Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.411
Filtrar
1.
Lab Invest ; 104(9): 102122, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098628

RESUMO

The assessment of chemotherapy response in osteosarcoma (OS) based on the average percentage of viable cells is limited, as it overlooks the spatial heterogeneity of tumor cell response (foci of resistant cells), immune microenvironment, and bone microarchitecture. Despite the resulting positive classification for response to chemotherapy, some patients experience early metastatic recurrence, demonstrating that our conventional tools for evaluating treatment response are insufficient. We studied the interactions between tumor cells, immune cells (lymphocytes, histiocytes, and osteoclasts), and bone extracellular matrix (ECM) in 18 surgical resection samples of OS using multiplex and conventional immunohistochemistry (IHC: CD8, CD163, CD68, and SATB2), combined with multiscale characterization approaches in territories of good and poor response (GRT/PRT) to treatment. GRT and PRT were defined as subregions with <10% and ≥10% of viable tumor cells, respectively. Local correlations between bone ECM porosity and density of immune cells were assessed in these territories. Immune cell density was then correlated to overall patient survival. Two patterns were identified for histiocytes and osteoclasts. In poor responder patients, CD68 osteoclast density exceeded that of CD163 histiocytes but was not related to bone ECM load. Conversely, in good responder patients, CD163 histiocytes were more numerous than CD68 osteoclasts. For both of them, a significant negative local correlation with bone ECM porosity was found (P < .01). Moreover, in PRT, multinucleated osteoclasts were rounded and intermingled with tumor cells, whereas in GRT, they were elongated and found in close contact with bone trabeculae. CD8 levels were always low in metastatic patients, and those initially considered good responders rapidly died from their disease. The specific recruitment of histiocytes and osteoclasts within the bone ECM, and the level of CD8 represent new features of OS response to treatment. The associated prognostic signatures should be integrated into the therapeutic stratification algorithm of patients after surgery.


Assuntos
Neoplasias Ósseas , Matriz Extracelular , Osteossarcoma , Microambiente Tumoral , Humanos , Osteossarcoma/imunologia , Osteossarcoma/patologia , Osteossarcoma/terapia , Osteossarcoma/metabolismo , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Feminino , Masculino , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Adulto , Adolescente , Matriz Óssea/metabolismo , Adulto Jovem , Criança , Antígenos CD/metabolismo
2.
Regen Med ; 19(5): 247-256, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-39028538

RESUMO

Clinical orthopedics continuously aims to improve methods for bone formation. Clinical applications where bone formation is necessary include critical long bone defects in orthopedic trauma or tumor patients. Though some biomaterials combined with autologous stem cells significantly improve bone repair, critical-size damages are still challenged with the suitable implantation of biomaterials and donor cell survival. Extracellular matrix (ECM) is the fundamental structure in tissues that can nest and nourish resident cells as well as support specific functions of the tissue type. ECM also plays a role in cell signaling to promote bone growth, healing and turnover. In the last decade, the use of bone-derived ECMs or ECM-similar biomaterials have been widely investigated, including decellularized and demineralized bone ECM. In this article, we reviewed the current productions and applications of decellularized and demineralized bone matrices. We also introduce the current study of whole limb decellularization and recellularization.


[Box: see text].


Assuntos
Aloenxertos , Matriz Óssea , Humanos , Animais , Ortopedia/métodos , Matriz Extracelular , Transplante Ósseo/métodos , Engenharia Tecidual/métodos
3.
Mol Omics ; 20(8): 517-523, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39073399

RESUMO

Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) untargeted metabolomics has become the gold standard for the profiling of low-molecular-weight compounds. Recently, this discipline has raised great interest in forensic sciences, especially in the field of toxicology and for post-mortem interval estimation. The current study aims at evaluating three extraction protocols and two LC-MS/MS assays run in both positive and negative modes, to identify the most suitable method to conduct post-mortem metabolomic profiling of bone tissue. A fragment of the anterior tibia of a 82 years-old male sampled from a human taphonomy facility was powdered via freeze-milling. The powdered sub-samples were extracted in five replicates per protocol. Methods tested were (I) a biphasic chloroform-methanol-water protocol, (II) a single phase methanol-water protocol, and (III) a single phase methanol-acetonitrile-water protocol. LC-MS/MS analyses were carried out via high performance liquid chromatography, either on hydrophilic interaction (HILIC) or on reversed-phase (C18) columns in both positive and negative ionisation modes, coupled with a Q-TOF mass spectrometer. Results suggest that the highest consistency between replicates and quality control samples was obtained with the single phase extractions (i.e., methanol-acetonitrile-water), whilst the ideal combination of instrumental set up HILIC chromatography in positive ionisation mode and of C18 chromatography in negative ionisation mode. For the purpose of forensic investigations, a combination of a single phase extraction and the two aforementioned chromatographic and mass spectrometry modes could represent an ideal set up for obtaining bone metabolomic profiles from taphonomically altered bones.


Assuntos
Metaboloma , Metabolômica , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Masculino , Metabolômica/métodos , Cromatografia Líquida/métodos , Idoso de 80 Anos ou mais , Osso Cortical/metabolismo , Matriz Óssea/metabolismo , Cromatografia Líquida de Alta Pressão/métodos
4.
J Bone Miner Res ; 39(9): 1229-1239, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38982734

RESUMO

Osteogenesis imperfecta (OI) is a skeletal dysplasia characterized by low bone mass and frequent fractures. Children with OI are commonly treated with bisphosphonates to reduce fracture rate, but treatment options for adults are limited. In the Phase 2b ASTEROID trial, setrusumab (a sclerostin neutralizing antibody, SclAb) improved bone density and strength in adults with type I, III, and IV OI. Here, we investigate bone matrix material properties in tetracycline-labeled trans iliac biopsies from 3 groups: (1) control: individuals with no metabolic bone disease, (2) OI: individuals with OI, (3) SclAb-OI: individuals with OI after 6 mo of setrusumab treatment (as part of the ASTEROID trial). In addition to bone histomorphometry, bone mineral and matrix properties were evaluated with nanoindentation, Raman spectroscopy, second harmonic generation imaging, quantitative backscatter electron imaging, and small-angle X-ray scattering. Spatial locations of fluorochrome labels were identified to differentiate inter-label bone of the same tissue age and intra-cortical bone. No difference in collagen orientation was found between the groups. The bone mineral density distribution and analysis of Raman spectra indicate that OI groups have greater mean mineralization, greater relative mineral content, and lower crystallinity than the control group, which was not altered by SclAb treatment. Finally, a lower modulus and hardness were measured in the inter-label bone of the OI-SclAb group compared to the OI group. Previous studies suggest that even though bone from OI has a higher mineral content, the extracellular matrix (ECM) has comparable mechanical properties. Therefore, fragility in OI may stem from contributions from other yet unexplored aspects of bone organization at higher length scales. We conclude that SclAb treatment leads to increased bone mass while not adversely affecting bone matrix properties in individuals with OI.


Individuals with OI, also known as "brittle bone disease," have low bone mass and frequent fractures. Low bone mass occurs due to an imbalance between cells that remove bone and cells that form bone. Pharmaceutical treatments that block removal of bone lead to reduced fracture rates in children with OI. Effective treatment options for adults are limited. Setrusumab is a drug that leads to increased bone mass and strength in adults with OI. Here, we investigate whether setrusumab alters the bone material in addition to improving bone mass. Three groups are compared: individuals with OI treated with setrusumab, individuals with OI not treated with setrusumab, and individuals without OI. A lower modulus and hardness were measured with nanoindentation in the setrusumab-treated group. However, we did not find any changes in the bone's multi-scale structure. Fragility in OI may stem from other yet unexplored aspects of bone organization. We conclude that setrusumab treatment leads to increased bone mass while not adversely affecting bone material properties in individuals with OI.


Assuntos
Matriz Óssea , Osteogênese Imperfeita , Humanos , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/patologia , Osteogênese Imperfeita/diagnóstico por imagem , Adulto , Masculino , Feminino , Matriz Óssea/efeitos dos fármacos , Matriz Óssea/patologia , Matriz Óssea/metabolismo , Anticorpos Neutralizantes/farmacologia , Densidade Óssea/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Pessoa de Meia-Idade
5.
ACS Appl Bio Mater ; 7(7): 4366-4378, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38905196

RESUMO

Bone is remodeled through a dynamic process facilitated by biophysical cues that support cellular signaling. In healthy bone, signaling pathways are regulated by cells and the extracellular matrix and transmitted via electrical synapses. To this end, combining electrical stimulation (ES) with conductive scaffolding is a promising approach for repairing damaged bone tissue. Therefore, "smart" biomaterials that can provide multifunctionality and facilitate the transfer of electrical cues directly to cells have become increasingly more studied in bone tissue engineering. Herein, 3D-printed electrically conductive composite scaffolds consisting of demineralized bone matrix (DBM) and polycaprolactone (PCL), in combination with ES, for bone regeneration were evaluated for the first time. The conductive composite scaffolds were fabricated and characterized by evaluating mechanical, surface, and electrical properties. The DBM/PCL composites exhibited a higher compressive modulus (107.2 MPa) than that of pristine PCL (62.02 MPa), as well as improved surface properties (i.e., roughness). Scaffold electrical properties were also tuned, with sheet resistance values as low as 4.77 × 105 Ω/sq for our experimental coating of the highest dilution (i.e., 20%). Furthermore, the biocompatibility and osteogenic potential of the conductive composite scaffolds were tested using human mesenchymal stromal cells (hMSCs) both with and without exogenous ES (100 mV/mm for 5 min/day four times/week). In conjunction with ES, the osteogenic differentiation of hMSCs grown on conductive DBM/PCL composite scaffolds was significantly enhanced when compared to those cultured on PCL-only and nonconductive DBM/PCL control scaffolds, as determined through xylenol orange mineral staining and osteogenic protein analysis. Overall, these promising results suggest the potential of this approach for the development of biomimetic hybrid scaffolds for bone tissue engineering applications.


Assuntos
Materiais Biocompatíveis , Matriz Óssea , Estimulação Elétrica , Teste de Materiais , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Humanos , Matriz Óssea/química , Condutividade Elétrica , Poliésteres/química , Osteogênese , Tamanho da Partícula , Células-Tronco Mesenquimais/citologia
6.
Bone ; 186: 117173, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906519

RESUMO

Postmenopausal osteoporosis, marked by estrogen deficiency, is a major contributor to osteoporotic fractures, yet early prediction of fractures in this population remains challenging. Our goal was to explore the temporal changes in bone-specific inflammation, oxidative stress, bone turnover, and bone-matrix water, and their relationship with estrogen deficiency-induced modifications in bone structure and mechanical properties. Additionally, we sought to determine if emerging clinically translatable imaging techniques could capture early bone modifications prior to standard clinical imaging. Two-month-old female Sprague Dawley rats (n = 48) underwent ovariectomy (OVX, n = 24) or sham operations (n = 24). A subgroup of n = 8 rats per group was sacrificed at 2-, 5-, and 10-weeks post-surgery to assess the temporal relationships of inflammation, oxidative stress, bone turnover, bone matrix water, mechanics, and imaging outcomes. OVX rats exhibited higher body weight compared to sham rats at all time points. By 5-weeks, OVX animals showed elevated markers of inflammation and oxidative stress in cortical bone, which persisted throughout the study, while cortical bone formation rate did not differ from sham until 10-weeks. DXA outcomes did not reveal differences between OVX and sham at any time point. Bound water, assessed using ultrashort echo time magnetic resonance imaging (UTE MRI), was lower in OVX at the earliest time point (2-weeks) and reduced again at 10-weeks with no difference at 5-weeks. These data demonstrate that bound water assessment using novel UTE MRI technology was lower at the earliest time point following OVX. However, no temporal relationship with bone turnover, inflammation, or oxidative stress was observed at the time points assessed in this study. These findings underscore both the increased need to understand bone hydration changes and highlight the usefulness of UTE MRI for non-invasive bone hydration measurements.


Assuntos
Matriz Óssea , Remodelação Óssea , Estrogênios , Ovariectomia , Estresse Oxidativo , Ratos Sprague-Dawley , Animais , Feminino , Remodelação Óssea/fisiologia , Estrogênios/deficiência , Estrogênios/metabolismo , Matriz Óssea/metabolismo , Água/metabolismo , Ratos , Inflamação/patologia , Inflamação/metabolismo , Fenômenos Biomecânicos , Microtomografia por Raio-X
7.
J Oral Maxillofac Surg ; 82(9): 1163-1175, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38909627

RESUMO

BACKGROUND: Traditional mandibular reconstruction has relied on the use of vascularized and non-vascularized autografts. The use of allografts and tissue engineering modalities has risen as an alternative. PURPOSE: The purpose of this study was to determine the success of a cellular bone matrix (CBM) allograft composed of lineage committed bone forming cells for mandibular tissue engineering and reconstruction. STUDY DESIGN, SETTING, SAMPLE: A retrospective cohort study was implemented using data from subjects treated with a CBM at the University of Louisville from 2019 to 2023. Subjects were excluded if they were not treated with a CBM, data were not complete, or postoperative follow-up time was less than 3 months. PREDICTOR VARIABLES: The predictor variables were composed of heterogenous variables grouped into the following categories: demographics (age, sex), medical history (history of penicillin [PCN] allergy, history of diabetes mellitus [DM] and tobacco use), etiology (benign tumor, ballistic trauma, nonballistic trauma, odontogenic cyst, osteomyelitis/ medication-related osteonecrosis of the jaw), mandibular resection length (cm) and type (marginal, segmental), delayed versus immediate reconstruction, and whether an autograft (proximal tibia) with platelet-rich fibrin was used in combination with the CBM. MAIN OUTCOME VARIABLE: The primary outcome variable was graft success (yes or no). Success was defined as bony union and defect fill (demonstrated on panoramic radiograph) and mandibular stability (based on postoperative clinical examination at 3 months). COVARIATES: Not applicable. ANALYSES: Descriptive statistics were calculated for each variable. To measure the associations between the risk factors and graft success, Fisher's exact test for categorical variables and the Wilcoxon rank sum test for numeric data were used. A P value of <.05 was considered significant. RESULTS: The sample included 38 subjects. The median age of all subjects was 46 (interquartile range 32.6) years. Overall, 28 (73.7%) cases were successful. Subjects with a reported PCN allergy or a history of DM had significantly lower success (2, 7.1% with PCN allergy or DM) compared to those who did not (P = .008, PCN allergy; P = .03, DM). CONCLUSIONS AND RELEVANCE: This is the largest case series of CBM based mandibular reconstruction relative to the available maxillofacial surgery literature. The clinician should consider confirmation of PCN allergy so PCN-type antibiotics can be used. CBMs may be an alternative to autografts.


Assuntos
Aloenxertos , Matriz Óssea , Reconstrução Mandibular , Engenharia Tecidual , Humanos , Estudos Retrospectivos , Reconstrução Mandibular/métodos , Masculino , Feminino , Engenharia Tecidual/métodos , Adulto , Pessoa de Meia-Idade , Matriz Óssea/transplante , Transplante Ósseo/métodos , Mandíbula/cirurgia
8.
Int J Periodontics Restorative Dent ; 44(3): 287-297, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787705

RESUMO

Titanium has been proposed as a mesh material for guided bone regeneration (GBR) since the 1990s. To overcome difficulties in shaping and adapting meshes to the defect, digital techniques were introduced to digitally print meshes capable of fitting the bone perfectly, reproduced through the patient's CT scan. Five patients were included in this case series, and their CBCT data were acquired and sent to the producer of the titanium meshes. 3D regenerative surgery was performed with titanium meshes and a mix of demineralized bovine bone matrix (DBBM) and autogenous bone (1:1 ratio). Radiographic measures were evaluated on paraxial sections of the CBCT through a dedicated software. When possible, regenerated bone samples were obtained at implant insertion. Four out of five regenerated areas healed without local or systemic complications. One mesh was removed after 2 months and 2 weeks due to exposure. The mean vertical bone gain was 4.3 ± 1.5 mm (range: 2.5 to 7 mm). Two histologic samples were obtained. In sample 1, bone tissue area and graft material area were 44.4% and 12.5%, respectively; in sample 2, the same parameters were 15.6% and 16.9%, respectively.


Assuntos
Desenho Assistido por Computador , Tomografia Computadorizada de Feixe Cônico , Telas Cirúrgicas , Titânio , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Adulto , Regeneração Tecidual Guiada Periodontal/métodos , Regeneração Óssea/fisiologia , Animais , Bovinos , Implantação Dentária Endóssea/métodos , Transplante Ósseo/métodos , Idoso , Matriz Óssea/transplante
9.
Adv Mater ; 36(30): e2309875, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642033

RESUMO

Addressing large bone defects remains a significant challenge owing to the inherent limitations in self-healing capabilities, resulting in prolonged recovery and suboptimal regeneration. Although current clinical solutions are available, they have notable shortcomings, necessitating more efficacious approaches to bone regeneration. Organoids derived from stem cells show great potential in this field; however, the development of bone organoids has been hindered by specific demands, including the need for robust mechanical support provided by scaffolds and hybrid extracellular matrices (ECM). In this context, bioprinting technologies have emerged as powerful means of replicating the complex architecture of bone tissue. The research focused on the fabrication of a highly intricate bone ECM analog using a novel bioink composed of gelatin methacrylate/alginate methacrylate/hydroxyapatite (GelMA/AlgMA/HAP). Bioprinted scaffolds facilitate the long-term cultivation and progressive maturation of extensive bioprinted bone organoids, foster multicellular differentiation, and offer valuable insights into the initial stages of bone formation. The intrinsic self-mineralizing quality of the bioink closely emulates the properties of natural bone, empowering organoids with enhanced bone repair for both in vitro and in vivo applications. This trailblazing investigation propels the field of bone tissue engineering and holds significant promise for its translation into practical applications.


Assuntos
Bioimpressão , Durapatita , Organoides , Engenharia Tecidual , Alicerces Teciduais , Durapatita/química , Organoides/citologia , Organoides/metabolismo , Engenharia Tecidual/métodos , Humanos , Bioimpressão/métodos , Alicerces Teciduais/química , Gelatina/química , Alginatos/química , Matriz Óssea/química , Matriz Óssea/metabolismo , Animais , Tinta , Osteogênese , Metacrilatos/química , Regeneração Óssea , Osso e Ossos/citologia , Calcificação Fisiológica
10.
Phys Med Biol ; 69(11)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38631364

RESUMO

Cortical bone is characterized by a dense solid matrix permeated by fluid-filled pores. Ultrasound scattering has potential for the non-invasive evaluation of changes in bone porosity. However, there is an incomplete understanding of the impact of ultrasonic absorption in the solid matrix on ultrasound scattering. In this study, maps were derived from scanning acoustic microscopy images of human femur cross-sections. Finite-difference time domain ultrasound scatter simulations were conducted on these maps. Pore density, diameter distribution of the pores, and nominal absorption values in the solid and fluid matrices were controlled. Ultrasound pulses with a central frequency of 8.2 MHz were propagated, both in through-transmission and backscattering configurations. From these data, the scattering, bone matrix absorption, and attenuation extinction lengths were calculated. The results demonstrated that as absorption in the solid matrix was varied, the scattering, absorption, and attenuation extinction lengths were significantly impacted. It was shown that for lower values of absorption in the solid matrix (less than 2 dB mm-1), attenuation due to scattering dominates, whereas at higher values of absorption (more than 2 dB mm-1), attenuation due to absorption dominates. This will impact how ultrasound attenuation and scattering parameters can be used to extract quantitative information on bone microstructure.


Assuntos
Osso Cortical , Espalhamento de Radiação , Osso Cortical/diagnóstico por imagem , Humanos , Ondas Ultrassônicas , Ultrassonografia/métodos , Matriz Óssea/metabolismo , Matriz Óssea/diagnóstico por imagem , Fêmur/diagnóstico por imagem
11.
Adv Exp Med Biol ; 1446: 155-175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625528

RESUMO

The bone is a large and complex organ (12-15% of body weight) consisting of specialized connective tissues (bone matrix and bone marrow), whereas joints are composed of cartilage, tendons, ligaments, synovial joint capsules and membranes, and a synovial joint cavity filled with synovial fluid. Maintaining healthy bones and joints is a dynamic and complex process, as bone deposition (formation of new bone materials) and resorption (breakdown of the bone matrix to release calcium and phosphorus) are the continuous processes to determine bone balance. Bones are required for locomotion, protection of internal organs, and have endocrine functions to maintain mineral homeostasis. Joints are responsible for resisting mechanical stress/trauma, aiding in locomotion, and supporting the overall musculoskeletal system. Amino acids have multiple regulatory, compositional, metabolic, and functional roles in maintaining the health of bones and joints. Their disorders are prevalent in mammals and significantly reduce the quality of life. These abnormalities in companion animals, specifically cats and dogs, commonly lead to elective euthanasia due to the poor quality of life. Multiple disorders of bones and joints result from genetic predisposition and are heritable, but other factors such as nutrition, growth rate, trauma, and physical activity affect how the disorder manifests. Treatments for cats and dogs are primarily to slow the progression of these disorders and assist in pain management. Therapeutic supplements such as Cosequin and formulated diets rich in amino acids are used commonly as treatments for companion animals to reduce pain and slow the progression of those diseases. Also, amino acids (e.g., taurine, arginine, glycine, proline, and 4-hydroxyproline), and glucosamine reduce inflammation and pain in animals with bone and joint disorders. Gaining insight into how amino acids function in maintaining bone and joint health can aid in developing preventative diets and therapeutic supplementations of amino acids to improve the quality of life in companion animals.


Assuntos
Aminoácidos , Qualidade de Vida , Gatos , Cães , Animais , Articulações , Matriz Óssea , Prolina , Mamíferos
12.
Cell Tissue Bank ; 25(2): 697-703, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489016

RESUMO

Demineralized bone matrix (DBM) has been regarded as an ideal bone substitute as a native carrier of bone morphogenetic proteins (BMPs) and other growth factors. However, the osteoinductive properties diverse in different DBM products. We speculate that the harvest origin further contributing to variability of BMPs contents in DBM products besides the process technology. In the study, the cortical bone of femur, tibia, humerus, and ulna from a signal donor were prepared and followed demineralizd into DBM products. Proteins in bone martix were extracted using guanidine-HCl and collagenase, respectively, and BMP-2 content was detected by sandwich enzyme-linked immunosorbent assay (ELISA). Variability of BMP-2 content was found in 4 different DBM products. By guanidine-HCl extraction, the average concentration in DBMs harvested from ulna, humerus, tibia, and femur were 0.613 ± 0.053, 0.848 ± 0.051, 3.293 ± 0.268, and 21.763 ± 0.344, respectively (p < 0.05), while using collagenase, the levels were 0.089 ± 0.004, 0.097 ± 0.004, 0.330 ± 0.012, and 1.562 ± 0.008, respectively (p < 0.05). In general, the content of BMP-2 in long bones of Lower limb was higher than that in long bones of upper limb, and GuHCl had remarkably superior extracted efficiency for BMP-2 compared to collagenase. The results suggest that the origin of cortical bones harvested to fabricate DBM products contribute to the variability of native BMP-2 content, while the protein extracted method only changes the measured values of BMP-2.


Assuntos
Matriz Óssea , Proteína Morfogenética Óssea 2 , Proteína Morfogenética Óssea 2/análise , Proteína Morfogenética Óssea 2/metabolismo , Humanos , Matriz Óssea/química , Técnica de Desmineralização Óssea , Osso e Ossos/química
13.
J Dent ; 143: 104899, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38428719

RESUMO

OBJECTIVES: Demineralized bone matrix (DBM) is a well-established bone graft material widely accepted by dentists and the public for its favorable osteoconductivity and osteoinductive potential. This article aimed to provide a narrative review of the current therapeutic applications and limitations of DBM in maxillofacial bone defects. STUDY SELECTION, DATA, AND SOURCES: Randomized controlled trials, prospective or retrospective clinical studies, case series and reports, and systematic reviews. MEDLINE, PubMed, and Google Scholar were searched using keywords. CONCLUSIONS: Some evidence supported the therapeutic application of DBM in periodontal intrabony defects, maxillary sinus lifts, ridge preservation, ridge augmentation, alveolar cleft repair, orthognathic surgery, and other regional maxillofacial bone defects. However, the limitations of DBM should be considered when using it, including potential low immunogenicity, instability of osteoinductive potential, handling of the graft material, and patient acceptance. CLINICAL SIGNIFICANCE: With the increasing demand for the treatment of maxillofacial bone defects, DBM is likely to play a greater role as a promising bone graft material. Safe and effective combination treatment strategies and how to maintain a stable osteoinductive potential will be the future challenges of DBM research.


Assuntos
Matriz Óssea , Regeneração Óssea , Humanos , Matriz Óssea/transplante , Estudos Prospectivos , Estudos Retrospectivos , Resultado do Tratamento , Transplante Ósseo
14.
Comput Biol Med ; 172: 108247, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493605

RESUMO

Streaming potential is a type of stress-generated potential in bone that affects the electrical environment of osteocytes and may play a role in bone remodeling. Because the electrical environment around osteocytes has been difficult to measure experimentally until now, a numerical solid-liquid-streaming potential coupling method was proposed to analyze the streaming potential generated by bone deformation in the lacunae and canaliculus network (LCN) of the bone. Using this method, the cellular shear stress caused by liquid flow on the osteocyte surface was first calculated, and the results were consistent with those reported in the literature. Subsequently, the streaming potentials in the LCN caused by bone matrix deformation under an external gait load were calculated numerically. The results showed that the streaming potential increased slowly in the lacuna and relatively rapidly in the canaliculus and that the streaming potential increased with a decrease in the radius or an increase in the length of the canaliculus. The results also showed that relatively large gaps between the lacunae and osteocytes could induce higher streaming potentials under the same loading.


Assuntos
Matriz Óssea , Osteócitos , Humanos , Osso e Ossos , Remodelação Óssea
15.
Bull Exp Biol Med ; 176(4): 515-518, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38492109

RESUMO

We studied the effect of structural properties of deproteinized spongy bone (DSB) on functional activity of adipose tissue mesenchymal stromal cells of (MSC) for the potential use of these materials as components of a combined tissue-engineered construct. The porosity of the structure of DSB samples and the pore size promote MSC adhesion, migration, and proliferation on their surface and in the depth, revealing the architectonics of this bone matrix. The depth of cell penetration into the samples (from 273 to 702 µm) and an increase in the total number of cells (from 302 on day 1 to 1744 on day 7) demonstrated MSC adhesion, migration, and proliferation. The viability of cultured MSC was preserved for up to 7 days. The obtained results prove the possibility of using allogeneic DSB from femoral heads as a bone matrix in tissue-engineered constructs in combination with MSC. Such constructs can be used to efficiently restore the structural and functional integrity of the bone tissue in abnormal processes of various etiopathogenesis associated with the formation of bone defects or bone tissue deficiency.


Assuntos
Osso Esponjoso , Células-Tronco Mesenquimais , Engenharia Tecidual/métodos , Matriz Óssea , Tecido Adiposo , Células Cultivadas , Diferenciação Celular
16.
Int J Biol Macromol ; 265(Pt 2): 131059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521338

RESUMO

Bone matrix vesicles are commonly acknowledged as the primary site of biomineralization in human skeletal tissue. Black phosphorus has exhibited favorable properties across various chemical and physical domains. In this investigation, a novel composite microsphere was synthesized through the amalgamation of sodium alginate (ALG) with black phosphorus nanosheets (BP) utilizing the electrospray (ES) technique. These microspheres were tailored to mimic the regulatory function of matrix vesicles (MV) upon exposure to a biomimetic mineralization fluid (SBF) during the biomineralization process. Results revealed that black phosphorus nanosheets facilitated the generation of hydroxyapatite (HA) on the microsphere surface. Live-dead assays and cell proliferation experiments showcased a cell survival rate exceeding 85 %. Moreover, wound healing assessments unveiled that M-ALG-BP microspheres exhibited superior migration capacity, with a migration rate surpassing 50 %. Furthermore, after 7 days of osteogenic induction, M-ALG-BP microspheres notably stimulated osteoblast differentiation. Particularly noteworthy, M-ALG-BP microspheres significantly enhanced osteogenic differentiation of osteoblasts and induced collagen production in vitro. Additionally, experiments involving microsphere implantation into mouse skeletal muscle demonstrated the potential for ectopic mineralization by ALG-BP microspheres. This investigation underscores the outstanding mineralization properties of ALG-BP microspheres and their promising clinical prospects in bone tissue engineering.


Assuntos
Matriz Óssea , Osteogênese , Camundongos , Animais , Humanos , Microesferas , Fósforo , Regeneração Óssea , Alginatos/farmacologia , Alginatos/química
17.
J Mater Chem B ; 12(15): 3774-3785, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38535706

RESUMO

The regeneration of bone defects that exceed 2 cm is a challenge for the human body, necessitating interventional therapies. Demineralized bone matrices (DBM) derived from biological tissues have been employed for bone regeneration and possess notable osteoinductive and osteoconductive characteristics. Nevertheless, their efficiency in regenerating critically sized injuries is limited, and therefore additional signaling cues are required. Thanks to the piezoelectric properties of the bone, external physical stimulation is shown to accelerate tissue healing. We have implanted human DBM in critically sized cranial bone defects in rat animal models and exposed them to an external magnetic field (1 T) to enhance endogenous bone formation. Our in vitro experiments showed the superior cytocompatibility of DBM compared to cell culture plates. Furthermore, alkaline phosphatase activity after 14 days and Alizarin red staining at 28 days demonstrated differentiation of rat bone marrow mesenchymal stem cells into bone lineage on DBM. Computer tomography images together with histological analyses showed that implanting DBM in the injured rats significantly enhanced bone regeneration. Notably, combining DBM transplantation with a 2 h daily exposure to a 1 T magnetic field for 2 weeks (day 7 to 21 post-surgery) significantly improved bone regeneration compared to DBM transplantation alone. This research indicates that utilizing external magnetic stimulation significantly enhances the potential of bone allografts to regenerate critically sized bone defects.


Assuntos
Matriz Óssea , Osso e Ossos , Ratos , Humanos , Animais , Regeneração Óssea , Osteogênese , Modelos Animais
18.
J Mech Behav Biomed Mater ; 154: 106506, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518511

RESUMO

The mechanical properties of the jawbone play a critical role in determining the successful integration of dental prostheses. Chronic kidney disease (CKD) has been identified to abnormally accelerate bone turnover rates. However, the impact of CKD on the mechanical characteristics of the jawbone has not been extensively studied. This study sought to evaluate the time-dependent viscoelastic behaviors of rat jawbones, particularly in the scenarios both with and without CKD. We hypothesized that CKD might compromise the bone's innate toughening mechanisms, potentially owing to the time-dependent viscoelasticity of the bone matrix proteins. The maxillary and mandibular bones of Wistar rats were subjected to nanoindentation and Raman micro-spectroscopy. Load-hold-displacement curves from the cortical regions were obtained via nanoindentation and were mathematically characterized using a suitable viscoelastic constitutive model. Raman micro-spectroscopy was employed to identify nuanced vibrational changes in local molecular structures induced by CKD. The time course of indenter penetration onto cortical bones during the holding stage (creep behavior) can be mathematically represented by a series arrangement of the Kelvin-Voigt bodies. This configuration dictates the overall viscoelastic response observed during nanoindentation tests. The CKD model exhibited a reduced extent of viscoelastic contributions, especially during the initial ramp loading phase in both the maxillary and mandibular cortical bones. The generalized Kelvin-Voigt model comprises 2 K-Voigt elements that signify an immediate short retardation time (τ1) and a subsequent prolonged retardation time (τ2), respectively. Notably, the mandibular CKD model led to an increase in the delayed τ2 alongside an increase in non-enzymatic collagen cross-linking. These suggest that, over time, CKD diminishes the bone's capability for supplementary energy absorption and dimensional recovery, thus heightening their susceptibility to fractures.


Assuntos
Arcada Osseodentária , Insuficiência Renal Crônica , Ratos , Animais , Ratos Wistar , Matriz Óssea , Mandíbula
19.
Quintessence Int ; 55(4): 328-334, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38329717

RESUMO

OBJECTIVE: This study aimed to evaluate the effectiveness of biomaterials in bone healing of critical bone defects created by piezoelectric surgery in rat calvaria. METHOD AND MATERIALS: Histomorphologic analysis was performed to assess bone regeneration and tissue response. Fifty animals were randomized into five groups with one of the following treatments: Control group (n = 10), spontaneous blood clot formation with no bone fill; BO group (Bio-Oss, Geistlich Pharma; n = 10), defects were filled with bovine medullary bone substitute; BF group (Bonefill, Bionnovation; n = 10), defects were filled with bovine cortical bone substitute; hydroxyapatite group (n = 10), defects were filled with hydroxyapatite; calcium sulfate group (n = 10), defects were filled with calcium sulfate. Five animals from each group were euthanized at 30 and 45 days. The histomorphometry calculated the percentage of the new bone formation in the bone defect. RESULTS: All data obtained were evaluated statistically considering P < .05 as statistically significant. The results demonstrated the potential of all biomaterials for enhancing bone regeneration. The findings showed no statistical differences between all the biomaterials at 30 and 45 days including the control group without bone grafting. CONCLUSION: In conclusion, the tested biomaterials presented an estimated capacity of osteoconduction, statistically nonsignificant between them. In addition, the selection of biomaterial should consider the specific clinical aspect, resorption rates, size of the particle, and desired bone healing responses. It is important to emphasize that in some cases, using no bone filler might provide comparable results with reduced cost and possible complications questioning the very frequent use of ridge presentation procedures.


Assuntos
Regeneração Óssea , Substitutos Ósseos , Sulfato de Cálcio , Durapatita , Minerais , Distribuição Aleatória , Ratos Wistar , Crânio , Animais , Substitutos Ósseos/uso terapêutico , Substitutos Ósseos/farmacologia , Ratos , Regeneração Óssea/efeitos dos fármacos , Crânio/cirurgia , Sulfato de Cálcio/uso terapêutico , Sulfato de Cálcio/farmacologia , Durapatita/uso terapêutico , Minerais/uso terapêutico , Bovinos , Piezocirurgia/métodos , Masculino , Materiais Biocompatíveis/uso terapêutico , Matriz Óssea/transplante , Osteogênese/efeitos dos fármacos , Processo Alveolar/patologia
20.
Medicina (Kaunas) ; 60(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38399552

RESUMO

Background and Objectives: Posterior lumbar interbody fusion (PLIF) plays a crucial role in addressing various spinal disorders. The success of PLIF is contingent upon achieving bone fusion, as failure can lead to adverse clinical outcomes. Demineralized bone matrix (DBM) has emerged as a promising solution for promoting fusion due to its unique combination of osteoinductive and osteoconductive properties. This study aims to compare the effectiveness of three distinct DBMs (Exfuse®, Bongener®, and Bonfuse®) in achieving fusion rates in PLIF surgery. Materials and Methods: A retrospective review was conducted on 236 consecutive patients undergoing PLIF between September 2016 and February 2019. Patients over 50 years old with degenerative lumbar disease, receiving DBM, and following up for more than 12 months after surgery were included. Fusion was evaluated using the Bridwell grading system. Bridwell grades 1 and 2 were defined as 'fusion', while grades 3 and 4 were considered 'non-fusion.' Clinical outcomes were assessed using visual analog scale (VAS) scores for pain, the Oswestry disability index (ODI), and the European quality of life-5 (EQ-5D). Results: Fusion rates were 88.3% for Exfuse, 94.3% for Bongener, and 87.7% for Bonfuse, with no significant differences. All groups exhibited significant improvement in clinical outcomes at 12 months after surgery, but no significant differences were observed among the three groups. Conclusions: There were no significant differences in fusion rates and clinical outcomes among Exfuse, Bongener, and Bonfuse in PLIF surgery.


Assuntos
Doenças da Coluna Vertebral , Fusão Vertebral , Humanos , Pessoa de Meia-Idade , Matriz Óssea , Qualidade de Vida , Vértebras Lombares/cirurgia , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA