Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 829
Filtrar
1.
Transl Vis Sci Technol ; 13(10): 10, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39374003

RESUMO

Purpose: Continuous artificial aqueous humor drainage in the eyes of patients with glaucoma undergoing trabeculectomy likely exerts abnormal shear stress. However, it remains unknown how changes in intraocular pressure (IOP) can affect aqueous humor outflow (AHO). Methods: Here, we induced and maintained low intraocular pressure (L-IOP) in healthy Sprague Dawley (SD) rats by puncturing their eyes using a tube (200-µm diameter) for 2 weeks. After the rats were euthanized, their eyes were removed, fixed, embedded, stained, and scanned to analyze the physiological and pathological changes in the trabecular meshwork (TM) and Schlemm's canal (SC). We measured SC parameters using ImageJ software and assessed the expression of various markers related to flow shear stress (KLF4), fibrosis (TGF-ß1, TGF-ß2, α-SMA, pSmad1/5, pSmad2/3, and fibronectin), cytoskeleton (integrin ß1 and F-actin), diastolic function (nitric oxide synthase and endothelial nitric oxide synthase [eNOS]), apoptosis (cleaved caspase-3), and proliferation (Ki-67) using immunofluorescence or immunohistochemistry. Results: L-IOP eyes showed a larger SC area, higher eNOS expression, and lower KLF4 and F-actin expression in the TM and SC (both P < 0.05) than control eyes. The aqueous humor of L-IOP eyes had a higher abundance of fibrotic proteins and apoptotic cells than that of control eyes, with significantly higher TGF-ß1, α-SMA, fibronectin, and cleaved caspase-3 expression (all P < 0.05). Conclusions: In conclusion, a persistence of L-IOP for 2 weeks may contribute to fibrosis in the TM and SC and might be detrimental to conventional AHO in SD rat eyes. Translational Relevance: Clinicians should consider that aberrant shear force induced by aqueous humor fluctuation may damage AHO outflow channel when treating patients.


Assuntos
Humor Aquoso , Fibrose , Pressão Intraocular , Fator 4 Semelhante a Kruppel , Ratos Sprague-Dawley , Malha Trabecular , Animais , Malha Trabecular/patologia , Malha Trabecular/metabolismo , Fibrose/patologia , Ratos , Pressão Intraocular/fisiologia , Humor Aquoso/metabolismo , Masculino , Modelos Animais de Doenças , Apoptose , Canal de Schlemm
2.
Sci Rep ; 14(1): 22002, 2024 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313534

RESUMO

The trabecular meshwork (TM) is crucial for regulating intraocular pressure (IOP), and its dysfunction significantly contributes to glaucoma, a leading cause of vision loss and blindness worldwide. Although rodents are commonly used as animal models in glaucoma research, the applicability of these findings to humans is limited due to the insufficient understanding of murine TM. This study aimed to compare primary human TM (hTM) and murine TM (mTM) cells in vitro to enhance the robustness and translatability of murine glaucoma models. In this in vitro study, we compared primary hTM and mTM cells under simulated physiological and pathological conditions by exposing both cell types to the glucocorticoid dexamethasone (DEX) and Transforming Growth Factor ß (TGFB2), both of which are critical in the pathogenesis of several ophthalmological diseases, including glaucoma. Phagocytic properties were assessed using microbeads. Cells were analyzed through immunocytochemistry (ICC) and Western blot (WB) to evaluate the expression of extracellular matrix (ECM) components, such as Fibronectin 1 (FN1) and Collagen IV (COL IV). Filamentous-Actin (F-Act) staining was used to analyze cross-linked actin network (CLAN) formation. Additionally, we evaluated cytoskeletal components, including Vimentin (VIM), Myocilin (MYOC), and Actin-alpha-2 (ACTA2). Our results demonstrated significant similarities between human and murine TM cells in basic morphology, phagocytic properties, and ECM and cytoskeletal component expression under both homeostatic and pathological conditions in vitro. Both human and murine TM cells exhibited epithelial-to-mesenchymal transition (EMT) after exposure to DEX or TGFB2, with comparable CLAN formation observed in both species. However, there were significant differences in FN1 and MYOC induction between human and murine TM cells. Additionally, MYOC expression in hTM cells depended on fibronectin coating. Our study suggests that murine glaucoma models are potentially translatable to human TM. The observed similarities in ECM and cytoskeletal component expression and the comparable EMT response and CLAN formation support the utility of murine models in glaucoma research. The differences in FN1 and MYOC expression between hTM and mTM warrant further investigation due to their potential impact on TM properties. Overall, this study provides valuable insights into the species-specific characteristics of TM and highlights opportunities to refine murine models for better relevance to human glaucoma.


Assuntos
Dexametasona , Glaucoma , Malha Trabecular , Fator de Crescimento Transformador beta2 , Malha Trabecular/metabolismo , Malha Trabecular/citologia , Malha Trabecular/patologia , Animais , Humanos , Glaucoma/patologia , Glaucoma/metabolismo , Camundongos , Dexametasona/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Pressão Intraocular , Actinas/metabolismo , Fagocitose
3.
Invest Ophthalmol Vis Sci ; 65(10): 17, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39115865

RESUMO

Purpose: The Rho-associated protein kinase and myosin light chain kinase (ROCK/MYLK) pathway undeniably plays a pivotal role in the pathophysiology of primary open-angle glaucoma (POAG). In our study, we utilized both ocular hypertension (OHT) rabbit models and clinical investigations to gain invaluable insights that propel the development of novel treatments targeting proteins and genes associated with the trabecular meshwork (TM), thereby offering promising avenues for the management of POAG. Methods: Following microbead injections into the anterior chamber of the ocular cavity of rabbits, we observed elevated histiocyte numbers and immune scores for MYLK-4/ pMLC-2, alongside a reduction in the void space within the TM. Notably, treatment was performed with 0.1% ITRI-E-(S)-4046, a compound with dual kinase inhibitor (highly specific inhibitor of ROCK1/2 and MYLK4), significantly reduced intraocular pressure (IOP; P < 0.05) and expanded the void space within the TM (P < 0.0001) compared with OHT rabbits. In clinical investigations, we utilized whole transcriptome sequencing to analyze gene expression specifically related to the TM, obtained from patients (5 early-onset and 5 late-onset) undergoing trabeculectomy. Results: Our findings revealed 103 differential expression genes (DEGs) out of 265 molecules associated with the Rho family GTPase pathway, exhibiting a P value of 1.25E-10 and a z-score of -2.524. These results underscore significant differences between the early-onset and late-onset POAG and highlight the involvement of the ROCK/MYLK pathway. Conclusions: These findings underscore the critical involvement of the ROCK/MYLK pathway in both OHT-related and different onsets of POAG, providing valuable insights into the TM-related molecular mechanisms underlying the disease.


Assuntos
Modelos Animais de Doenças , Glaucoma de Ângulo Aberto , Pressão Intraocular , Quinase de Cadeia Leve de Miosina , Hipertensão Ocular , Malha Trabecular , Quinases Associadas a rho , Animais , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Quinases Associadas a rho/genética , Coelhos , Hipertensão Ocular/genética , Hipertensão Ocular/fisiopatologia , Hipertensão Ocular/metabolismo , Pressão Intraocular/fisiologia , Humanos , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/metabolismo , Glaucoma de Ângulo Aberto/fisiopatologia , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Masculino , Feminino , Transdução de Sinais , Idoso , Pessoa de Meia-Idade
4.
Invest Ophthalmol Vis Sci ; 65(8): 1, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949632

RESUMO

Purpose: Glucocorticoid-induced glaucoma (GIG) is a prevalent complication associated with glucocorticoids (GCs), resulting in irreversible blindness. GIG is characterized by the abnormal deposition of extracellular matrix (ECM) in the trabecular meshwork (TM), elevation of intraocular pressure (IOP), and loss of retinal ganglion cells (RGCs). The objective of this study is to investigate the effects of nicotinamide riboside (NR) on TM in GIG. Methods: Primary human TM cells (pHTMs) and C57BL/6J mice responsive to GCs were utilized to establish in vitro and in vivo GIG models, respectively. The study assessed the expression of ECM-related proteins in TM and the functions of pHTMs to reflect the effects of NR. Mitochondrial morphology and function were also examined in the GIG cell model. GIG progression was monitored through IOP, RGCs, and mitochondrial morphology. Intracellular nicotinamide adenine dinucleotide (NAD+) levels of pHTMs were enzymatically assayed. Results: NR significantly prevented the expression of ECM-related proteins and alleviated dysfunction in pHTMs after dexamethasone treatment. Importantly, NR protected damaged ATP synthesis, preventing overexpression of mitochondrial reactive oxygen species (ROS), and also protect against decreased mitochondrial membrane potential induced by GCs in vitro. In the GIG mouse model, NR partially prevented the elevation of IOP and the loss of RGCs. Furthermore, NR effectively suppressed the excessive expression of ECM-associated proteins and mitigated mitochondrial damage in vivo. Conclusions: Based on the results, NR effectively enhances intracellular levels of NAD+, thereby mitigating abnormal ECM deposition and TM dysfunction in GIG by attenuating mitochondrial damage induced by GCs. Thus, NR has promising potential as a therapeutic candidate for GIG treatment.


Assuntos
Modelos Animais de Doenças , Matriz Extracelular , Glaucoma , Glucocorticoides , Pressão Intraocular , Camundongos Endogâmicos C57BL , Mitocôndrias , Niacinamida , Compostos de Piridínio , Malha Trabecular , Animais , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Piridínio/farmacologia , Glucocorticoides/toxicidade , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos , Glaucoma/metabolismo , Glaucoma/tratamento farmacológico , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Pressão Intraocular/efeitos dos fármacos , Humanos , Malha Trabecular/metabolismo , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/patologia , Células Cultivadas , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Espécies Reativas de Oxigênio/metabolismo , Dexametasona/farmacologia , Masculino
5.
Cells ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920689

RESUMO

Primary open-angle glaucoma (POAG) is a progressive optic neuropathy with a complex, multifactorial aetiology. Raised intraocular pressure (IOP) is the most important clinically modifiable risk factor for POAG. All current pharmacological agents target aqueous humour dynamics to lower IOP. Newer therapeutic agents are required as some patients with POAG show a limited therapeutic response or develop ocular and systemic side effects to topical medication. Elevated IOP in POAG results from cellular and molecular changes in the trabecular meshwork driven by increased levels of transforming growth factor ß (TGFß) in the anterior segment of the eye. Understanding how TGFß affects both the structural and functional changes in the outflow pathway and IOP is required to develop new glaucoma therapies that target the molecular pathology in the trabecular meshwork. In this study, we evaluated the effects of TGF-ß1 and -ß2 treatment on miRNA expression in cultured human primary trabecular meshwork cells. Our findings are presented in terms of specific miRNAs (miRNA-centric), but given miRNAs work in networks to control cellular pathways and processes, a pathway-centric view of miRNA action is also reported. Evaluating TGFß-responsive miRNA expression in trabecular meshwork cells will further our understanding of the important pathways and changes involved in the pathogenesis of glaucoma and could lead to the development of miRNAs as new therapeutic modalities in glaucoma.


Assuntos
MicroRNAs , Malha Trabecular , Malha Trabecular/metabolismo , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/metabolismo , Glaucoma de Ângulo Aberto/patologia , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Pressão Intraocular/efeitos dos fármacos
6.
Exp Cell Res ; 440(1): 114137, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897410

RESUMO

Glaucoma is characterized by pathological elevation of intraocular pressure (IOP) due to dysfunctional trabecular meshwork (TM), which is the primary cause of irreversible vision loss. There are currently no effective treatment strategies for glaucoma. Mitochondrial function plays a crucial role in regulating IOP within the TM. In this study, primary TM cells treated with dexamethasone were used to simulate glaucomatous changes, showing abnormal cellular cytoskeleton, increased expression of extracellular matrix, and disrupted mitochondrial fusion and fission dynamics. Furthermore, glaucomatous TM cell line GTM3 exhibited impaired mitochondrial membrane potential and phagocytic function, accompanied by decreased oxidative respiratory levels as compared to normal TM cells iHTM. Mechanistically, lower NAD + levels in GTM3, possibly associated with increased expression of key enzymes CD38 and PARP1 related to NAD + consumption, were observed. Supplementation of NAD + restored mitochondrial function and cellular viability in GTM3 cells. Therefore, we propose that the aberrant mitochondrial function in glaucomatous TM cells may be attributed to increased NAD + consumption dependent on CD38 and PARP1, and NAD + supplementation could effectively ameliorate mitochondrial function and improve TM function, providing a novel alternative approach for glaucoma treatment.


Assuntos
Glaucoma , Mitocôndrias , NAD , Malha Trabecular , Malha Trabecular/metabolismo , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Glaucoma/metabolismo , Glaucoma/patologia , Glaucoma/tratamento farmacológico , NAD/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pressão Intraocular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase 1/genética , Linhagem Celular , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Dexametasona/farmacologia , Células Cultivadas
7.
PLoS One ; 19(6): e0305740, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935644

RESUMO

PURPOSE: To evaluate structural alterations and healing responses in the trabecular meshwork region with optical coherence tomography (AS-OCT) following after gonioscopy assisted transluminal trabeculotomy (GATT) and microincisional trabeculectomy (MIT). METHODS: 73 eyes of 67 patients (M:F = 45:22) with ≥6 months of follow-up after MIT (n = 41) or GATT (n = 32) with or without combined cataract surgery were included for this prospective study. The angle as seen on AS-OCT at 1, 3, 6 months after surgery were evaluated for structural alterations like peripheral anterior synechiae (PAS), hyphema, and hyperreflective scarring responses. The scarring was graded according to the linear extent measured from the centre of the trabecular meshwork (TM) gutter to the sclera/cornea as mild (<250µ), moderate (250-500µ), and severe(˃500µ), while the pattern of scarring was graded as open saucer/gutter, closed gutter, and trench pattern. The association of the need for medication or surgical outcome and clinical variables and AS-OCT parameters including the pattern and severity of scarring were analysed using multivariate regression. RESULTS: All eyes achieved significant reduction of IOP and number of medications with a final IOP of 15±3.2mm Hg at a mean follow-up of 8±32. months. While mild scarring was seen more common in MIT, severe scarring was seen in >65% of GATT eyes compared to 31% of MIT eye, p<0.001. An open saucer was equally seen in MIT and GATT while the trench pattern was more commonly seen in GATT eyes (>50%). Severe scarring in a trench pattern seemed to predict the need for medications for IOP control, though they independently did not seem to influence the final IOP or surgical outcome. CONCLUSION: A severe form of scarring in a trench pattern on AS-OCT predicted the need for glaucoma medications after MIGS surgery. Regular monitoring of the scarring responses by AS-OCT and clinical examination are necessary to identify those at need for medications after MIGS.


Assuntos
Glaucoma , Tomografia de Coerência Óptica , Trabeculectomia , Humanos , Masculino , Tomografia de Coerência Óptica/métodos , Feminino , Idoso , Trabeculectomia/métodos , Pessoa de Meia-Idade , Glaucoma/cirurgia , Glaucoma/fisiopatologia , Estudos Prospectivos , Malha Trabecular/cirurgia , Malha Trabecular/diagnóstico por imagem , Malha Trabecular/patologia , Cicatrização , Pressão Intraocular/fisiologia , Gonioscopia , Resultado do Tratamento
8.
J Glaucoma ; 33(10): 785-793, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38771636

RESUMO

PRCIS: The relationship between anterior scleral thickness (AST) and scleral spur (SS) length was disrupted in eyes with pseudoexfoliation (PX), and SS length was shorter in eyes with pseudoexfoliative glaucoma (PXG). OBJECTIVES: To evaluate AST in eyes with PX and to examine the relationship between AST and Schlemm canal (SC), trabecular meshwork (TM), and SS. PATIENTS AND METHODS: Thirty-eight patients with PX syndrome (PXS), 38 patients with PXG, and 38 healthy patients were included in the study. Using sweep source anterior segment optical coherence tomography, AST (0, 1, 2, and 3 mm from the SS), SC, and TM were visualized in the nasal and temporal areas, and measurements were compared between groups. The relationships between corneal thickness, TM, SS, SC, and AST were then evaluated. RESULTS: In all groups, the AST, SC, and TM measurements were similar ( P > 0.05). In the PXG group, SS lengths in the temporal area were shorter than those in the control and PXS groups ( P = 0.012). There were significant correlations between TM length and AST in the PXG group ( P < 0.05). The SS length exhibited moderately positive correlations with SC length and mean TM thickness in the PXG ( P < 0.05). There was a significant relationship between AST0 and SS in healthy eyes ( P < 0.05), but not in other eyes. CONCLUSIONS: The shorter SS length observed in eyes with PXG may be a sign of structural changes. In addition, disruption of the relationship between AST and SS may be an early sign of pathologic processes, especially in eyes with PXS, and may require closer follow-up of these eyes.


Assuntos
Síndrome de Exfoliação , Pressão Intraocular , Esclera , Tomografia de Coerência Óptica , Malha Trabecular , Humanos , Síndrome de Exfoliação/diagnóstico , Tomografia de Coerência Óptica/métodos , Feminino , Masculino , Esclera/patologia , Esclera/diagnóstico por imagem , Idoso , Pressão Intraocular/fisiologia , Pessoa de Meia-Idade , Malha Trabecular/patologia , Malha Trabecular/diagnóstico por imagem , Glaucoma de Ângulo Aberto/diagnóstico , Glaucoma de Ângulo Aberto/fisiopatologia , Segmento Anterior do Olho/diagnóstico por imagem , Segmento Anterior do Olho/patologia , Tonometria Ocular , Gonioscopia
9.
Sci Rep ; 14(1): 10258, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704467

RESUMO

In order to identify how differential gene expression in the trabecular meshwork (TM) contributes to racial disparities of caveolar protein expression, TM dysfunction and development of primary open angle glaucoma (POAG), RNA sequencing was performed to compare TM tissue obtained from White and Black POAG surgical (trabeculectomy) specimens. Healthy donor TM tissue from White and Black donors was analyzed by PCR, qPCR, immunohistochemistry staining, and Western blot to evaluate SDPR (serum deprivation protein response; Cavin 2) and CAV1/CAV2 (Caveolin 1/Caveolin 2). Standard transmission electron microscopy (TEM) and immunogold labeled studies were performed. RNA sequencing demonstrated reduced SDPR expression in TM from Black vs White POAG patients' surgical specimens, with no significant expression differences in other caveolae-associated genes, confirmed by qPCR analysis. No racial differences in SDPR gene expression were noted in healthy donor tissue by PCR analysis, but there was greater expression as compared to specimens from patients with glaucoma. Analysis of SDPR protein expression confirmed specific expression in the TM regions, but not in adjacent tissues. TEM studies of TM specimens from healthy donors did not demonstrate any racial differences in caveolar morphology, but a significant reduction of caveolae with normal morphology and immuno-gold staining of SDPR were noted in glaucomatous TM as compared to TM from healthy donors. Linkage of SDPR expression levels in TM, POAG development, and caveolar ultrastructural morphology may provide the basis for a novel pathway of exploration of the pathologic mechanisms of glaucoma. Differential gene expression of SDPR in TM from Black vs White subjects with glaucoma may further our understanding of the important public health implications of the racial disparities of this blinding disease.


Assuntos
Caveolina 1 , Glaucoma de Ângulo Aberto , Malha Trabecular , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Negro ou Afro-Americano/genética , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 2/genética , Caveolina 2/metabolismo , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/metabolismo , Glaucoma de Ângulo Aberto/patologia , Glaucoma de Ângulo Aberto/etnologia , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Brancos , População Branca/genética
10.
Exp Eye Res ; 244: 109939, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789021

RESUMO

Transforming growth factor-ß2 (TGF-ß2) induced fibrogenic changes in human trabecular meshwork (HTM) cells have been implicated in trabecular meshwork (TM) damage and intraocular pressure (IOP) elevation in primary open-angle glaucoma (POAG) patients. Silibinin (SIL) exhibited anti-fibrotic properties in various organs and tissues. This study aimed to assess the effects of SIL on the TGF-ß2-treated HTM cells and to elucidate the underlying mechanisms. Our study found that SIL effectively inhibited HTM cell proliferation, attenuated TGF-ß2-induced cell migration, and mitigated TGF-ß2-induced reorganization of both actin and vimentin filaments. Moreover, SIL suppressed the expressions of fibronectin (FN), collagen type I alpha 1 chain (COL1A1), and alpha-smooth muscle actin (α-SMA) in the TGF-ß2-treated HTM cells. RNA sequencing indicated that SIL interfered with the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as AKT) signaling pathway, extracellular matrix (ECM)-receptor interaction, and focal adhesion in the TGF-ß2-treated HTM cells. Western blotting demonstrated SIL inhibited the activation of Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) and the downstream PI3K/AKT signaling pathways induced by TGF-ß2, potentially contributing to its inhibitory effects on ECM protein production in the TGF-ß2-treated HTM cells. Our study demonstrated the ability of SIL to inhibit TGF-ß2-induced fibrogenic changes in HTM cells. SIL could be a potential IOP-lowering agent by reducing the fibrotic changes in the TM tissue of POAG patients, which warrants further investigation through additional animal and clinical studies.


Assuntos
Movimento Celular , Proliferação de Células , Transdução de Sinais , Silibina , Malha Trabecular , Humanos , Antioxidantes/farmacologia , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibrose , Glaucoma de Ângulo Aberto/metabolismo , Glaucoma de Ângulo Aberto/tratamento farmacológico , Glaucoma de Ângulo Aberto/patologia , Janus Quinase 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Silibina/farmacologia , Silimarina/farmacologia , Fator de Transcrição STAT3/metabolismo , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Fator de Crescimento Transformador beta2/farmacologia , Fator de Crescimento Transformador beta2/metabolismo
11.
Int Ophthalmol ; 44(1): 229, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795168

RESUMO

BACKGROUND: The multifunctional profibrotic cytokine transforming growth factor-beta2 (TGF-ß2) is implicated in the pathophysiology of primary open angle glaucoma. Paeoniflorin (PAE) is a monoterpene glycoside with multiple pharmacological efficacies, such as antioxidant, anti-fibrotic, and anti-inflammatory properties. Studies have demonstrated that paeoniflorin protects human corneal epithelial cells, retinal pigment epithelial cells, and retinal microglia from damage. Here, the biological role of PAE in TGF-ß2-dependent remodeling of the extracellular matrix (ECM) within the trabecular meshwork (TM) microenvironment. METHODS: Primary or transformed (GTM3) human TM (HTM) cells conditioned in serum-free media were incubated with TGF-ß2 (5 ng/mL). PAE (300 µM) was added to serum-starved confluent cultures of HTM cells for 2 h, followed by incubation with TGF-ß2 for 22 h. SB-431542, a TGF-ß receptor inhibitor (10 µM), was used as a positive control. The levels of intracellular ROS were evaluated by CellROX green dye. Western blotting was used to measure the levels of TGF-ß2/Smad2/3 signaling-related molecules. Collagen 1α1, collagen 4α1, and connective tissue growth factor (CTGF) expression was evaluated by RT-qPCR. Immunofluorescence assay was conducted to measure collagen I/IV expression in HTM cells. Phalloidin staining assay was conducted for evaluating F-actin stress fiber formation in the cells. RESULTS: PAE attenuated TGF-ß2-induced oxidative stress and suppressed TGF-ß2-induced Smad2/3 signaling in primary or transformed HTM cells. Additionally, PAE repressed TGF-ß2-induced upregulation of collagen 1α1, collagen 4α1, and CTGF expression and reduced TGF-ß2-mediated collagen I/IV expression and of F-actin stress fiber formation in primary or transformed HTM cells. CONCLUSION: PAE alleviates TGF-ß2-induced ECM deposition and oxidative stress in HTM cells through inactivation of Smad2/3 signaling.


Assuntos
Matriz Extracelular , Glucosídeos , Monoterpenos , Estresse Oxidativo , Malha Trabecular , Fator de Crescimento Transformador beta2 , Humanos , Estresse Oxidativo/efeitos dos fármacos , Monoterpenos/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Glucosídeos/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Células Cultivadas , Transdução de Sinais/efeitos dos fármacos , Western Blotting
12.
Acta Biomater ; 180: 206-229, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38641184

RESUMO

This study presents a 3D in vitro cell culture model, meticulously 3D printed to replicate the conventional aqueous outflow pathway anatomical structure, facilitating the study of trabecular meshwork (TM) cellular responses under glaucomatous conditions. Glaucoma affects TM cell functionality, leading to extracellular matrix (ECM) stiffening, enhanced cell-ECM adhesion, and obstructed aqueous humor outflow. Our model, reconstructed from polyacrylamide gel with elastic moduli of 1.5 and 21.7 kPa, is based on serial block-face scanning electron microscopy images of the outflow pathway. It allows for quantifying 3D, depth-dependent, dynamic traction forces exerted by both normal and glaucomatous TM cells within an active fluid-structure interaction (FSI) environment. In our experimental design, we designed two scenarios: a control group with TM cells observed over 20 hours without flow (static setting), focusing on intrinsic cellular contractile forces, and a second scenario incorporating active FSI to evaluate its impact on traction forces (dynamic setting). Our observations revealed that active FSI results in higher traction forces (normal: 1.83-fold and glaucoma: 2.24-fold) and shear strains (normal: 1.81-fold and glaucoma: 2.41-fold), with stiffer substrates amplifying this effect. Glaucomatous cells consistently exhibited larger forces than normal cells. Increasing gel stiffness led to enhanced stress fiber formation in TM cells, particularly in glaucomatous cells. Exposure to active FSI dramatically altered actin organization in both normal and glaucomatous TM cells, particularly affecting cortical actin stress fiber arrangement. This model while preliminary offers a new method in understanding TM cell biomechanics and ECM stiffening in glaucoma, highlighting the importance of FSI in these processes. STATEMENT OF SIGNIFICANCE: This pioneering project presents an advanced 3D in vitro model, meticulously replicating the human trabecular meshwork's anatomy for glaucoma research. It enables precise quantification of cellular forces in a dynamic fluid-structure interaction, a leap forward from existing 2D models. This advancement promises significant insights into trabecular meshwork cell biomechanics and the stiffening of the extracellular matrix in glaucoma, offering potential pathways for innovative treatments. This research is positioned at the forefront of ocular disease study, with implications that extend to broader biomedical applications.


Assuntos
Glaucoma , Malha Trabecular , Malha Trabecular/patologia , Humanos , Glaucoma/patologia , Glaucoma/fisiopatologia , Matriz Extracelular/metabolismo , Técnicas de Cultura de Células em Três Dimensões , Células Cultivadas , Fenômenos Biomecânicos
13.
Br J Ophthalmol ; 108(8): 1130-1136, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38594062

RESUMO

AIMS: To compare the diagnostic performance of 360° anterior segment optical coherence tomography assessment by applying normative percentile cut-offs versus iris trabecular contact (ITC) for detecting gonioscopic angle closure. METHODS: In this multicentre study, 394 healthy individuals were included in the normative dataset to derive the age-specific and angle location-specific normative percentiles of angle open distance (AOD500) and trabecular iris space area (TISA500) which were measured every 10° for 360°. 119 healthy participants and 170 patients with angle closure by gonioscopy were included in the test dataset to investigate the diagnostic performance of three sets of criteria for detection of gonioscopic angle closure: (1) the 10th and (2) the 5th percentiles of AOD500/TISA500, and (3) ITC (ie, AOD500/TISA500=0 mm/mm2). The number of angle locations with angle closure defined by each set of the criteria for each eye was used to generate the receiver operating characteristic (ROC) curve for the discrimination between gonioscopic angle closure and open angle. RESULTS: Of the three sets of diagnostic criteria examined, the area under the ROC curve was greatest for the 10th percentile of AOD500 (0.933), whereas the ITC criterion AOD500=0 mm showed the smallest area under the ROC (0.852) and the difference was statistically significant with or without adjusting for age and axial length (p<0.001). The criterion ≥90° of AOD500 below the 10th percentile attained the best sensitivity 87.6% and specificity 84.9% combination for detecting gonioscopic angle closure. CONCLUSIONS: Applying the normative percentiles of angle measurements yielded a higher diagnostic performance than ITC for detecting angle closure on gonioscopy.


Assuntos
Segmento Anterior do Olho , Glaucoma de Ângulo Fechado , Gonioscopia , Pressão Intraocular , Curva ROC , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Glaucoma de Ângulo Fechado/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Segmento Anterior do Olho/diagnóstico por imagem , Segmento Anterior do Olho/patologia , Adulto , Pressão Intraocular/fisiologia , Iris/diagnóstico por imagem , Iris/patologia , Malha Trabecular/diagnóstico por imagem , Malha Trabecular/patologia , Idoso de 80 Anos ou mais , Adulto Jovem
14.
Transl Vis Sci Technol ; 13(3): 24, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546981

RESUMO

Purpose: To investigate the potential effects and mechanism of nicotinamide riboside (NR) on the oxidative stress and fibrosis model of human trabecular meshwork (HTM) cell line cells. Methods: HTM cells were pretreated with NR, followed by the induction of oxidative injury and fibrosis by hydrogen peroxide (H2O2) and TGF-ß2, respectively. Cell viability was tested using Hoechst staining and MTT assays, cell proliferation was assessed by EdU assay, and cell apoptosis was detected by flow cytometry and western blotting. DCFH-DA and DHE probes were used to measure the level of reactive oxygen species (ROS), and MitoTracker staining was used to measure the mitochondrial membrane potential (MMP). Fibrotic responses, including cell migration and deposition of extracellular matrix (ECM) proteins, were detected via Transwell assays, qRT-PCR, and immunoblotting. Results: NR pretreatment improved the viability, proliferation, and MMP of H2O2-treated HTM cells. Compared to cells treated solely with H2O2, HTM cells treated with both NR and H2O2, exhibited a reduced rate of apoptosis and generation of ROS. Compared with H2O2 pretreatment, NR pretreatment upregulated expression of the JAK2/Stat3 pathway but inhibited mitogen-activated protein kinase (MAPK) pathway expression. Moreover, 10-ng/mL TGF-ß2 promoted cell proliferation and migration, which were inhibited by NR pretreatment. Both qRT-PCR and immunoblotting showed that NR inhibited the expression of fibronectin in a TGF-ß2-induced fibrosis model. Conclusions: NR has a protective effect on oxidative stress and fibrosis in HTM cells, which may be related to the JAK2/Stat3 pathway and MAPK pathway. Translational Relevance: Our research provides the ongoing data for potential therapy of NAD+ precursors in glaucoma.


Assuntos
Niacinamida/análogos & derivados , Compostos de Piridínio , Malha Trabecular , Fator de Crescimento Transformador beta2 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/fisiologia , Fibrose
15.
Genes (Basel) ; 15(2)2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397132

RESUMO

Pigment Dispersion Syndrome (PDS) and Pigmentary Glaucoma (PG) comprise a spectrum of ocular disorders characterized by iris pigment dispersion and trabecular meshwork changes, resulting in increased intraocular pressure and potential glaucomatous optic neuropathy. This review summarizes recent progress in PDS/PG genetics including rare pathogenic protein coding alterations (PMEL) and susceptibility loci identified from genome-wide association studies (GSAP and GRM5/TYR). Areas for future research are also identified, especially the development of efficient model systems. While substantial strides have been made in understanding the genetics of PDS/PG, our review identifies key gaps and outlines the future directions necessary for further advancing this important field of ocular genetics.


Assuntos
Estudo de Associação Genômica Ampla , Glaucoma de Ângulo Aberto , Humanos , Glaucoma de Ângulo Aberto/patologia , Malha Trabecular/patologia , Face/patologia
16.
Lab Invest ; 104(4): 102025, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38290601

RESUMO

Growth differentiation factor 15 (GDF15), a stress-sensitive cytokine, and a distant member of the transforming growth factor ß superfamily, has been shown to exhibit increased levels with aging, and in various age-related pathologies. Although GDF15 levels are elevated in the aqueous humor (AH) of glaucoma (optic nerve atrophy) patients, the possible role of this cytokine in the modulation of intraocular pressure (IOP) or AH outflow is unknown. The current study addresses this question using transgenic mice expressing human GDF15 and GDF15 null mice, and by perfusing enucleated mouse eyes with recombinant human GDF15 (rhGDF15). Treatment of primary cultures of human trabecular meshwork cells with a telomerase inhibitor, an endoplasmic reticulum stress-inducing agent, hydrogen peroxide, or an autophagy inhibitor resulted in significant elevation in GDF15 levels relative to the respective control cells. rhGDF15 stimulated modest but significant increases in the expression of genes encoding the extracellular matrix, cell adhesion proteins, and chemokine receptors (C-C chemokine receptor type 2) in human trabecular meshwork cells compared with controls, as deduced from the differential transcriptional profiles using RNA-sequencing analysis. There was a significant increase in IOP in transgenic mice expressing human GDF15, but not in GDF15 null mice, compared with the respective wild-type control mice. The AH outflow facility was decreased in enucleated wild-type mouse eyes perfused with rhGDF15. Light microcopy-based histologic examination of the conventional AH outflow pathway tissues did not reveal identifiable differences between the GDF15-targeted and control mice. Taken together, these results reveal the modest elevation of IOP in mice expressing human GDF15 possibly stemming from decreased AH outflow through the trabecular pathway.


Assuntos
Fator 15 de Diferenciação de Crescimento , Pressão Intraocular , Camundongos , Humanos , Animais , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Humor Aquoso/metabolismo , Camundongos Transgênicos , Camundongos Knockout
17.
Acta Biomater ; 175: 138-156, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38151067

RESUMO

Glaucoma, which is associated with intraocular pressure (IOP) elevation, results in trabecular meshwork (TM) cellular dysfunction, leading to increased rigidity of the extracellular matrix (ECM), larger adhesion forces between the TM cells and ECM, and higher resistance to aqueous humor drainage. TM cells sense the mechanical forces due to IOP dynamic and apply multidimensional forces on the ECM. Recognizing the importance of cellular forces in modulating various cellular activities and development, this study is aimed to develop a 2D in vitro cell culture model to calculate the 3D, depth-dependent, dynamic traction forces, tensile/compressive/shear strain of the normal and glaucomatous human TM cells within a deformable polyacrylamide (PAM) gel substrate. Normal and glaucomatous human TM cells were isolated, cultured, and seeded on top of the PAM gel substrate with embedded FluoSpheres, spanning elastic moduli of 1.5 to 80 kPa. Sixteen-hour post-seeding live confocal microscopy in an incubator was conducted to Z-stack image the 3D displacement map of the FluoSpheres within the PAM gels. Combined with the known PAM gel stiffness, we ascertained the 3D traction forces in the gel. Our results revealed meaningfully larger traction forces in the glaucomatous TM cells compared to the normal TM cells, reaching depths greater than 10-µm in the PAM gel substrate. Stress fibers in TM cells increased with gel rigidity, but diminished when stiffness rose from 20 to 80 kPa. The developed 2D cell culture model aids in understanding how altered mechanical properties in glaucoma impact TM cell behavior and aqueous humor outflow resistance. STATEMENT OF SIGNIFICANCE: Glaucoma, a leading cause of irreversible blindness, is intricately linked to elevated intraocular pressures and their subsequent cellular effects. The trabecular meshwork plays a pivotal role in this mechanism, particularly its interaction with the extracellular matrix. This research unveils an advanced 2D in vitro cell culture model that intricately maps the complex 3D forces exerted by trabecular meshwork cells on the extracellular matrix, offering unparalleled insights into the cellular biomechanics at play in both healthy and glaucomatous eyes. By discerning the changes in these forces across varying substrate stiffness levels, we bridge the gap in understanding between cellular mechanobiology and the onset of glaucoma. The findings stand as a beacon for potential therapeutic avenues, emphasizing the gravity of cellular/extracellular matrix interactions in glaucoma's pathogenesis and setting the stage for targeted interventions in its early stages.


Assuntos
Glaucoma , Malha Trabecular , Humanos , Malha Trabecular/patologia , Tração , Glaucoma/patologia , Humor Aquoso , Pressão Intraocular
18.
Indian J Ophthalmol ; 72(3): 335-338, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099375

RESUMO

PURPOSE: To report the histopathologic correlates of trabecular meshwork (TM) specimens procured by microincisional trabeculectomy (MIT) for different severities of glaucoma (early glaucoma: visual field mean deviation [MD] <-6 dB, moderate glaucoma: MD from - 6 to - 12 dB, and advanced glaucoma: MD <-12 dB). METHODS: TM specimens from four patients undergoing MIT with or without cataract surgery were analyzed by routine histopathology for structural changes. The number of cells, the number of cells with spindle-shaped nuclei suggestive of epithelial-mesenchymal transformation (EMT), and the distance between the trabecular beams were calculated using different tools on freely available ImageJ software using the line or pint/count tool. RESULTS: The TM specimens procured from two early and two advanced glaucoma cases showed decreasing cellularity and decreased compact arrangement of the trabecular beams in severe disease stages. The number of cells and preserved architecture in all four specimens were evident, with > 50 cells being present per section in all four cases despite the glaucoma being of advanced disease stage in two patients. CONCLUSION: The TM specimens obtained from MIT can be utilized for downstream analysis using different molecular methods for studying the molecular events in the tissue from early to severe glaucoma.


Assuntos
Extração de Catarata , Glaucoma , Trabeculectomia , Humanos , Trabeculectomia/métodos , Malha Trabecular/cirurgia , Malha Trabecular/patologia , Glaucoma/cirurgia , Campos Visuais , Pressão Intraocular
19.
Transl Vis Sci Technol ; 12(11): 21, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37975842

RESUMO

Purpose: Trabecular meshwork (TM) fibrosis is a crucial pathophysiological process in the development of primary open-angle glaucoma. Pirfenidone (PFD) is a new, broad-spectrum antifibrotic agent approved for the treatment of idiopathic pulmonary fibrosis. This study investigated the inhibitory effect of PFD on TM fibrosis and evaluated its efficacy in lowering intraocular pressure (IOP). Methods: Human TM cells were isolated, cultured, and characterized. Cell Counting Kit-8 was used to evaluate the proliferation and toxicity of different concentrations of PFD on normal or fibrotic TM cells. TM cells were treated with transforming growth factor beta-2 (TGF-ß2) in the absence or presence of PFD. Western blotting and immunofluorescence analyses were used to analyze changes in the TM cell cytoskeleton and extracellular matrix (ECM) proteins, including alpha-smooth muscle actin (α-SMA), F-actin, collagen IV (COL IV), and fibronectin (FN). An ocular hypertension (OHT) mouse model was induced with Ad-TGF-ß2C226/228S and then treated with PFD or latanoprost (LT) eye drops to confirm the efficacy of PFD in lowering IOP. Results: PFD inhibited the proliferation of fibrotic TM cells in a dose-dependent manner and inhibited TGF-ß2-induced overexpression of α-SMA, COL IV, and FN in TM cells. PFD stabilized F-actin. In vivo, PFD eye drops reduced the IOP of the OHT models and showed no significant difference compared with LT eye drops. Conclusions: PFD inhibited TGF-ß2-induced TM cell fibrosis by rearranging the disordered cytoskeleton and decreasing ECM deposition, thereby enhancing the aqueous outflow from the TM outflow pathway and lowering IOP, which provides a potential new approach to treating glaucoma. Translational Relevance: Our work with pirfenidone provides a new approach to treat glaucoma.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Hipertensão Ocular , Animais , Humanos , Camundongos , Actinas/metabolismo , Células Cultivadas , Fibrose , Glaucoma de Ângulo Aberto/tratamento farmacológico , Soluções Oftálmicas/farmacologia , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Fator de Crescimento Transformador beta2/farmacologia
20.
Exp Biol Med (Maywood) ; 248(16): 1425-1436, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37873757

RESUMO

Connective tissue growth factor (CTGF) is a distinct signaling molecule modulating many physiological and pathophysiological processes. This protein is upregulated in numerous fibrotic diseases that involve extracellular matrix (ECM) remodeling. It mediates the downstream effects of transforming growth factor beta (TGF-ß) and is regulated via TGF-ß SMAD-dependent and SMAD-independent signaling routes. Targeting CTGF instead of its upstream regulator TGF-ß avoids the consequences of interfering with the pleotropic effects of TGF-ß. Both CTGF and its upstream mediator, TGF-ß, have been linked with the pathophysiology of glaucomatous optic neuropathy due to their involvement in the regulation of ECM homeostasis. The excessive expression of these growth factors is associated with glaucoma pathogenesis via elevation of the intraocular pressure (IOP), the most important risk factor for glaucoma. The raised in the IOP is due to dysregulation of ECM turnover resulting in excessive ECM deposition at the site of aqueous humor outflow. It is therefore believed that CTGF could be a potential therapeutic target in glaucoma therapy. This review highlights the CTGF biology and structure, its regulation and signaling, its association with the pathophysiology of glaucoma, and its potential role as a therapeutic target in glaucoma management.


Assuntos
Glaucoma , Malha Trabecular , Humanos , Malha Trabecular/metabolismo , Malha Trabecular/patologia , Pressão Intraocular , Glaucoma/metabolismo , Glaucoma/patologia , Fator de Crescimento Transformador beta/metabolismo , Tecido Conjuntivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA