abundant and prevalent on sebaceous areas of the human skin. Genome annotation reveals that M. globosa possesses a repertoire of secreted hydrolytic enzymes relevant for lipid and protein metabolism. However, the functional significance of these enzymes is uncertain and presence of these genes in the genome does not always translate to expression at the cutaneous surface. In this study we utilized targeted RNA sequencing from samples isolated directly from the skin to quantify gene expression of M. globosa secreted proteases, lipases, phospholipases and sphingomyelinases. Our findings indicate that the expression of these enzymes is dynamically regulated by the environment in which the fungus resides, as different growth phases of the planktonic culture of M. globosa show distinct expression levels. Furthermore, we observed significant differences in the expression of these enzymes in culture compared to healthy sebaceous skin sites. By examining the in situ gene expression of M. globosa's secreted hydrolases, we identified a predicted aspartyl protease, MGL_3331, which is highly expressed on both healthy and disease-affected dermatological sites. However, molecular modeling and biochemical studies revealed that this protein has a non-canonical active site motif and lacks measurable proteolytic activity. This pseudoprotease MGL_3331 elicits a heightened IgE-reactivity in blood plasma isolated from patients with atopic dermatitis compared to healthy individuals and invokes a pro-inflammatory response in peripheral blood mononuclear cells. Overall, our study highlights the importance of studying fungal proteins expressed in physiologically relevant environments and underscores the notion that secreted inactive enzymes may have important functions in influencing host immunity.


Assuntos
Alérgenos , Malassezia , Humanos , Alérgenos/metabolismo , Malassezia/genética , Malassezia/metabolismo , Leucócitos Mononucleares/metabolismo , Pele/metabolismo , Lipase/metabolismo
18.
Int Arch Allergy Immunol ; 185(1): 10-19, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37844548

RESUMO

INTRODUCTION: The full spectrum of bacterial and fungal species in adult asthma and the effect of inhaled corticosteroid use is not well described. The aim was to collect mouthwash and induced sputum samples from newly diagnosed asthma patients in the pretreatment period and in chronic asthma patients while undergoing regular maintenance inhaled corticosteroid therapy, in order to demonstrate the bacterial and fungal microbiome profile. METHODS: The study included 28 asthmatic patients on inhaler steroid therapy, 25 steroid-naive asthmatics, and 24 healthy controls. Genomic DNA was isolated from induced sputum and mouthwash samples. Analyses were performed using bacterial primers selected from the 16S rRNA region for the bacterial genome and "panfungal" primers selected from the 5.8S rRNA region for the fungal genome. RESULTS: Dominant genera in mouthwash samples of steroid-naive asthmatics were Neisseria, Haemophilus, and Rothia. The oral microbiota of asthmatic patients on inhaler steroid treatment included Neisseria, Rothia, and Veillonella species. Abundant genera in induced sputum samples of steroid-naive asthma patients were Actinomyces, Granulicatella, Fusobacterium, Peptostreptococcus, and Atopobium. Sputum microbiota of asthma patients taking inhaler steroids were dominated by Prevotella and Porphyromonas. Mucor plumbeus and Malassezia restricta species were abundant in the airways of steroid-naive asthma patients. Choanephora infundibulifera and Malassezia restricta became dominant in asthma patients taking inhaled steroids. CONCLUSION: The oral and airway microbiota consist of different bacterial and fungal communities in healthy and asthmatic patients. Inhaler steroid use may influence the composition of the oral and airway microbiota.


Assuntos
Asma , Malassezia , Micobioma , Adulto , Humanos , RNA Ribossômico 16S/genética , Antissépticos Bucais , Asma/tratamento farmacológico , Bactérias/genética , Corticosteroides/uso terapêutico , Nebulizadores e Vaporizadores , Escarro/microbiologia , Esteroides
19.
J Cosmet Dermatol ; 23(2): 563-575, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37909853

RESUMO

BACKGROUND: Dandruff caused by Malassezia furfur is a prevailing fungal infection. Although ketoconazole (KTZ) is widely intended for anti-dandruff treatment, poor solubility, and epidermal permeability limits its use and the marketed KTZ shampoo adversely effects scalp and hair. OBJECTIVE: To prepare a novel shampoo loaded with KTZ-coated zinc oxide nanoparticles using green tea extract and evaluate its antifungal activity. METHODS: The KTZ-coated zinc oxide nanoparticles was prepared by green synthesis and was characterized by UV, FTIR, XRD, and the drug entrapment efficiency was investigated. The antifungal activity of the nanoparticles with respect to standard drug, KTZ was tested against Malassezia furfur. Further, a novel antidandruff shampoo was developed by incorporating the prepared nanoparticles into the shampoo base. RESULTS: The formation of KTZ-coated ZnO nanoparticles was confirmed by UV and FTIR analysis. XRD analysis confirmed the amorphous phase of KTZ in nanoparticles. The drug entrapment efficiency was found to be 91.84%. The prepared nanoparticles showed enhanced activity against Malassezia furfur compared to drug of choice, KTZ (1%). The evaluation of shampoo showed an ideal result. CONCLUSION: KTZ-coated ZnO nanoparticles loaded novel shampoo in comparison to marketed anti-dandruff shampoo could be an effective alternate for the treatment of dandruff.


Assuntos
Caspa , Preparações para Cabelo , Malassezia , Nanopartículas , Óxido de Zinco , Humanos , Cetoconazol , Antifúngicos/uso terapêutico , Caspa/tratamento farmacológico , Óxido de Zinco/farmacologia , Preparações para Cabelo/farmacologia , Antioxidantes/farmacologia , Chá
20.
Planta Med ; 90(2): 111-125, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37935353

RESUMO

Seborrheic dermatitis is a chronic inflammatory disease caused by Malassezia yeast species that affects the regions of the body where the sebaceous glands are present. The combined use of different essential oils (EOs) can increase their spectrum of action. Thus, the present study aimed to evaluate the action of EOs alone and in combination with each other on M. furfur, in planktonic and biofilm form, and their anti-inflammatory and mutagenic potential, in addition to the effects on the viability of cells lines. Of the 40 evaluated EOs, 22 showed activity against M. furfur at 0.5 - 2.0 mg/mL concentrations. Among the most active species, a blend of essential oils (BEOs) composed of Cymbopogon martini (Roxb.) Will. Watson (MIC = 0.5 mg/mL) and Mentha × piperita L. (MIC = 1.0 mg/mL) was selected, which showed a synergistic effect against yeast when evaluated through the checkerboard assay. The fungicidal activity was maintained by the addition of anti-inflammatory oil from Varronia curassavica Jacq. to BEOs. The BEOs also showed activity in the inhibition of biofilm formation and in the eradication of the biofilm formed by M. furfur, being superior to the action of fluconazole. Furthermore, it did not show mutagenic potential and did not interfere with the cell viability of both evaluated cell lines (HaCaT and BMDMs). TNF-α levels were reduced only by C. martini; however, this property was maintained when evaluating BEOs. BEOs had no effect on IL-8 levels. Thus, the BEOs may be indicated for alternative treatments against seborrheic dermatitis.


Assuntos
Dermatite Seborreica , Malassezia , Óleos Voláteis , Antifúngicos/farmacologia , Óleos Voláteis/farmacologia , Dermatite Seborreica/tratamento farmacológico , Anti-Inflamatórios/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA