Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.539
Filtrar
1.
PLoS One ; 19(5): e0296034, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753689

RESUMO

BACKGROUND: Dermatomyositis (DM) is prone to nasopharyngeal carcinoma (NPC), but the mechanism is unclear. This study aimed to explore the potential pathogenesis of DM and NPC. METHODS: The datasets GSE46239, GSE142807, GSE12452, and GSE53819 were downloaded from the GEO dataset. The disease co-expression module was obtained by R-package WGCNA. We built PPI networks for the key modules. ClueGO was used to analyze functional enrichment for the key modules. DEG analysis was performed with the R-package "limma". R-package "pROC" was applied to assess the diagnostic performance of hub genes. MiRNA-mRNA networks were constructed using MiRTarBase and miRWalk databases. RESULTS: The key modules that positively correlated with NPC and DM were found. Its intersecting genes were enriched in the negative regulation of viral gene replication pathway. Similarly, overlapping down-regulated DEGs in DM and NPC were also enriched in negatively regulated viral gene replication. Finally, we identified 10 hub genes that primarily regulate viral biological processes and type I interferon responses. Four key genes (GBP1, IFIH1, IFIT3, BST2) showed strong diagnostic performance, with AUC>0.8. In both DM and NPC, the expression of key genes was correlated with macrophage infiltration level. Based on hub genes' miRNA-mRNA network, hsa-miR-146a plays a vital role in DM-associated NPC. CONCLUSIONS: Our research discovered pivot genes between DM and NPC. Viral gene replication and response to type I interferon may be the crucial bridge between DM and NPC. By regulating hub genes, MiR-146a will provide new strategies for diagnosis and treatment in DM complicated by NPC patients. For individuals with persistent viral replication in DM, screening for nasopharyngeal cancer is necessary.


Assuntos
Biologia Computacional , Dermatomiosite , Redes Reguladoras de Genes , MicroRNAs , Neoplasias Nasofaríngeas , Humanos , Neoplasias Nasofaríngeas/genética , Dermatomiosite/genética , Dermatomiosite/complicações , Biologia Computacional/métodos , MicroRNAs/genética , Carcinoma Nasofaríngeo/genética , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Mapas de Interação de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Bases de Dados Genéticas
2.
Gen Physiol Biophys ; 43(3): 209-219, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774921

RESUMO

Atrial fibrillation (AF) is the most common cardiac arrhythmia and can cause serious complications. Several studies have shown that neutrophils may influence AF progression. However, the key genes related to neutrophils in AF have not been fully elucidated. Here, we downloaded microarray expression data of AF, and screened differentially expressed genes. Key immune cells in AF were identified by immune cell infiltration analysis. Weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) analysis were used to construct gene co-expression modules and identify hub genes. The association between key genes and neutrophils was then verified. Our results showed that 303 differentially expressed genes (DEGs) were screened in AF and sinus rhythm (SR), of which 194 were up-regulated and 109 were down-regulated. DEGs were mainly enriched in functions and pathways of neutrophil activation and biological functions of neutrophil activation-mediated immune response. Immune infiltration analysis revealed elevated levels of neutrophil infiltration in AF. WGCNA analysis revealed that the modules in dark red were associated with neutrophils. PPI analysis of these modules yielded 10 hub genes. S100A12, FCGR3B and S100A8 are 3 potential key genes related to neutrophils in AF, which are significantly positively correlated with neutrophils. These genes deserve further investigation and may be potential therapeutic targets for AF.


Assuntos
Fibrilação Atrial , Neutrófilos , Fibrilação Atrial/genética , Fibrilação Atrial/imunologia , Neutrófilos/metabolismo , Neutrófilos/imunologia , Humanos , Mapas de Interação de Proteínas/genética , Redes Reguladoras de Genes , Perfilação da Expressão Gênica
3.
Sci Rep ; 14(1): 9970, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693203

RESUMO

Alzheimer's disease (AD) shows a high pathological and symptomatological heterogeneity. To study this heterogeneity, we have developed a patient stratification technique based on one of the most significant risk factors for the development of AD: genetics. We addressed this challenge by including network biology concepts, mapping genetic variants data into a brain-specific protein-protein interaction (PPI) network, and obtaining individualized PPI scores that we then used as input for a clustering technique. We then phenotyped each obtained cluster regarding genetics, sociodemographics, biomarkers, fluorodeoxyglucose-positron emission tomography (FDG-PET) imaging, and neurocognitive assessments. We found three clusters defined mainly by genetic variants found in MAPT, APP, and APOE, considering known variants associated with AD and other neurodegenerative disease genetic architectures. Profiling of these clusters revealed minimal variation in AD symptoms and pathology, suggesting different biological mechanisms may activate the neurodegeneration and pathobiological patterns behind AD and result in similar clinical and pathological presentations, even a shared disease diagnosis. Lastly, our research highlighted MAPT, APP, and APOE as key genes where these genetic distinctions manifest, suggesting them as potential targets for personalized drug development strategies to address each AD subgroup individually.


Assuntos
Doença de Alzheimer , Apolipoproteínas E , Tomografia por Emissão de Pósitrons , Proteínas tau , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico por imagem , Humanos , Proteínas tau/genética , Apolipoproteínas E/genética , Masculino , Feminino , Idoso , Predisposição Genética para Doença , Precursor de Proteína beta-Amiloide/genética , Mapas de Interação de Proteínas/genética , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/metabolismo
4.
PLoS One ; 19(5): e0303471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718074

RESUMO

OBJECTIVE: Preeclampsia (PE) is a severe complication of unclear pathogenesis associated with pregnancy. This research aimed to elucidate the properties of immune cell infiltration and potential biomarkers of PE based on bioinformatics analysis. MATERIALS AND METHODS: Two PE datasets were imported from the Gene ExpressioOmnibus (GEO) and screened to identify differentially expressed genes (DEGs). Significant module genes were identified by weighted gene co-expression network analysis (WGCNA). DEGs that interacted with key module genes (GLu-DEGs) were analyzed further by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. The diagnostic value of the genes was assessed using receiver operating characteristic (ROC) curves and protein-protein interaction (PPI) networks were constructed using GeneMANIA, and GSVA analysis was performed using the MSigDB database. Immune cell infiltration was analyzed using the TISIDB database, and StarBase and Cytoscape were used to construct an RBP-mRNA network. The identified hub genes were validated in two independent datasets. For further confirmation, placental tissue from healthy pregnant women and women with PE were collected and analyzed using both RT-qPCR and immunohistochemistry. RESULTS: A total of seven GLu-DEGs were obtained and were found to be involved in pathways associated with the transport of sulfur compounds, PPAR signaling, and energy metabolism, shown by GO and KEGG analyses. GSVA indicated significant increases in adipocytokine signaling. Furthermore, single-sample Gene Set Enrichment Analysis (ssGSEA) indicated that the levels of activated B cells and T follicular helper cells were significantly increased in the PE group and were negatively correlated with GLu-DEGs, suggesting their potential importance. CONCLUSION: In summary, the results showed a correlation between glutamine metabolism and immune cells, providing new insights into the understandingPE pathogenesis and furnishing evidence for future advances in the treatment of this disease.


Assuntos
Redes Reguladoras de Genes , Glutamina , Pré-Eclâmpsia , Mapas de Interação de Proteínas , Humanos , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/imunologia , Feminino , Gravidez , Mapas de Interação de Proteínas/genética , Glutamina/metabolismo , Biologia Computacional/métodos , Ontologia Genética , Perfilação da Expressão Gênica , Adulto , Placenta/metabolismo , Placenta/imunologia
5.
Comput Biol Med ; 175: 108495, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697003

RESUMO

Allergic rhinitis is a common allergic disease with a complex pathogenesis and many unresolved issues. Studies have shown that the incidence of allergic rhinitis is closely related to genetic factors, and research on the related genes could help further understand its pathogenesis and develop new treatment methods. In this study, 446 allergic rhinitis-related genes were obtained on the basis of the DisGeNET database. The protein-protein interaction network was searched using the random-walk-with-restart algorithm with these 446 genes as seed nodes to assess the linkages between other genes and allergic rhinitis. Then, this result was further examined by three screening tests, including permutation, interaction, and enrichment tests, which aimed to pick up genes that have strong and special associations with allergic rhinitis. 52 novel genes were finally obtained. The functional enrichment test confirmed their relationships to the biological processes and pathways related to allergic rhinitis. Furthermore, some genes were extensively analyzed to uncover their special or latent associations to allergic rhinitis, including IRAK2 and MAPK, which are involved in the pathogenesis of allergic rhinitis and the inhibition of allergic inflammation via the p38-MAPK pathway, respectively. The new found genes may help the following investigations for understanding the underlying molecular mechanisms of allergic rhinitis and developing effective treatments.


Assuntos
Mapas de Interação de Proteínas , Rinite Alérgica , Humanos , Rinite Alérgica/genética , Mapas de Interação de Proteínas/genética , Bases de Dados Genéticas , Algoritmos , Biologia Computacional/métodos , Redes Reguladoras de Genes
6.
Comput Methods Programs Biomed ; 250: 108192, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701699

RESUMO

BACKGROUND AND OBJECTIVE: The morbidity of lung adenocarcinoma (LUAD) has been increasing year by year and the prognosis is poor. This has prompted researchers to study the survival of LUAD patients to ensure that patients can be cured in time or survive after appropriate treatment. There is still no fully valid model that can be applied to clinical practice. METHODS: We introduced struc2vec-based multi-omics data integration (SBMOI), which could integrate gene expression, somatic mutations and clinical data to construct mutation gene vectors representing LUAD patient features. Based on the patient features, the random survival forest (RSF) model was used to predict the long- and short-term survival of LUAD patients. To further demonstrate the superiority of SBMOI, we simultaneously replaced scale-free gene co-expression network (FCN) with a protein-protein interaction (PPI) network and a significant co-expression network (SCN) to compare accuracy in predicting LUAD patient survival under the same conditions. RESULTS: Our results suggested that compared with SCN and PPI network, the FCN based SBMOI combined with RSF model had better performance in long- and short-term survival prediction tasks for LUAD patients. The AUC of 1-year, 5-year, and 10-year survival in the validation dataset were 0.791, 0.825, and 0.917, respectively. CONCLUSIONS: This study provided a powerful network-based method to multi-omics data integration. SBMOI combined with RSF successfully predicted long- and short-term survival of LUAD patients, especially with high accuracy on long-term survival. Besides, SBMOI algorithm has the potential to combine with other machine learning models to complete clustering or stratificational tasks, and being applied to other diseases.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Prognóstico , Mutação , Mapas de Interação de Proteínas/genética , Análise de Sobrevida , Algoritmos , Masculino , Feminino , Biologia Computacional/métodos , Redes Reguladoras de Genes , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Multiômica
7.
PLoS One ; 19(5): e0302753, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739634

RESUMO

Leprosy has a high rate of cripplehood and lacks available early effective diagnosis methods for prevention and treatment, thus novel effective molecule markers are urgently required. In this study, we conducted bioinformatics analysis with leprosy and normal samples acquired from the GEO database(GSE84893, GSE74481, GSE17763, GSE16844 and GSE443). Through WGCNA analysis, 85 hub genes were screened(GS > 0.7 and MM > 0.8). Through DEG analysis, 82 up-regulated and 3 down-regulated genes were screened(|Log2FC| > 3 and FDR < 0.05). Then 49 intersection genes were considered as crucial and subjected to GO annotation, KEGG pathway and PPI analysis to determine the biological significance in the pathogenesis of leprosy. Finally, we identified a gene-pathway network, suggesting ITK, CD48, IL2RG, CCR5, FGR, JAK3, STAT1, LCK, PTPRC, CXCR4 can be used as biomarkers and these genes are active in 6 immune system pathways, including Chemokine signaling pathway, Th1 and Th2 cell differentiation, Th17 cell differentiation, T cell receptor signaling pathway, Natural killer cell mediated cytotoxicity and Leukocyte transendothelial migration. We identified 10 crucial gene markers and related important pathways that acted as essential components in the etiology of leprosy. Our study provides potential targets for diagnostic biomarkers and therapy of leprosy.


Assuntos
Biomarcadores , Redes Reguladoras de Genes , Hanseníase , Hanseníase/genética , Hanseníase/microbiologia , Humanos , Biomarcadores/metabolismo , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Mapas de Interação de Proteínas/genética , Transdução de Sinais
8.
Sci Rep ; 14(1): 10626, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724670

RESUMO

Hyaluronan (HA) accumulation in clear cell renal cell carcinoma (ccRCC) is associated with poor prognosis; however, its biology and role in tumorigenesis are unknown. RNA sequencing of 48 HA-positive and 48 HA-negative formalin-fixed paraffin-embedded (FFPE) samples was performed to identify differentially expressed genes (DEG). The DEGs were subjected to pathway and gene enrichment analyses. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data and DEGs were used for the cluster analysis. In total, 129 DEGs were identified. HA-positive tumors exhibited enhanced expression of genes related to extracellular matrix (ECM) organization and ECM receptor interaction pathways. Gene set enrichment analysis showed that epithelial-mesenchymal transition-associated genes were highly enriched in the HA-positive phenotype. A protein-protein interaction network was constructed, and 17 hub genes were discovered. Heatmap analysis of TCGA-KIRC data identified two prognostic clusters corresponding to HA-positive and HA-negative phenotypes. These clusters were used to verify the expression levels and conduct survival analysis of the hub genes, 11 of which were linked to poor prognosis. These findings enhance our understanding of hyaluronan in ccRCC.


Assuntos
Carcinoma de Células Renais , Matriz Extracelular , Regulação Neoplásica da Expressão Gênica , Ácido Hialurônico , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/mortalidade , Ácido Hialurônico/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/mortalidade , Prognóstico , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Perfilação da Expressão Gênica , Mapas de Interação de Proteínas/genética , Transcriptoma , Masculino , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Transição Epitelial-Mesenquimal/genética , Redes Reguladoras de Genes
9.
PLoS One ; 19(5): e0303506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38771826

RESUMO

OBJECTIVE: To elucidate potential molecular mechanisms differentiating osteoarthritis (OA) and rheumatoid arthritis (RA) through a bioinformatics analysis of differentially expressed genes (DEGs) in patient synovial cells, aiming to provide new insights for clinical treatment strategies. MATERIALS AND METHODS: Gene expression datasets GSE1919, GSE82107, and GSE77298 were downloaded from the Gene Expression Omnibus (GEO) database to serve as the training groups, with GSE55235 being used as the validation dataset. The OA and RA data from the GSE1919 dataset were merged with the standardized data from GSE82107 and GSE77298, followed by batch effect removal to obtain the merged datasets of differential expressed genes (DEGs) for OA and RA. Intersection analysis was conducted on the DEGs between the two conditions to identify commonly upregulated and downregulated DEGs. Enrichment analysis was then performed on these common co-expressed DEGs, and a protein-protein interaction (PPI) network was constructed to identify hub genes. These hub genes were further analyzed using the GENEMANIA online platform and subjected to enrichment analysis. Subsequent validation analysis was conducted using the GSE55235 dataset. RESULTS: The analysis of differentially expressed genes in the synovial cells from patients with Osteoarthritis (OA) and Rheumatoid Arthritis (RA), compared to a control group (individuals without OA or RA), revealed significant changes in gene expression patterns. Specifically, the genes APOD, FASN, and SCD were observed to have lower expression levels in the synovial cells of both OA and RA patients, indicating downregulation within the pathological context of these diseases. In contrast, the SDC1 gene was found to be upregulated, displaying higher expression levels in the synovial cells of OA and RA patients compared to normal controls.Additionally, a noteworthy observation was the downregulation of the transcription factor PPARG in the synovial cells of patients with OA and RA. The decrease in expression levels of PPARG further validates the alteration in lipid metabolism and inflammatory processes associated with the pathogenesis of OA and RA. These findings underscore the significance of these genes and the transcription factor not only as biomarkers for differential diagnosis between OA and RA but also as potential targets for therapeutic interventions aimed at modulating their expression to counteract disease progression. CONCLUSION: The outcomes of this investigation reveal the existence of potentially shared molecular mechanisms within Osteoarthritis (OA) and Rheumatoid Arthritis (RA). The identification of APOD, FASN, SDC1, TNFSF11 as key target genes, along with their downstream transcription factor PPARG, highlights common potential factors implicated in both diseases. A deeper examination and exploration of these findings could pave the way for new candidate targets and directions in therapeutic research aimed at treating both OA and RA. This study underscores the significance of leveraging bioinformatics approaches to unravel complex disease mechanisms, offering a promising avenue for the development of more effective and targeted treatments.


Assuntos
Artrite Reumatoide , Perfilação da Expressão Gênica , Osteoartrite , Mapas de Interação de Proteínas , Membrana Sinovial , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Humanos , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Mapas de Interação de Proteínas/genética , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Biologia Computacional/métodos , Redes Reguladoras de Genes , Regulação da Expressão Gênica , Bases de Dados Genéticas
10.
Medicine (Baltimore) ; 103(20): e38097, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758892

RESUMO

BACKGROUND: Endometriosis (EMT) is a common disease in reproductive-age woman and Crohn disease (CD) is a chronic inflammatory disorder in gastrointestinal tract. Previous studies reported that patients with EMT had an increased risk of CD. However, the linkage between EMT and CD remains unclear. In this study, we aimed to investigate the potential molecular mechanism of EMT and CD. METHODS: The microarray data of EMT and CD were downloaded from Gene Expression Omnibus. Common genes of EMT and CD were obtained to perform the Gene Ontology and Kyoto Encyclopedia of Gene Genomes enrichments. The protein-protein interaction network was constructed by Cytoscape software and the hub genes were identified by CytoHubba plug-in. Finally we predicted the transcription factors (TFs) of hub genes and constructed a TFs-hub genes regulation network. RESULTS: A total of 50 common genes were identified. Kyoto Encyclopedia of Gene Genomes enrichment showed that the common genes mainly enriched in MAPK pathway, VEGF pathway, Wnt pathway, TGF-beta pathway, and Ras pathway. Fifteen hub genes were collected from the protein-protein interaction network, including FMOD, FRZB, CPE, SST, ISG15, EFEMP1, KDR, ADRA2A, FZD7, AQP1, IGFBP5, NAMPT, PLUA, FGF9, and FHL2. Among them, FGF9, FZD7, IGFBP5, KDR, and NAMPT were both validated in the other 2 datasets. Finally TFs-hub genes regulation network were constructed. CONCLUSION: Our findings firstly revealed the linkage between EMT and CD, including inflammation, angiogenesis, immune regulation, and cell behaviors, which may lead to the risk of CD in EMT. FGF9, FZD7, IGFBP5, KDR, and NAMPT may closely relate to the linkage.


Assuntos
Biologia Computacional , Doença de Crohn , Endometriose , Mapas de Interação de Proteínas , Humanos , Feminino , Doença de Crohn/genética , Biologia Computacional/métodos , Endometriose/genética , Mapas de Interação de Proteínas/genética , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Ontologia Genética , Perfilação da Expressão Gênica
11.
BMC Psychiatry ; 24(1): 369, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755543

RESUMO

BACKGROUND: Patients with major depressive disorder (MDD) have an increased risk of breast cancer (BC), implying that these two diseases share similar pathological mechanisms. This study aimed to identify the key pathogenic genes that lead to the occurrence of both triple-negative breast cancer (TNBC) and MDD. METHODS: Public datasets GSE65194 and GSE98793 were analyzed to identify differentially expressed genes (DEGs) shared by both datasets. A protein-protein interaction (PPI) network was constructed using STRING and Cytoscape to identify key PPI genes using cytoHubba. Hub DEGs were obtained from the intersection of hub genes from a PPI network with genes in the disease associated modules of the Weighed Gene Co-expression Network Analysis (WGCNA). Independent datasets (TCGA and GSE76826) and RT-qPCR validated hub gene expression. RESULTS: A total of 113 overlapping DEGs were identified between TNBC and MDD. The PPI network was constructed, and 35 hub DEGs were identified. Through WGCNA, the blue, brown, and turquoise modules were recognized as highly correlated with TNBC, while the brown, turquoise, and yellow modules were similarly correlated with MDD. Notably, G3BP1, MAF, NCEH1, and TMEM45A emerged as hub DEGs as they appeared both in modules and PPI hub DEGs. Within the GSE65194 and GSE98793 datasets, G3BP1 and MAF exhibited a significant downregulation in TNBC and MDD groups compared to the control, whereas NCEH1 and TMEM45A demonstrated a significant upregulation. These findings were further substantiated by TCGA and GSE76826, as well as through RT-qPCR validation. CONCLUSIONS: This study identified G3BP1, MAF, NCEH1 and TMEM45A as key pathological genes in both TNBC and MDD.


Assuntos
Transtorno Depressivo Maior , Mapas de Interação de Proteínas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Transtorno Depressivo Maior/genética , Feminino , Mapas de Interação de Proteínas/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Bases de Dados Genéticas , Transcriptoma/genética
12.
Medicine (Baltimore) ; 103(19): e38144, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728457

RESUMO

Papillary thyroid carcinoma (PTC) prognosis may be deteriorated due to the metastases, and anoikis palys an essential role in the tumor metastasis. However, the potential effect of anoikis-related genes on the prognosis of PTC was unclear. The mRNA and clinical information were obtained from the cancer genome atlas database. Hub genes were identified and risk model was constructed using Cox regression analysis. Kaplan-Meier (K-M) curve was applied for the survival analysis. Immune infiltration and immune therapy response were calculated using CIBERSORT and TIDE. The identification of cell types and cell interaction was performed by Seurat, SingleR and CellChat packages. GO, KEGG, and GSVA were applied for the enrichment analysis. Protein-protein interaction network was constructed in STRING and Cytoscape. Drug sensitivity was assessed in GSCA. Based on bulk RNA data, we identified 4 anoikis-related risk signatures, which were oncogenes, and constructed a risk model. The enrichment analysis found high risk group was enriched in some immune-related pathways. High risk group had higher infiltration of Tregs, higher TIDE score and lower levels of monocytes and CD8 T cells. Based on scRNA data, we found that 4 hub genes were mainly expressed in monocytes and macrophages, and they interacted with T cells. Hub genes were significantly related to immune escape-related genes. Drug sensitivity analysis suggested that cyclin dependent kinase inhibitor 2A may be a better chemotherapy target. We constructed a risk model which could effectively and steadily predict the prognosis of PTC. We inferred that the immune escape may be involved in the development of PTC.


Assuntos
Anoikis , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Anoikis/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Prognóstico , Análise de Célula Única/métodos , Análise de Sequência de RNA , Mapas de Interação de Proteínas/genética , Feminino , Masculino , Estimativa de Kaplan-Meier , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica/métodos
13.
Medicine (Baltimore) ; 103(18): e38029, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701261

RESUMO

Colorectal cancer is a common malignant tumor in intestinal tract, the early symptoms are not obvious. Gastric cancer is a malignant tumor originating from the gastric mucosal epithelium. However, the role of MYC and non-SMC condensin II complex subunit G2 (NCAPG2) in colorectal cancer and gastric cancer remains unclear. The colorectal cancer datasets GSE49355 and gastric cancer datasets GSE19826 were downloaded from gene expression omnibus database. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis (WGCNA) was performed. Functional enrichment analysis, gene set enrichment analysis (GSEA) and immune infiltration analysis was performed. Construction and analysis of protein-protein interactions (PPI) network. Survival analysis and comparative toxicogenomics database (CTD) were performed. A heat map of gene expression was drawn. A total of 751 DEGs were obtained. According to the gene ontology (GO) analysis, in Biological process (BP) analysis, they are mainly enriched in cell differentiation, cartilage development, and skeletal development. In cellular component (CC) analysis, they are mainly enriched in the cytoskeleton of muscle cells and actin filaments. In molecular function (MF) analysis, they are mainly concentrated in Rho GTPase binding, DNA binding, and fibronectin binding. In Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, they are mainly enriched in the MAPK signaling pathway, apoptosis, and cancer pathways. The soft threshold power for WGCNA analysis was set to 9, resulting in the generation of 40 modules. Ultimately, 2 core genes (MYC and NCAPG2) were identified. The heatmap of core gene expression showed high expression of MYC and NCAPG2 in colorectal cancer tissue samples and low expression in normal tissue samples, while they were core molecules in gastric cancer. Survival analysis indicated that MYC and NCAPG2 were risk factors, showing an upregulation trend with increasing risk scores. CTD analysis revealed associations of MYC and NCAPG2 with colorectal cancer, gastric cancer, inflammation, and immune system diseases. MYC and NCAPG2 are highly expressed in colorectal cancer. The higher the expression of MYC and NCAPG2, the worse the prognosis. MYC and NCAPG2 are core molecules in gastric cancer.


Assuntos
Neoplasias Colorretais , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mapas de Interação de Proteínas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Perfilação da Expressão Gênica
14.
Medicine (Baltimore) ; 103(18): e37933, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701300

RESUMO

BACKGROUND: Sepsis-induced myopathy (SIM) a complication of sepsis that results in prolonged mechanical ventilation, long-term functional disability, and increased patient mortality. This study was performed to identify potential key oxidative stress-related genes (OS-genes) as biomarkers for the diagnosis of SIM using bioinformatics. METHODS: The GSE13205 was obtained from the Gene Expression Omnibus (GEO) database, including 13 SIM samples and 8 healthy samples, and the differentially expressed genes (DEGs) were identified by limma package in R language. Simultaneously, we searched for the genes related to oxidative stress in the Gene Ontology (GO) database. The intersection of the genes selected from the GO database and the genes from the GSE13205 was considered as OS-genes of SIM, where the differential genes were regarded as OS-DEGs. OS-DEGs were analyzed using GO enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein-protein interaction (PPI) networks. Hub genes in OS-DEGs were selected based on degree, and diagnostic genes were further screened by gene expression and receiver operating characteristic (ROC) curve. Finally, a miRNA-gene network of diagnostic genes was constructed. RESULTS: A total of 1089 DEGs were screened from the GSE13205, and 453 OS-genes were identified from the GO database. The overlapping DEGs and OS-genes constituted 25 OS-DEGs, including 15 significantly upregulated and 10 significantly downregulated genes. The top 10 hub genes, including CD36, GPX3, NQO1, GSR, TP53, IDH1, BCL2, HMOX1, JAK2, and FOXO1, were screened. Furthermore, 5 diagnostic genes were identified: CD36, GPX3, NQO1, GSR, and TP53. The ROC analysis showed that the respective area under the curves (AUCs) of CD36, GPX3, NQO1, GSR, and TP53 were 0.990, 0.981, 0.971, 0.971, and 0.971, which meant these genes had very high diagnostic values of SIM. Finally, based on these 5 diagnostic genes, we found that miR-124-3p and miR-16-5p may be potential targets for the treatment of SIM. CONCLUSIONS: The results of this study suggest that OS-genes might play an important role in SIM. CD36, GPX3, NQO1, GSR, and TP53 have potential as specific biomarkers for the diagnosis of SIM.


Assuntos
Doenças Musculares , Estresse Oxidativo , Sepse , Humanos , Estresse Oxidativo/genética , Sepse/genética , Doenças Musculares/genética , Biologia Computacional , Mapas de Interação de Proteínas/genética , MicroRNAs/genética , Curva ROC , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Ontologia Genética , Bases de Dados Genéticas
15.
Arthritis Res Ther ; 26(1): 100, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741149

RESUMO

BACKGROUND: Exploring the pathogenesis of osteoarthritis (OA) is important for its prevention, diagnosis, and treatment. Therefore, we aimed to construct novel signature genes (c-FRGs) combining cuproptosis-related genes (CRGs) with ferroptosis-related genes (FRGs) to explore the pathogenesis of OA and aid in its treatment. MATERIALS AND METHODS: Differentially expressed c-FRGs (c-FDEGs) were obtained using R software. Enrichment analysis was performed and a protein-protein interaction (PPI) network was constructed based on these c-FDEGs. Then, seven hub genes were screened. Three machine learning methods and verification experiments were used to identify four signature biomarkers from c-FDEGs, after which gene set enrichment analysis, gene set variation analysis, single-sample gene set enrichment analysis, immune function analysis, drug prediction, and ceRNA network analysis were performed based on these signature biomarkers. Subsequently, a disease model of OA was constructed using these biomarkers and validated on the GSE82107 dataset. Finally, we analyzed the distribution of the expression of these c-FDEGs in various cell populations. RESULTS: A total of 63 FRGs were found to be closely associated with 11 CRGs, and 40 c-FDEGs were identified. Bioenrichment analysis showed that they were mainly associated with inflammation, external cellular stimulation, and autophagy. CDKN1A, FZD7, GABARAPL2, and SLC39A14 were identified as OA signature biomarkers, and their corresponding miRNAs and lncRNAs were predicted. Finally, scRNA-seq data analysis showed that the differentially expressed c-FRGs had significantly different expression distributions across the cell populations. CONCLUSION: Four genes, namely CDKN1A, FZD7, GABARAPL2, and SLC39A14, are excellent biomarkers and prospective therapeutic targets for OA.


Assuntos
Biologia Computacional , Ferroptose , Osteoartrite , Osteoartrite/genética , Osteoartrite/metabolismo , Ferroptose/genética , Biologia Computacional/métodos , Humanos , Animais , Mapas de Interação de Proteínas/genética , Perfilação da Expressão Gênica/métodos , Biomarcadores/metabolismo , Biomarcadores/análise , Redes Reguladoras de Genes/genética , Aprendizado de Máquina
16.
Arthritis Res Ther ; 26(1): 99, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741185

RESUMO

OBJECTIVES: This study aims to elucidate the transcriptomic signatures and dysregulated pathways in patients with Systemic Lupus Erythematosus (SLE), with a particular focus on those persisting during disease remission. METHODS: We conducted bulk RNA-sequencing of peripheral blood mononuclear cells (PBMCs) from a well-defined cohort comprising 26 remission patients meeting the Low Lupus Disease Activity State (LLDAS) criteria, 76 patients experiencing disease flares, and 15 healthy controls. To elucidate immune signature changes associated with varying disease states, we performed extensive analyses, including the identification of differentially expressed genes and pathways, as well as the construction of protein-protein interaction networks. RESULTS: Several transcriptomic features recovered during remission compared to the active disease state, including down-regulation of plasma and cell cycle signatures, as well as up-regulation of lymphocytes. However, specific innate immune response signatures, such as the interferon (IFN) signature, and gene modules involved in chromatin structure modification, persisted across different disease states. Drug repurposing analysis revealed certain drug classes that can target these persistent signatures, potentially preventing disease relapse. CONCLUSION: Our comprehensive transcriptomic study revealed gene expression signatures for SLE in both active and remission states. The discovery of gene expression modules persisting in the remission stage may shed light on the underlying mechanisms of vulnerability to relapse in these patients, providing valuable insights for their treatment.


Assuntos
Lúpus Eritematoso Sistêmico , Transcriptoma , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Humanos , Feminino , Adulto , Masculino , Pessoa de Meia-Idade , Perfilação da Expressão Gênica/métodos , Leucócitos Mononucleares/metabolismo , Mapas de Interação de Proteínas/genética
17.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 605-616, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597453

RESUMO

OBJECTIVE: To explore the core genes related to the diagnosis and prognosis of gastric cancer (GC) based on Gene Expression Omnibus (GEO) database and screen the molecular targets involved in the occurrence and development of GC. METHODS: GC microarray data GSE118916, GSE54129 and GSE79973 were downloaded from GEO database, and the differentially expressed genes (DEGs) were screened. Enrichment analysis of the signaling pathways and molecular functions were preformed and protein-protein interaction networks (PPI) were constructed to identify the hub genes, whose expression levels and diagnostic and prognostic values were verifies based on gastric adenocarcinoma data from TCGA. The expression levels of these core genes were also detected in different GC cell lines using qRT- PCR. RESULTS: Seventy-seven DEGs were identified, which encodes proteins located mainly in the extracellular matrix and basement membrane with activities of oxidoreductase and extracellular matrix receptor and ligand, involving the biological processes of digestion and hormone metabolism and the signaling pathways in retinol metabolism and gastric acid secretion. Nine hub genes were obtained, among which SPARC, TIMP1, THBS2, COL6A3 and THY1 were significantly up- regulated and TFF1, GKN1, TFF2 and PGC were significantly down-regulated in GC. The abnormal expressions of SPARC, TIMP1, THBS2, COL6A3, TFF2 and THY1 were significantly correlated with the survival time of GC patients. ROC curve analysis showed that aberrant expression of TIMP1 SPARC, THY1 and THBS2 had high diagnostic value for GC. High expressions of SPARC, TIMP1, THBS2 and COL6A3 were detected in GC tissues. In the GC cell lines, qRT- PCR revealed different expression patterns of these hub genes, but their expressions were largely consistent with those found in bioinformatics analyses. CONCLUSION: SPARC, TIMP1, THBS2 and other DEGs are probably involved in GC occurrence and progression and may serve as potential candidate molecular markers for early diagnosis and prognostic evaluation of GC.


Assuntos
Hormônios Peptídicos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Perfilação da Expressão Gênica , Detecção Precoce de Câncer , Mapas de Interação de Proteínas/genética , Prognóstico , Colágeno , Biologia Computacional
18.
Mol Biol Rep ; 51(1): 576, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664314

RESUMO

BACKGROUND: Colorectal cancer (CRC) ranks as the third most commonly diagnosed cancer in both females and males, underscoring the need for the identification of effective biomarkers. METHODS AND RESULTS: We assessed the expression levels of ribosomal proteins (RPs) at both mRNA and protein levels. Subsequently, leveraging the STRING database, we constructed a protein-protein interaction network and identified hub genes. The co-expression network of differentially expressed genes associated with CRC and their target hub RPs was constructed using the weighted gene co-expression network analysis algorithm. Gene ontology and molecular signatures database were conducted to gain insights into the biological roles of genes associated with the identified module. To confirm the results, the expression level of the candidate genes in the CRC samples compared to the adjacent healthy was evaluated by the RT-qPCR method. Our findings indicated that the genes related to RPs were predominantly enriched in biological processes associated with Myc Targets, Oxidative Phosphorylation, and cell proliferation. Also, results demonstrated that elevated levels of GRWD1, MCM5, IMP4, and RABEPK that related to RPs were associated with poor prognostic outcomes for CRC patients. Notably, IMP4 and RABEPK exhibited higher diagnostic value. Moreover, the expression of IMP4 and RABEPK showed a significant association with drug resistance using cancer cell line encyclopedia and genomics of drug sensitivity in cancer databases. Also, the results showed that the expression level of IMP4 and RABEPK in cancerous samples was significantly higher compared to the adjacent healthy ones. CONCLUSION: The general results of this study have shown that many genes related to RPs are increased in cancer and could be associated with the death rate of patients. We also highlighted the therapeutic and prognostic potentials of RPs genes in CRC.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Mapas de Interação de Proteínas , Proteínas Ribossômicas , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Mapas de Interação de Proteínas/genética , Regulação Neoplásica da Expressão Gênica/genética , Feminino , Masculino , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Linhagem Celular Tumoral
19.
Sci Rep ; 14(1): 9199, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649399

RESUMO

The distinctive nature of cancer as a disease prompts an exploration of the special characteristics the genes implicated in cancer exhibit. The identification of cancer-associated genes and their characteristics is crucial to further our understanding of this disease and enhanced likelihood of therapeutic drug targets success. However, the rate at which cancer genes are being identified experimentally is slow. Applying predictive analysis techniques, through the building of accurate machine learning models, is potentially a useful approach in enhancing the identification rate of these genes and their characteristics. Here, we investigated gene essentiality scores and found that they tend to be higher for cancer-associated genes compared to other protein-coding human genes. We built a dataset of extended gene properties linked to essentiality and used it to train a machine-learning model; this model reached 89% accuracy and > 0.85 for the Area Under Curve (AUC). The model showed that essentiality, evolutionary-related properties, and properties arising from protein-protein interaction networks are particularly effective in predicting cancer-associated genes. We were able to use the model to identify potential candidate genes that have not been previously linked to cancer. Prioritising genes that score highly by our methods could aid scientists in their cancer genes research.


Assuntos
Genes Essenciais , Aprendizado de Máquina , Neoplasias , Humanos , Neoplasias/genética , Mapas de Interação de Proteínas/genética , Evolução Molecular , Biologia Computacional/métodos
20.
Hum Genomics ; 18(1): 43, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659056

RESUMO

OBJECTIVE: Myasthenia gravis (MG) is a complex autoimmune disease affecting the neuromuscular junction with limited drug options, but the field of MG treatment recently benefits from novel biological agents. We performed a drug-targeted Mendelian randomization (MR) study to identify novel therapeutic targets of MG. METHODS: Cis-expression quantitative loci (cis-eQTL), which proxy expression levels for 2176 druggable genes, were used for MR analysis. Causal relationships between genes and disease, identified by eQTL MR analysis, were verified by comprehensive sensitivity, colocalization, and protein quantitative loci (pQTL) MR analyses. The protein-protein interaction (PPI) analysis was also performed to extend targets, followed by enzyme-linked immunosorbent assay (ELISA) to explore the serum level of drug targets in MG patients. A phenome-wide MR analysis was then performed to assess side effects with a clinical trial review assessing druggability. RESULTS: The eQTL MR analysis has identified eight potential targets for MG, one for early-onset MG and seven for late-onset MG. Further colocalization analyses indicated that CD226, CDC42BPB, PRSS36, and TNFSF12 possess evidence for colocalization with MG or late-onset MG. pQTL MR analyses identified the causal relations of TNFSF12 and CD226 with MG and late-onset MG. Furthermore, PPI analysis has revealed the protein interaction between TNFSF12-TNFSF13(APRIL) and TNFSF12-TNFSF13B(BLyS). Elevated TNFSF13 serum level of MG patients was also identified by ELISA experiments. This study has ultimately proposed three promising therapeutic targets (TNFSF12, TNFSF13, TNFSF13B) of MG. CONCLUSIONS: Three drug targets associated with the BLyS/APRIL pathway have been identified. Multiple biological agents, including telitacicept and belimumab, are promising for MG therapy.


Assuntos
Análise da Randomização Mendeliana , Miastenia Gravis , Locos de Características Quantitativas , Humanos , Miastenia Gravis/genética , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/patologia , Miastenia Gravis/sangue , Locos de Características Quantitativas/genética , Mapas de Interação de Proteínas/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA