Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.634
Filtrar
1.
Biomaterials ; 313: 122804, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39236631

RESUMO

Insulin resistance and pancreatic ß-cell dysfunction are the main pathogenesis of type 2 diabetes mellitus (T2DM). However, insulin therapy and diabetes medications do not effectively solve the two problems simultaneously. In this study, a biomimetic oral hydrogen nanogenerator that leverages the benefits of edible plant-derived exosomes and hydrogen therapy was constructed to overcome this dilemma by modulating gut microbiota and ameliorating oxidative stress and inflammatory responses. Hollow mesoporous silica (HMS) nanoparticles encapsulating ammonia borane (A) were used to overcome the inefficiency of H2 delivery in traditional hydrogen therapy, and exosomes originating from ginger (GE) were employed to enhance biocompatibility and regulate intestinal flora. Our study showed that HMS/A@GE not only considerably ameliorated insulin resistance and liver steatosis, but inhibited the dedifferentiation of islet ß-cell and enhanced pancreatic ß-cell proportion in T2DM model mice. In addition to its antioxidant and anti-inflammatory effects, HMS/A@GE augmented the abundance of Lactobacilli spp. and tryptophan metabolites, such as indole and indole acetic acid, which further activated the AhR/IL-22 pathway to improve intestinal-barrier function and metabolic impairments. This study offers a potentially viable strategy for addressing the current limitations of diabetes treatment by integrating gut-microbiota remodelling with antioxidant therapies.


Assuntos
Antioxidantes , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistência à Insulina , Células Secretoras de Insulina , Nanopartículas , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Antioxidantes/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Nanopartículas/química , Camundongos , Masculino , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Camundongos Endogâmicos C57BL , Zingiber officinale/química , Dióxido de Silício/química , Exossomos/metabolismo , Biomimética/métodos , Estresse Oxidativo/efeitos dos fármacos
2.
Biomaterials ; 313: 122769, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39208698

RESUMO

Minimally invasive transcatheter interventional therapy utilizing cardiac occluders represents the primary approach for addressing congenital heart defects and left atrial appendage (LAA) thrombosis. However, incomplete endothelialization and delayed tissue healing after occluder implantation collectively compromise clinical efficacy. In this study, we have customized a recombinant humanized collagen type I (rhCol I) and developed an rhCol I-based extracellular matrix (ECM)-mimetic coating. The innovative coating integrates metal-phenolic networks with anticoagulation and anti-inflammatory functions as a weak cross-linker, combining them with specifically engineered rhCol I that exhibits high cell adhesion activity and elicits a low inflammatory response. The amalgamation, driven by multiple forces, effectively serves to functionalize implantable materials, thereby responding positively to the microenvironment following occluder implantation. Experimental findings substantiate the coating's ability to sustain a prolonged anticoagulant effect, enhance the functionality of endothelial cells and cardiomyocyte, and modulate inflammatory responses by polarizing inflammatory cells into an anti-inflammatory phenotype. Notably, occluder implantation in a canine model confirms that the coating expedites reendothelialization process and promotes tissue healing. Collectively, this tailored ECM-mimetic coating presents a promising surface modification strategy for improving the clinical efficacy of cardiac occluders.


Assuntos
Materiais Revestidos Biocompatíveis , Matriz Extracelular , Cicatrização , Animais , Matriz Extracelular/metabolismo , Cães , Humanos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Cicatrização/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Reepitelização/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos
3.
Biomaterials ; 313: 122796, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39226654

RESUMO

Chemotherapy-induced cellular senescence leads to an increased proportion of cancer stem cells (CSCs) in breast cancer (BC), contributing to recurrence and metastasis, while effective means to clear them are currently lacking. Herein, we aim to develop new approaches for selectively killing senescent-escape CSCs. High CD276 (95.60%) expression in multidrug-resistant BC cells, facilitates immune evasion by low-immunogenic senescent escape CSCs. CALD1, upregulated in ADR-resistant BC, promoting senescent-escape of CSCs with an anti-apoptosis state and upregulating CD276, PD-L1 to promote chemoresistance and immune escape. We have developed a controlled-released thermosensitive hydrogel containing pH- responsive anti-CD276 scFV engineered biomimetic nanovesicles to overcome BC in primary, recurrent, metastatic and abscopal humanized mice models. Nanovesicles coated anti-CD276 scFV selectively fuses with cell membrane of senescent-escape CSCs, then sequentially delivers siCALD1 and ADR due to pH-responsive MnP shell. siCALD1 together with ADR effectively induce apoptosis of CSCs, decrease expression of CD276 and PD-L1, and upregulate MHC I combined with Mn2+ to overcome chemoresistance and promote CD8+T cells infiltration. This combined therapeutic approach reveals insights into immune surveillance evasion by senescent-escape CSCs, offering a promising strategy to immunotherapy effectiveness in cancer therapy.


Assuntos
Neoplasias da Mama , Senescência Celular , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas , Humanos , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Senescência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Engenharia Genética/métodos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Nanopartículas/química , Anticorpos de Cadeia Única/química , Evasão Tumoral/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Apoptose/efeitos dos fármacos , Biomimética/métodos , Antígenos B7
4.
Biomaterials ; 313: 122775, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39241549

RESUMO

Acute Myocardial Infarction (AMI) has seen rising cases, particularly in younger people, leading to public health concerns. Standard treatments, like coronary artery recanalization, often don't fully repair the heart's microvasculature, risking heart failure. Advances show that Mesenchymal Stromal Cells (MSCs) transplantation improves cardiac function after AMI, but the harsh microenvironment post-AMI impacts cell survival and therapeutic results. MSCs aid heart repair via their membrane proteins and paracrine extracellular vesicles that carry microRNA-125b, which regulates multiple targets, preventing cardiomyocyte death, limiting fibroblast growth, and combating myocardial remodeling after AMI. This study introduces ultrasound-responsive phase-change bionic nanoparticles, leveraging MSCs' natural properties. These particles contain MSC membrane and microRNA-125b, with added macrophage membrane for stability. Using Ultrasound Targeted Microbubble Destruction (UTMD), this method targets the delivery of MSC membrane proteins and microRNA-125b to AMI's inflamed areas. This aims to enhance cardiac function recovery and provide precise, targeted AMI therapy.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Infarto do Miocárdio , Nanopartículas , Infarto do Miocárdio/terapia , Animais , Nanopartículas/química , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Recuperação de Função Fisiológica , Transplante de Células-Tronco Mesenquimais/métodos , Humanos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Camundongos , Microbolhas , Ondas Ultrassônicas
5.
Int J Nanomedicine ; 19: 9333-9349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39286354

RESUMO

Introduction: Immunotherapy has led to a paradigm shift in reinvigorating treatment of cancer. Nevertheless, tumor associated macrophages (TAMs) experience functional polarization on account of the generation of suppressive metabolites, contributing to impaired antitumor immune responses. Methods: Hence, metabolic reprogramming of tumor microenvironment (TME) can synergistically improve the efficacy of anti-tumor immunotherapy. Herein, we engineered an iron-based nanoplatform termed ERFe3O4 NPs. This platform features hollow Fe3O4 nanoparticles loaded with the natural product emodin, the outer layer is coated with red blood cell membrane (mRBCs) inserted with DSPE-PEG2000-galactose. This effectively modulates lactate production, thereby reversing the tumor immune suppressive microenvironment (TIME). Results: The ERFe3O4 NPs actively targeted TAMs on account of their ability to bind to M2-like TAMs with high expression of galectin (Mgl). ERFe3O4 NPs achieved efficient ability to reverse TIME via the production of reducing lactate and prompting enrichment iron of high concentrations. Furthermore, ERFe3O4 NPs resulted in heightened expression of CD16/32 and enhanced TNF-α release, indicating promotion of M1 TAMs polarization. In vitro and in vivo experiments revealed that ERFe3O4 NPs induced significant apoptosis of tumor cells and antitumor immune response. Discussion: This study combines Traditional Chinese Medicine (TCM) with nanomaterials to synergistically reprogram TAMs and reverse TIME, opening up new ideas for improving anti-tumor immunotherapy.


Assuntos
Imunoterapia , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Animais , Imunoterapia/métodos , Camundongos , Linhagem Celular Tumoral , Humanos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Camundongos Endogâmicos C57BL , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Apoptose/efeitos dos fármacos , Ferro/química , Feminino
6.
ACS Nano ; 18(37): 25446-25464, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39240217

RESUMO

The alarming rise in global antimicrobial resistance underscores the urgent need for effective antibacterial drugs. Drawing inspiration from the bacterial-entrapment mechanism of human defensin 6, we have fabricated biomimetic peptide nanonets composed of multiple functional fragments for bacterial eradication. These biomimetic peptide nanonets are designed to address antimicrobial resistance challenges through a dual-approach strategy. First, the resulting nanofibrous networks trap bacteria and subsequently kill them by loosening the membrane structure, dissipating proton motive force, and causing multiple metabolic perturbations. Second, these trapped bacterial clusters reactivate macrophages to scavenge bacteria through enhanced chemotaxis and phagocytosis via the PI3K-AKT signaling pathway and ECM-receptor interaction. In vivo results have proven that treatment with biomimetic peptide nanonets can alleviate systemic bacterial infections without causing noticeable systemic toxicity. As anticipated, the proposed strategy can address stubborn infections by entrapping bacteria and awakening antibacterial immune responses. This approach might serve as a guide for the design of bioinspired materials for future clinical applications.


Assuntos
Antibacterianos , Materiais Biomiméticos , Macrófagos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/metabolismo , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Animais , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Células RAW 264.7 , Fagocitose/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos
7.
J Nanobiotechnology ; 22(1): 545, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39238009

RESUMO

BACKGROUND: Ulcerative colitis (UC) is defined by persistent inflammatory processes within the gastrointestinal tract of uncertain etiology. Current therapeutic approaches are limited in their ability to address oxidative stress, inflammation, barrier function restoration, and modulation of gut microbiota in a coordinated manner to maintain intestinal homeostasis. RESULTS: This study involves the construction of a metal-phenolic nanozyme (Cur-Fe) through a ferric ion-mediated oxidative coupling of curcumin. Cur-Fe nanozyme exhibits superoxide dismutase (SOD)-like and •OH scavenging activities, demonstrating significant anti-inflammatory and anti-oxidant properties for maintaining intracellular redox balance in vitro. Drawing inspiration from Escherichia coli Nissle 1917 (EcN), a biomimetic Cur-Fe nanozyme (CF@EM) is subsequently developed by integrating Cur-Fe into the EcN membrane (EM) to improve the in vivo targeting ability and therapeutic effectiveness of the Cur-Fe nanozyme. When orally administered, CF@EM demonstrates a strong ability to colonize the inflamed colon and restore intestinal redox balance and barrier function in DSS-induced colitis models. Importantly, CF@EM influences the gut microbiome towards a beneficial state by enhancing bacterial diversity and shifting the compositional structure toward an anti-inflammatory phenotype. Furthermore, analysis of intestinal microbial metabolites supports the notion that the therapeutic efficacy of CF@EM is closely associated with bile acid metabolism. CONCLUSION: Inspired by gut microbes, we have successfully synthesized a biomimetic Cur-Fe nanozyme with the ability to inhibit inflammation and restore intestinal homeostasis. Collectively, without appreciable systemic toxicity, this work provides an unprecedented opportunity for targeted oral nanomedicine in the treatment of ulcerative colitis.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Homeostase , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Animais , Homeostase/efeitos dos fármacos , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Curcumina/farmacologia , Curcumina/química , Camundongos Endogâmicos C57BL , Escherichia coli/efeitos dos fármacos , Administração Oral , Biomimética/métodos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças , Antioxidantes/farmacologia , Antioxidantes/química
8.
Theranostics ; 14(11): 4375-4392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113803

RESUMO

Rationale: Autism spectrum disorder (ASD) represents a complex neurodevelopmental condition lacking specific pharmacological interventions. Given the multifaced etiology of ASD, there exist no effective treatment for ASD. Rapamycin (RAPA) can activate autophagy by inhibiting the mTOR pathway and has exhibited promising effects in treating central nervous system disorders; however, its limited ability to cross the blood-brain barrier (BBB) has hindered its clinical efficacy, leading to substantial side effects. Methods: To address this challenge, we designed a drug delivery system utilizing red blood cell membrane (CM) vesicles modified with SS31 peptides to enhance the brain penetration of RAPA for the treatment of autism. Results: The fabricated SCM@RAPA nanoparticles, with an average diameter of 110 nm, exhibit rapid release of RAPA in a pathological environment characterized by oxidative stress. In vitro results demonstrate that SCM@RAPA effectively activate cellular autophagy, reduce intracellular ROS levels, improve mitochondrial function, thereby ameliorating neuronal damage. SS31 peptide modification significantly enhances the BBB penetration and rapid brain accumulation of SCM@RAPA. Notably, SCM@RAPA nanoparticles demonstrate the potential to ameliorate social deficits, improve cognitive function, and reverse neuronal impairments in valproic acid (VPA)-induced ASD models. Conclusions: The therapeutic potential of SCM@RAPA in managing ASD signifies a paradigm shift in autism drug treatment, holding promise for clinical interventions in diverse neurological conditions.


Assuntos
Transtorno do Espectro Autista , Autofagia , Barreira Hematoencefálica , Nanopartículas , Estresse Oxidativo , Sirolimo , Sirolimo/administração & dosagem , Sirolimo/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Animais , Autofagia/efeitos dos fármacos , Nanopartículas/química , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Camundongos , Humanos , Sistemas de Liberação de Medicamentos/métodos , Modelos Animais de Doenças , Masculino , Materiais Biomiméticos/administração & dosagem , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Biomimética/métodos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Peptídeos/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Ácido Valproico/administração & dosagem , Ácido Valproico/farmacologia
9.
Int J Nanomedicine ; 19: 8253-8270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39157734

RESUMO

Background: Myocardial infarction (MI) is characterized by irreversible cardiomyocyte death resulting from an inadequate supply of oxygenated blood to the myocardium. Recent studies have indicated that ferroptosis, a form of regulated cell death, exacerbates myocardial injury during MI. Concurrently, the upregulation of CD47 on the surface of damaged myocardium following MI impairs the clearance of dead cells by macrophages, thereby hindering efferocytosis. In this context, simultaneously inhibiting ferroptosis and enhancing efferocytosis may represent a promising strategy to mitigate myocardial damage post-MI. Methods: In this study, we engineered platelet membrane-coated hollow mesoporous silicon nanoparticles (HMSN) to serve as a drug delivery system, encapsulating ferroptosis inhibitor, Ferrostatin-1, along with an anti-CD47 antibody. We aimed to assess the potential of these nanoparticles (designated as Fer-aCD47@PHMSN) to specifically target the site of MI and evaluate their efficacy in reducing cardiomyocyte death and inflammation. Results: The platelet membrane coating on the nanoparticles significantly enhanced their ability to successfully target the site of myocardial infarction (MI). Our findings demonstrate that treatment with Fer-aCD47@PHMSN resulted in a 38.5% reduction in cardiomyocyte ferroptosis under hypoxia, indicated by decreased lipid peroxidation and increased in vitro. Additionally, Fer-aCD47@PHMSN improved cardiomyocyte efferocytosis by approximately 15% in vitro. In MI mice treated with Fer-aCD47@PHMSN, we observed a substantial reduction in cardiomyocyte death (nearly 30%), decreased inflammation, and significant improvement in cardiac function. Conclusion: Our results demonstrated that the cooperation between the two agents induced anti-ferroptosis effects and enhanced dead cardiomyocyte clearance by macrophage as well as anti-inflammation effects. Thus, our nanoparticle Fer-aCD47@PHMSN provides a new therapeutic strategy for targeted therapy of MI.


Assuntos
Antígeno CD47 , Ferroptose , Infarto do Miocárdio , Miócitos Cardíacos , Nanopartículas , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Ferroptose/efeitos dos fármacos , Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Nanopartículas/química , Camundongos , Antígeno CD47/metabolismo , Fagocitose/efeitos dos fármacos , Cicloexilaminas/farmacologia , Cicloexilaminas/química , Masculino , Fenilenodiaminas/farmacologia , Fenilenodiaminas/química , Macrófagos/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Portadores de Fármacos/química , Humanos , Eferocitose
10.
Carbohydr Polym ; 343: 122409, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174076

RESUMO

The study focuses on developing a bioactive shape memory sponge to address the urgent demand for short-term rapid hemostasis and long-term wound healing in noncompressible hemorrhage cases. A composite sponge was created by spontaneously generating pores and double cross-linking under mild conditions using biomimetic collagen fibril (BCF) and oxidized alginate (OA) as natural backbone, combined with an inert calcium source (Ca) from CaCO3-GDL slow gelation mechanism. The optimized BCF/OACa (5/5) sponge efficiently absorbed blood after compression and recovered to its original state within 11.2 ± 1.3 s, achieving physical hemostatic mechanism. The composite sponge accelerated physiological coagulation by promoting platelet adhesion and activation through BCF, as well as enhancing endogenous and exogenous hemostatic pathways by Ca2+. Compared to commercial PVA expanding hemostatic sponge, the composite sponge reduced bleeding volume and shortened hemostasis time in rat liver injury pick and perforation wound models. Additionally, it stimulated fibroblast migration and differentiation, thus promoting wound healing. It is biodegradable with low inflammatory response and promotes granulation tissue regeneration. In conclusion, this biocomposite sponge provides multiple hemostatic pathways and biochemical support for wound healing, is biologically safe and easy to fabricate, process and use, with significant potential for clinical translation and application.


Assuntos
Alginatos , Materiais Biomiméticos , Colágeno , Hemorragia , Hemostáticos , Cicatrização , Alginatos/química , Alginatos/farmacologia , Animais , Cicatrização/efeitos dos fármacos , Colágeno/química , Ratos , Hemorragia/tratamento farmacológico , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Hemostáticos/farmacologia , Hemostáticos/química , Masculino , Ratos Sprague-Dawley , Hemostasia/efeitos dos fármacos , Oxirredução , Adesividade Plaquetária/efeitos dos fármacos
11.
J Appl Biomater Funct Mater ; 22: 22808000241266665, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39129373

RESUMO

The pro-inflammatory/anti-inflammatory polarized phenotypes of macrophages (M1/M2) can be used to predict the success of implant integration. Hence, activating and inducing the transformation of immunocytes that promote tissue repair appears to be a highly promising strategy for facilitating osteo-anagenesis. In a previous study, titanium implants were coated with a graphene oxide-hydroxyapatite (GO-HA) nanocomposite via electrophoretic deposition, and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was found to be significantly enhanced when the GO content was 2wt%. However, the effectiveness of the GO-HA nanocomposite coating in modifying the in vivo immune microenvironment still remains unclear. In this study, the effects of GO-HA coatings on osteogenesis were investigated based on the GO-HA-mediated immune regulation of macrophages. The HA-2wt%GO nanocomposite coatings exhibited good biocompatibility and favored M2 macrophage polarization. Meanwhile, they could also significantly upregulate IL-10 (anti-inflammatory factor) expression and downregulate TNF-α (pro-inflammatory factor) expression. Additionally, the microenvironment, which was established by M2 macrophages, favored the osteogenesis of BMSCs both in vivo and in vitro. These findings show that the GO-HA nanocomposite coating is a promising surface-modification material. Hence, this study provides a reference for the development of next-generation osteoimmunomodulatory biomaterials.


Assuntos
Materiais Revestidos Biocompatíveis , Durapatita , Grafite , Macrófagos , Células-Tronco Mesenquimais , Osseointegração , Osteogênese , Osseointegração/efeitos dos fármacos , Durapatita/química , Durapatita/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/citologia , Animais , Grafite/química , Grafite/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Próteses e Implantes , Imunomodulação/efeitos dos fármacos , Nanocompostos/química , Células RAW 264.7 , Diferenciação Celular/efeitos dos fármacos , Titânio/química , Titânio/farmacologia , Masculino
12.
ACS Appl Mater Interfaces ; 16(33): 43227-43243, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39121390

RESUMO

Implant-associated infections and delayed osseointegration are major challenges for the clinical success of titanium implants. To enhance antibacterial effects and promote early osseointegration, we developed a synergistic photothermal (PTT)/photodynamic (PDT) therapy strategy based on near-infrared (NIR) responsive biomimetic micro/nano titanate/TiO2-X heterostructure coatings (KMNW and NaMNS) in situ constructed on the surface of titanium implants. Specifically, KMNW and NaMNS significantly enhanced photothermal conversion capabilities, achieving localized high temperatures of 48-51 °C and promoting substantial amounts of reactive oxygen species production under 808 nm irradiation. In vitro antibacterial experiments demonstrated that KMNW achieved the highest antibacterial rates against Staphylococcus aureus and Escherichia coli, at 98.78 and 98.33% respectively. Moreover, by mimicking the three-dimensional fibrous network of the extracellular matrix during bone healing, both KMNW and NaMNS markedly promoted the proliferation and osteogenic differentiation of osteoblasts. In vivo implantation studies further confirmed these findings, with KMNW and NaMNS exhibiting superior antibacterial performance under NIR irradiation─94.45% for KMNW and 92.66% for NaMNS. Moreover, KMNW and NaMNS also significantly promoted new bone formation and improved osseointegration in vivo. This study presents a promising PTT/PDT therapeutic strategy for dentistry and orthopedics by employing NIR-responsive biomimetic coatings to combat implant-associated infection and accelerate osseointegration.


Assuntos
Antibacterianos , Escherichia coli , Raios Infravermelhos , Osseointegração , Staphylococcus aureus , Titânio , Titânio/química , Titânio/farmacologia , Osseointegração/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Animais , Staphylococcus aureus/efeitos dos fármacos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Materiais Biomiméticos/efeitos da radiação , Próteses e Implantes , Fotoquimioterapia , Camundongos , Terapia Fototérmica , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Testes de Sensibilidade Microbiana , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos
13.
J Nanobiotechnology ; 22(1): 486, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143545

RESUMO

Lower back pain (LBP) is a common condition closely associated with intervertebral disc degeneration (IDD), causing a significant socioeconomic burden. Inflammatory activation in degenerated discs involves pro-inflammatory cytokines, dysregulated regulatory cytokines, and increased levels of nerve growth factor (NGF), leading to further intervertebral disc destruction and pain sensitization. Macrophage polarization is closely related to autophagy. Based on these pathological features, a structured biomimetic nanoparticle coated with TrkA-overexpressing macrophage membranes (TMNP@SR) with a rapamycin-loaded mesoporous silica core is developed. TMNP@SR acted like sponges to adsorbe inflammatory cytokines and NGF and delivers the autophagy regulator rapamycin (RAPA) into macrophages through homologous targeting effects of the outer engineered cell membrane. By regulating autophagy activation, TMNP@SR promoted the M1-to-M2 switch of macrophages to avoid continuous activation of inflammation within the degenerated disc, which prevented the apoptosis of nucleus pulposus cells. In addition, TMNP@SR relieved mechanical and thermal hyperalgesia, reduced calcitonin gene-related peptide (CGRP) and substance P (SP) expression in the dorsal root ganglion, and downregulated GFAP and c-FOS signaling in the spinal cord in the rat IDD model. In summary, TMNP@SR spontaneously inhibits the aggravation of disc inflammation to alleviate disc degeneration and reduce the ingress of sensory nerves, presenting a promising treatment strategy for LBP induced by disc degeneration.


Assuntos
Autofagia , Degeneração do Disco Intervertebral , Nanopartículas , Ratos Sprague-Dawley , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Animais , Autofagia/efeitos dos fármacos , Nanopartículas/química , Ratos , Masculino , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Dor Lombar/tratamento farmacológico , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Sirolimo/farmacologia , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Núcleo Pulposo/metabolismo , Inflamação/tratamento farmacológico , Citocinas/metabolismo , Biomimética/métodos , Modelos Animais de Doenças , Fator de Crescimento Neural/metabolismo , Células RAW 264.7
14.
Sci Adv ; 10(33): eado9479, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39141725

RESUMO

Current sprayable hydrogel masks lack the stepwise protection, cleansing, and nourishment of extensive wounds, leading to delayed healing with scarring. Here, we develop a sprayable biomimetic double wound mask (BDM) with rapid autophasing and hierarchical programming for scarless wound healing. The BDMs comprise hydrophobic poly (lactide-co-propylene glycol-co-lactide) dimethacrylate (PLD) as top layer and hydrophilic gelatin methacrylate (GelMA) hydrogel as bottom layer, enabling swift autophasing into bilayered structure. After photocrosslinking, BDMs rapidly solidify with strong interfacial bonding, robust tissue adhesion, and excellent joint adaptiveness. Upon implementation, the bottom GelMA layer could immediately release calcium ion for rapid hemostasis, while the top PLD layer could maintain a moist, breathable, and sterile environment. These traits synergistically suppress the inflammatory tumor necrosis factor-α pathway while coordinating the cyclic guanosine monophosphate/protein kinase G-Wnt/calcium ion signaling pathways to nourish angiogenesis. Collectively, our BDMs with self-regulated construction of bilayered structure could hierarchically program the healing progression with transformative potential for scarless wound healing.


Assuntos
Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Hidrogéis/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Cicatriz/metabolismo , Humanos , Biomimética/métodos , Camundongos , Gelatina/química , Cálcio/metabolismo
16.
ACS Appl Mater Interfaces ; 16(34): 45523-45536, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39141925

RESUMO

Triple-negative breast cancer (TNBC) is a subtype of breast cancer that carries the worst prognosis and lacks specific therapeutic targets. To achieve accurate "cargos" delivery at the TNBC site, we herein constructed a novel biomimetic nano-Trojan horse integrating chemotherapy with gene therapy for boosting TNBC treatment. Briefly, we initially introduce the diselenide-bond-containing organosilica moieties into the framework of mesoporous silica nanoparticles (MONs), thereby conferring biodegradability to intratumoral redox conditions in the obtained MONSe. Subsequently, doxorubicin (Dox) and therapeutic miR-34a are loaded into MONSe, thus achieving the combination of chemotherapy and gene-therapy. After homologous tumor cell membrane coating, the ultimate homologous tumor cell-derived biomimetic nano-Trojan horse (namely, MONSe@Dox@miR-34a@CM) can selectively enter the tumor cells in a stealth-like fashion. Notably, such a nanoplatform not only synergistically eradicated the tumor but also inhibited the proliferation of breast cancer stem-like cells (BCSCs) in vitro and in vivo. With the integration of homologous tumor cell membrane-facilitated intratumoral accumulation, excellent biodegradability, and synergistic gene-chemotherapy, our biomimetic nanocarriers hold tremendous promise for the cure of TNBC in the future.


Assuntos
Materiais Biomiméticos , Doxorrubicina , MicroRNAs , Nanopartículas , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/terapia , Doxorrubicina/química , Doxorrubicina/farmacologia , Humanos , Feminino , Animais , Nanopartículas/química , MicroRNAs/metabolismo , MicroRNAs/genética , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Camundongos , Terapia Genética , Linhagem Celular Tumoral , Dióxido de Silício/química , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química
17.
ACS Appl Bio Mater ; 7(9): 6162-6174, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152909

RESUMO

Impaired wound healing in diabetic wounds is common due to infection, inflammation, less collagen synthesis, and vascularization. Diabetic wound healing in patients is still a challenge and needs an ideal wound dressing to treat and manage diabetic wounds. Herein, an efficacious wound dressing biomaterial was fabricated by cross-linking oxidized isabgol (Oisab) and chitosan (Cs) via trisodium trimetaphosphate and Schiff base bonds. l-Arginine (l-Arg) was incorporated as a bioactive substance in the Oisab + Cs scaffold to promote cell adhesion, cell proliferation, collagen synthesis, and vascularization. The fabricated scaffolds showed microporous networks in the scanning electron microscopy analysis. The scaffold also possessed excellent hemocompatibility. In vitro studies using fibroblasts (L929 and human dermal fibroblast cells) confirmed the cytocompatibility of these scaffolds. The results of the in vivo chicken chorioallantoic membrane assay confirmed the proangiogenic activity of the Oisab + Cs + l-Arg scaffolds. The wound-healing potential of these scaffolds was studied in streptozotocin-induced diabetic rats. This in vivo study showed that the period of epithelialization in the Oisab + Cs + l-Arg scaffold-treated wounds was 21.67 ± 1.6 days, which was significantly faster than the control (30.33 ± 2.5 days). Histological and immunohistochemical studies showed that the Oisab + Cs + l-Arg scaffolds significantly accelerated the rate of wound contraction by reducing inflammation, improving collagen synthesis, and promoting neovascularization. These findings suggest that the Oisab + Cs + l-Arg scaffolds could be beneficial in treating diabetic wounds in clinical applications.


Assuntos
Arginina , Quitosana , Colágeno , Diabetes Mellitus Experimental , Teste de Materiais , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos , Colágeno/química , Arginina/química , Arginina/farmacologia , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Humanos , Masculino , Tamanho da Partícula , Neovascularização Fisiológica/efeitos dos fármacos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Materiais Biomiméticos/síntese química , Camundongos , Ratos Sprague-Dawley , Oxirredução
18.
Acta Biomater ; 186: 185-200, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39103136

RESUMO

Thrombosis and plasma leakage are two of the most frequent dysfunctions of polypropylene (PP) hollow fiber membrane (PPM) used in extracorporeal membrane oxygenation (ECMO) therapy. In this study, a superhydrophilic endothelial membrane mimetic coating (SEMMC) was constructed on polydopamine-polyethyleneimine pre-coated surfaces of the PPM oxygenator and its ECMO circuit to explore safer and more sustainable ECMO strategy. The SEMMC is fabricated by multi-point anchoring of a phosphorylcholine and carboxyl side chained copolymer (PMPCC) and grafting of heparin (Hep) to form PMPCC-Hep interface, which endows the membrane superior hemocompatibility and anticoagulation performances. Furthermore, the modified PPM reduces protein adsorption amount to less than 30 ng/cm2. More significantly, the PMPCC-Hep coated ECMO system extends the anti-leakage and non-clotting oxygenation period to more than 15 h in anticoagulant-free animal extracorporeal circulation, much better than the bare and conventional Hep coated ECMO systems with severe clots and plasma leakage in 4 h and 8 h, respectively. This SEMMC strategy of grafting bioactive heparin onto bioinert zwitterionic copolymer interface has great potential in developing safer and longer anticoagulant-free ECMO systems. STATEMENT OF SIGNIFICANCE: A superhydrophilic endothelial membrane mimetic coating was constructed on surfaces of polypropylene hollow fiber membrane (PPM) oxygenator and its ECMO circuit by multi-point anchoring of a phosphorylcholine and carboxyl side chain copolymer (PMPCC) and grafting of heparin (Hep). The strong antifouling nature of the PMPCC-Hep coating resists the adsorption of plasma bio-molecules, resulting in enhanced hemocompatibility and anti-leakage ability. The grafted heparin on the zwitterionic PMPCC interface exhibits superior anticoagulation property. More significantly, the PMPCC-Hep coating achieves an extracorporeal circulation in a pig model for at least 15 h without any systemic anticoagulant. This endothelial membrane mimetic anticoagulation strategy shows great potential for the development of safer and longer anticoagulant-free ECMO systems.


Assuntos
Materiais Revestidos Biocompatíveis , Oxigenação por Membrana Extracorpórea , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Heparina/química , Heparina/farmacologia , Humanos , Polipropilenos/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Fibrinolíticos/farmacologia , Fibrinolíticos/química , Membranas Artificiais , Adsorção , Trombose/prevenção & controle , Fosforilcolina/química , Fosforilcolina/análogos & derivados , Polímeros/química
19.
Acta Biomater ; 186: 470-488, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39117114

RESUMO

The global diffusion of antibiotic resistance poses a severe threat to public health. Addressing antibiotic-resistant infections requires innovative approaches, such as antibacterial nanostructured surfaces (ANSs). These surfaces, featuring ordered arrays of nanostructures, exhibit the ability to kill bacteria upon contact. However, most currently developed ANSs utilize bioinert materials, lacking bioactivity crucial for promoting tissue regeneration, particularly in the context of bone infections. This study introduces ANSs composed of bioactive calcium phosphate nanocrystals. Two distinct ANSs were created through a biomineralization-inspired growth of amorphous calcium phosphate (ACP) precursors. The ANSs demonstrated efficient antibacterial properties against both Gram-negative (P. aeruginosa) and Gram-positive (S. aureus) antibiotic resistant bacteria, with up to 75 % mortality in adhered bacteria after only 4 h of contact. Notably, the ANS featuring thinner and less oriented nano-needles exhibited superior efficacy attributed to simultaneous membrane rupturing and oxidative stress induction. Moreover, the ANSs facilitate the proliferation of mammalian cells, enhancing adhesion, spreading, and reducing oxidative stress. The ANSs displayed also significant bioactivity towards human mesenchymal stem cells, promoting colonization and inducing osteogenic differentiation. Specifically, the ANS with thicker and more ordered nano-needles demonstrated heightened effects. In conclusion, ANSs introduced in this work have the potential to serve as foundation for developing bone graft materials capable of eradicate site infections while concurrently stimulating bone regeneration. STATEMENT OF SIGNIFICANCE: Nanostructured surfaces with antibacterial properties through a mechano-bactericidal mechanism have shown significant potential in fighting antibiotic resistance. However, these surfaces have not been fabricated with bioactive materials necessary for developing devices that are both antibacterial and able to stimulate tissue regeneration. This study demonstrates the feasibility of creating nanostructured surfaces of ordered calcium phosphate nano-needles through a biomineralization-inspired growth. These surfaces exhibit dual functionality, serving as effective bactericidal agents against Gram-negative and Gram-positive antibiotic-resistant bacteria while also promoting the proliferation of mammalian cells and inducing osteogenic differentiation of human mesenchymal stem cells. Consequently, this approach holds promise in the context of bone infections, introducing innovative nanostructured surfaces that could be utilized in the development of antimicrobial and osteogenic grafts.


Assuntos
Antibacterianos , Fosfatos de Cálcio , Células-Tronco Mesenquimais , Nanopartículas , Osteogênese , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Osteogênese/efeitos dos fármacos , Humanos , Nanopartículas/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia
20.
J Mater Chem B ; 12(35): 8702-8715, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129447

RESUMO

This study aims to develop a biomimetic nano-drug delivery system (nano-DDS) by employing a macrophage cell membrane camouflaging strategy to modify lyotropic liquid crystal nanoparticles (LLC-NPs). The cubic-structured LLC-NPs (Cubosomes, CBs) were prepared via a top-down approach (ultra-sonification) using monoolein (MO) and doped with the cationic lipid, DOTAP. The cell membrane camouflaging procedure induced changes in the cubic lipid phase from primitive cubic phase (QIIP) to a coexistence of QIIP and diamond cubic phase (QIID). The macrophage membrane camouflaging strategy protected CB cores from the destabilization by blood plasma and enhanced the stability of CBs. The in vitro experiment results revealed that the macrophage cell membrane coating significantly reduced macrophage uptake efficacy within 8 h of incubation compared to the non-camouflaged CBs, while it had minimal impact on cancer cell uptake efficacy. The macrophage membrane coated CBs showed lower accumulation in the heart, kidney and lungs in vivo. This study demonstrated the feasibility of employing cell membrane camouflaging on CBs and confirmed that the bio-functionalities of the CBs-based biomimetic nano-DDS were retained from the membrane source cells, and opened up promising possibilities for developing an efficient and safe drug delivery system based on the biomimetic approach.


Assuntos
Materiais Biomiméticos , Membrana Celular , Cristais Líquidos , Macrófagos , Nanopartículas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Camundongos , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Nanopartículas/química , Cristais Líquidos/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Células RAW 264.7 , Humanos , Biomimética , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA