Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.120
Filtrar
1.
Cells ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727260

RESUMO

Bone marrow (BM) acts as a dynamic organ within the bone cavity, responsible for hematopoiesis, skeletal remodeling, and immune system control. Bone marrow adipose tissue (BMAT) was long simply considered a filler of space, but now it is known that it instead constitutes an essential element of the BM microenvironment that participates in homeostasis, influences bone health and bone remodeling, alters hematopoietic stem cell functions, contributes to the commitment of mesenchymal stem cells, provides effects to immune homeostasis and defense against infections, and participates in energy metabolism and inflammation. BMAT has emerged as a significant contributor to the development and progression of various diseases, shedding light on its complex relationship with health. Notably, BMAT has been implicated in metabolic disorders, hematological malignancies, and skeletal conditions. BMAT has been shown to support the proliferation of tumor cells in acute myeloid leukemia and niche adipocytes have been found to protect cancer cells against chemotherapy, contributing to treatment resistance. Moreover, BMAT's impact on bone density and remodeling can lead to conditions like osteoporosis, where high levels of BMAT are inversely correlated with bone mineral density, increasing the risk of fractures. BMAT has also been associated with diabetes, obesity, and anorexia nervosa, with varying effects on individuals depending on their weight and health status. Understanding the interaction between adipocytes and different diseases may lead to new therapeutic strategies.


Assuntos
Tecido Adiposo , Medula Óssea , Humanos , Tecido Adiposo/metabolismo , Medula Óssea/patologia , Medula Óssea/metabolismo , Animais
2.
Zhonghua Xue Ye Xue Za Zhi ; 45(3): 284-289, 2024 Mar 14.
Artigo em Chinês | MEDLINE | ID: mdl-38716601

RESUMO

Objective: To analyze the level and clinical significance of IL-18 and IL-18-binding protein (BP) in the bone marrow of patients with myelodysplastic syndrome (MDS) . Methods: A total of 43 newly diagnosed patients with MDS who were admitted to the Department of Hematology, Tianjin Medical University General Hospital, from July 2020 to February 2021 were randomly selected. The control group consisted of 14 patients with acute myeloid leukemia (AML) and 25 patients with iron-deficiency anemia (IDA). The levels of IL-18 and IL-18 BP in the bone marrow supernatant were measured, and their correlations with MDS severity, as well as the functionality of CD8(+) T cells and natural killer cells, was analyzed. Results: The levels of IL-18, IL-18 BP, and free IL-18 (fIL-18) in the bone marrow supernatant of patients with MDS were higher than in the IDA group. The level of fIL-18 was linearly and negatively correlated with the MDS-International Prognostic Scoring System (IPSS) score. IL-18 receptor (IL-18Rα) expression on CD8(+) T cells in the MDS group was lower than in the IDA group, and the levels of fIL-18 and IL-18Rα were positively correlated with CD8(+) T-cell function in the MDS group. Conclusion: IL-18 BP antagonizes IL-18, leading to a decrease in fIL-18 in the bone marrow microenvironment of patients with MDS, affecting CD8(+) T-cell function, which is closely related to MDS severity; therefore, it may become a new target for MDS treatment.


Assuntos
Medula Óssea , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-18 , Síndromes Mielodisplásicas , Humanos , Síndromes Mielodisplásicas/metabolismo , Interleucina-18/metabolismo , Medula Óssea/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Masculino , Feminino , Células Matadoras Naturais/metabolismo , Pessoa de Meia-Idade , Relevância Clínica
3.
Nat Commun ; 15(1): 3769, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704393

RESUMO

Excessive bone marrow adipocytes (BMAds) accumulation often occurs under diverse pathophysiological conditions associated with bone deterioration. Estrogen-related receptor α (ESRRA) is a key regulator responding to metabolic stress. Here, we show that adipocyte-specific ESRRA deficiency preserves osteogenesis and vascular formation in adipocyte-rich bone marrow upon estrogen deficiency or obesity. Mechanistically, adipocyte ESRRA interferes with E2/ESR1 signaling resulting in transcriptional repression of secreted phosphoprotein 1 (Spp1); yet positively modulates leptin expression by binding to its promoter. ESRRA abrogation results in enhanced SPP1 and decreased leptin secretion from both visceral adipocytes and BMAds, concertedly dictating bone marrow stromal stem cell fate commitment and restoring type H vessel formation, constituting a feed-forward loop for bone formation. Pharmacological inhibition of ESRRA protects obese mice against bone loss and high marrow adiposity. Thus, our findings highlight a therapeutic approach via targeting adipocyte ESRRA to preserve bone formation especially in detrimental adipocyte-rich bone milieu.


Assuntos
Adipócitos , Medula Óssea , Leptina , Osteogênese , Receptores de Estrogênio , Animais , Osteogênese/genética , Adipócitos/metabolismo , Adipócitos/citologia , Camundongos , Leptina/metabolismo , Leptina/genética , Medula Óssea/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Células-Tronco Mesenquimais/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Obesidade/genética , Receptor ERRalfa Relacionado ao Estrogênio , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Células da Medula Óssea/metabolismo , Camundongos Knockout
4.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674015

RESUMO

Acute myeloid leukaemia (AML) management remains a significant challenge in oncology due to its low survival rates and high post-treatment relapse rates, mainly attributed to treatment-resistant leukaemic stem cells (LSCs) residing in bone marrow (BM) niches. This review offers an in-depth analysis of AML progression, highlighting the pivotal role of extracellular vesicles (EVs) in the dynamic remodelling of BM niche intercellular communication. We explore recent advancements elucidating the mechanisms through which EVs facilitate complex crosstalk, effectively promoting AML hallmarks and drug resistance. Adopting a temporal view, we chart the evolving landscape of EV-mediated interactions within the AML niche, underscoring the transformative potential of these insights for therapeutic intervention. Furthermore, the review discusses the emerging understanding of endothelial cell subsets' impact across BM niches in shaping AML disease progression, adding another layer of complexity to the disease progression and treatment resistance. We highlight the potential of cutting-edge methodologies, such as organ-on-chip (OoC) and single-EV analysis technologies, to provide unprecedented insights into AML-niche interactions in a human setting. Leveraging accumulated insights into AML EV signalling to reconfigure BM niches and pioneer novel approaches to decipher the EV signalling networks that fuel AML within the human context could revolutionise the development of niche-targeted therapy for leukaemia eradication.


Assuntos
Progressão da Doença , Vesículas Extracelulares , Leucemia Mieloide Aguda , Nicho de Células-Tronco , Humanos , Vesículas Extracelulares/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Microambiente Tumoral , Animais , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Medula Óssea/patologia , Medula Óssea/metabolismo , Comunicação Celular , Transdução de Sinais , Resistencia a Medicamentos Antineoplásicos
5.
Sci Rep ; 14(1): 9104, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643249

RESUMO

Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and the second most common among children. AML is characterized by aberrant proliferation of myeloid blasts in the bone marrow and impaired normal hematopoiesis. Despite the introduction of new drugs and allogeneic bone marrow transplantation, patients have poor overall survival rate with relapse as the major challenge, driving the demand for new therapeutic strategies. AML patients with high expression of the very long/long chain fatty acid transporter CD36 have poorer survival and very long chain fatty acid metabolism is critical for AML cell survival. Here we show that fatty acids are transferred from human primary adipocytes to AML cells upon co-culturing. A drug-like small molecule (SMS121) was identified by receptor-based virtual screening and experimentally demonstrated to target the lipid uptake protein CD36. SMS121 reduced the uptake of fatty acid into AML cells that could be reversed by addition of free fatty acids and caused decreased cell viability. The data presented here serves as a framework for the development of CD36 inhibitors to be used as future therapeutics against AML.


Assuntos
Ácidos Graxos , Leucemia Mieloide Aguda , Adulto , Criança , Humanos , Ácidos Graxos/uso terapêutico , Leucemia Mieloide Aguda/metabolismo , Medula Óssea/metabolismo , Doença Aguda , Técnicas de Cocultura
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 376-381, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660839

RESUMO

OBJECTIVE: To detect the expression of RNA methyltransferase 14(METTL14) in bone marrow of patients with newly diagnosed acute myeloid leukemia (AML), and to investigate the clinical and prognostic significance of METTL14 expression in newly diagnosed AML. METHODS: Bone marrow samples were collected from 100 patients with newly diagnosed AML as observation group and 60 patients with iron deficiency anemia AML as control group. And collected the clinical data of the AML patients. Real-time quantitative PCR (qRT-PCR) was used to detect the expression level of METTL14 in AML and IDA patients. The relationship between the expression level of METTL14 and clinicopathological features, prognosis was analyzed. Kaplan-Meier curves were used to analyze the effect of METTL14 on overall survival (OS) in AML patients. Cox risk regression model was used to analyze the prognostic factors affecting in patients with AML. RESULTS: Compared with the control group, the expression of METTL14 was significantly increased in AML patients (P < 0.05). Compared with the METTL14 low-expression group, patients in the METTL14 high-expression group had advanced age, high bone marrow cell number, poor efficacyand poor prognosis(P < 0.05). The overall survival time of patients with the METTL14 high-expression group was significantly shorter than that of the low-expression group (P < 0.05). The high expression of METTL14 was an independent risk factor for poor prognosis in AML. CONCLUSION: METTL14 is significantly overexpressed in AML patients, and its correlated with poor clinicopathological features and poor prognosis. It can be used as a prognostic marker and potential therapeutie target for AML patients.


Assuntos
Leucemia Mieloide Aguda , Metiltransferases , Humanos , Leucemia Mieloide Aguda/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Prognóstico , Medula Óssea/metabolismo , Masculino , Feminino , Relevância Clínica
7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 610-616, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660874

RESUMO

OBJECTIVE: To systematically screen and identify long noncoding RNA (lncRNA) associated with bone marrow adiposity changes in aplastic anemia (AA). METHODS: The PPARγ and C/EBPα ChIP-Seq data in ChIPBase was analyzed by bioinformatics and the potential lncRNA co-transcriptionally regulated by PPARγ and C/EBPα was screened. The expression of candidate lncRNA was verified by qRT-PCR in the in vitro adipogenic differentiation model of BM-MSC, BM-MSC infected with lenti-shPPARγ and lenti-shC/EBPα as well as clinical BM-MSC samples derived from AA and controls. RESULTS: PPARγ and C/EBPα were significantly highly expressed in AA BM-MSC, and knock-down of PPARγ and C/EBPα impaired the adipogenic capacity of AA BM-MSC. PPARγ and C/EBPα cotranscriptionally activate LINC01230 promoter activity in binding sites dependant manner. The LINC01230 was also aberrantly highly expressed in AA BM-MSC compared with controls. CONCLUSION: PPARγ and C/EBPα are aberrantly expressed in AA BM-MSC and may promote the adipogenic differentiation of AA BM-MSC, and to a certain extent mediate the bone marrow adiposity alteration by transcriptionally activating LINC01230 expression.


Assuntos
Anemia Aplástica , Medula Óssea , PPAR gama , RNA Longo não Codificante , RNA Longo não Codificante/genética , Humanos , Anemia Aplástica/genética , PPAR gama/genética , PPAR gama/metabolismo , Medula Óssea/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Adipogenia , Adiposidade , Células da Medula Óssea
8.
Sci Rep ; 14(1): 8404, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600158

RESUMO

The survival of leukemic cells is significantly influenced by the bone marrow microenvironment, where stromal cells play a crucial role. While there has been substantial progress in understanding the mechanisms and pathways involved in this crosstalk, limited data exist regarding the impact of leukemic cells on bone marrow stromal cells and their potential role in drug resistance. In this study, we identify that leukemic cells prime bone marrow stromal cells towards osteoblast lineage and promote drug resistance. This biased differentiation of stroma is accompanied by dysregulation of the canonical Wnt signaling pathway. Inhibition of Wnt signaling in stroma reversed the drug resistance in leukemic cells, which was further validated in leukemic mice models. This study evaluates the critical role of leukemic cells in establishing a drug-resistant niche by influencing the bone marrow stromal cells. Additionally, it highlights the potential of targeting Wnt signaling in the stroma by repurposing an anthelmintic drug to overcome the microenvironment-mediated drug resistance.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Animais , Camundongos , Via de Sinalização Wnt , Leucemia Mieloide Aguda/metabolismo , Medula Óssea/metabolismo , Células Estromais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Resistência a Medicamentos , Células da Medula Óssea , Microambiente Tumoral/fisiologia
9.
FASEB J ; 38(7): e23565, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38558188

RESUMO

Circadian rhythms in metabolically active tissues are crucial for maintaining physical health. Circadian disturbance (CD) can cause various health issues, such as metabolic abnormalities and immune and cognitive dysfunctions. However, studies on the role of CD in immune cell development and differentiation, as well as the rhythmic expression of the core clock genes and their altered expression under CD, remain unclear. Therefore, we exposed C57bl/6j mice to repeated reversed light-dark cycles for 90 days to research the effects of CD on bone marrow (BM) hematopoietic function. We also researched the effects of CD on endogenous circadian rhythms, temporally dependent expression in peripheral blood and myeloid leukocytes, environmental homeostasis within BM, and circadian oscillations of hematopoietic-extrinsic cues. Our results confirmed that when the light and dark cycles around mice were frequently reversed, the circadian rhythmic expression of the two main circadian rhythm markers, the hypothalamic clock gene, and serum melatonin, was disturbed, indicating that the body was in a state of endogenous CD. Furthermore, CD altered the temporally dependent expression of peripheral blood and BM leukocytes and destroyed environmental homeostasis within the BM as well as circadian oscillations of hematopoietic-extrinsic cues, which may negatively affect BM hematopoiesis in mice. Collectively, these results demonstrate that circadian rhythms are vital for maintaining health and suggest that the association between CD and hematopoietic dysfunction warrants further investigation.


Assuntos
Medula Óssea , Relógios Circadianos , Camundongos , Animais , Medula Óssea/metabolismo , Fotoperíodo , Ritmo Circadiano/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Relógios Circadianos/genética
10.
Front Immunol ; 15: 1353513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680490

RESUMO

The recent identification of skull bone marrow as a reactive hematopoietic niche that can contribute to and direct leukocyte trafficking into the meninges and brain has transformed our view of this bone structure from a solid, protective casing to a living, dynamic tissue poised to modulate brain homeostasis and neuroinflammation. This emerging concept may be highly relevant to injuries that directly impact the skull such as in traumatic brain injury (TBI). From mild concussion to severe contusion with skull fracturing, the bone marrow response of this local myeloid cell reservoir has the potential to impact not just the acute inflammatory response in the brain, but also the remodeling of the calvarium itself, influencing its response to future head impacts. If we borrow understanding from recent discoveries in other CNS immunological niches and extend them to this nascent, but growing, subfield of neuroimmunology, it is not unreasonable to consider the hematopoietic compartment in the skull may similarly play an important role in health, aging, and neurodegenerative disease following TBI. This literature review briefly summarizes the traditional role of the skull in TBI and offers some additional insights into skull-brain interactions and their potential role in affecting secondary neuroinflammation and injury outcomes.


Assuntos
Lesões Encefálicas Traumáticas , Encéfalo , Crânio , Humanos , Lesões Encefálicas Traumáticas/patologia , Animais , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/metabolismo , Crânio/lesões , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/etiologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Medula Óssea/imunologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-38581357

RESUMO

Fat is the main component of an adult bone marrow and constitutes the so-called bone marrow adipose tissue (BMAT). Marrow adipocytes, which are the fat cells in the bone marrow, become more abundant with age, and may influence the whole-body metabolism. In osteoporotic patients, the amount of BMAT has an inverse correlation with the amount of bone mass. In people with anorexia nervosa that lose weight after the reduction of peripheral adipose tissues, BMAT expands. Although bone marrow adipocytes are increasingly recognized as a target for therapy, there is still much to learn about their role in skeletal homeostasis, metabolism, cancer, and regenerative treatments. The Bone Marrow Adiposity Society (BMAS), established in 2017, aims to enhance the understanding of how BMAT relates to bone health, cancer, and systemic metabolism. BMAS is committed to training young scientists and organized the second edition of the BMAS Summer School, held on September 4-6, 2023, as a virtual event.


Assuntos
Medula Óssea , Neoplasias , Humanos , Medula Óssea/metabolismo , Adiposidade , Tecido Adiposo/metabolismo , Instituições Acadêmicas , Neoplasias/metabolismo
12.
BMC Endocr Disord ; 24(1): 55, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679740

RESUMO

BACKGROUND: Glucocorticoids and sclerostin act as inhibitors of the Wnt signaling pathway, thereby hindering bone formation. Given the pathway's intricate association with mesenchymal stem cells, the hypothesis suggests that heightened sclerostin levels may be intricately linked to an augmentation in marrow adiposity induced by glucocorticoids. This study endeavored to delve into the nuanced relationship between circulating sclerostin and bone marrow adipose tissue in postmenopausal women grappling with glucocorticoid-induced osteoporosis (GIO). METHODS: In this cross-sectional study, 103 patients with autoimmune-associated diseases underwent glucocorticoid treatment, boasting an average age of 61.3 years (standard deviation 7.1 years). The investigation encompassed a thorough assessment, incorporating medical history, anthropometric data, biochemical analysis, and dual-energy X-ray absorptiometry measurements of lumbar and femoral bone mineral density (BMD). Osteoporosis criteria were established at a T-score of -2.5 or lower. Additionally, MR spectroscopy quantified the vertebral marrow fat fraction. RESULTS: BMD at the femoral neck, total hip, and lumbar spine showcased an inverse correlation with marrow fat fraction (r = -0.511 to - 0.647, P < 0.001). Serum sclerostin levels exhibited a positive correlation with BMD at various skeletal sites (r = 0.476 to 0.589, P < 0.001). A noteworthy correlation emerged between circulating sclerostin and marrow fat fraction at the lumbar spine (r = -0.731, 95% CI, -0.810 to -0.627, P < 0.001). Multivariate analysis brought to light that vertebral marrow fat fraction significantly contributed to sclerostin serum concentrations (standardized regression coefficient ß = 0.462, P < 0.001). Even after adjusting for age, body mass index, physical activity, renal function, BMD, and the duration and doses of glucocorticoid treatment, serum sclerostin levels maintained a significant correlation with marrow fat fraction. CONCLUSIONS: Circulating sclerostin levels exhibited a noteworthy association with marrow adiposity in postmenopausal women grappling with GIO.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Adiposidade , Densidade Óssea , Medula Óssea , Glucocorticoides , Pós-Menopausa , Humanos , Feminino , Pessoa de Meia-Idade , Glucocorticoides/efeitos adversos , Estudos Transversais , Adiposidade/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Idoso , Marcadores Genéticos , Biomarcadores/sangue , Biomarcadores/análise , Osteoporose Pós-Menopausa/sangue , Absorciometria de Fóton
13.
Stem Cell Res Ther ; 15(1): 123, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679747

RESUMO

BACKGROUND: Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice. However, the activity of TPOm on regulating BM vascular and stromal niches to support HSPC regeneration has yet to be elucidated. METHODS: C57BL/6J mice (9-14 weeks old) received sublethal or lethal total body irradiation (TBI), a model for H-ARS, by 137Cs or X-rays. At 24 h post-irradiation, mice were subcutaneously injected with a single dose of TPOm (0.3 mg/kg or 1.0 mg/kg) or PBS (vehicle). At homeostasis and on days 4, 7, 10, 14, 18, and 21 post-TBI with and without TPOm treatment, BM was harvested for histology, BM flow cytometry of HSPCs, endothelial (EC) and mesenchymal stromal cells (MSC), and whole-mount confocal microscopy. For survival, irradiated mice were monitored and weighed for 30 days. Lastly, BM triple negative cells (TNC; CD45-, TER-119-, CD31-) were sorted for single-cell RNA-sequencing to examine transcriptomics after TBI with or without TPOm treatment. RESULTS: At homeostasis, TPOm expanded the number of circulating platelets and HSPCs, ECs, and MSCs in the BM. Following sublethal TBI, TPOm improved BM architecture and promoted recovery of HSPCs, ECs, and MSCs. Furthermore, TPOm elevated VEGF-C levels in normal and irradiated mice. Following lethal irradiation, mice improved body weight recovery and 30-day survival when treated with TPOm after 137Cs and X-ray exposure. Additionally, TPOm reduced vascular dilation and permeability. Finally, single-cell RNA-seq analysis indicated that TPOm increased the expression of collagens in MSCs to enhance their interaction with other progenitors in BM and upregulated the regeneration pathway in MSCs. CONCLUSIONS: TPOm interacts with BM vascular and stromal niches to locally support hematopoietic reconstitution and systemically improve survival in mice after TBI. Therefore, this work warrants the development of TPOm as a potent radiation MCM for the treatment of ARS.


Assuntos
Síndrome Aguda da Radiação , Medula Óssea , Camundongos Endogâmicos C57BL , Trombopoetina , Animais , Camundongos , Trombopoetina/farmacologia , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/patologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/efeitos da radiação , Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos da radiação , Nicho de Células-Tronco/efeitos dos fármacos , Nicho de Células-Tronco/efeitos da radiação , Masculino , Irradiação Corporal Total
14.
Free Radic Biol Med ; 219: 184-194, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636716

RESUMO

Hematopoietic stem cells (HSCs) replenish blood cells under steady state and on demand, that exhibit therapeutic potential for Bone marrow failures and leukemia. Redox signaling plays key role in immune cells and hematopoiesis. However, the role of reactive nitrogen species in hematopoiesis remains unclear and requires further investigation. We investigated the significance of inducible nitric oxide synthase/nitric oxide (iNOS/NO) signaling in hematopoietic stem and progenitor cells (HSPCs) and hematopoiesis under steady-state and stress conditions. HSCs contain low levels of NO and iNOS under normal conditions, but these increase upon bone marrow stress. iNOS-deficient mice showed subtle changes in peripheral blood cells but significant alterations in HSPCs, including increased HSCs and multipotent progenitors. Surprisingly, iNOS-deficient mice displayed heightened susceptibility and delayed recovery of blood progeny following 5-Fluorouracil (5-FU) induced hematopoietic stress. Loss of quiescence and increased mitochondrial stress, indicated by elevated MitoSOX and MMPhi HSCs, were observed in iNOS-deficient mice. Furthermore, pharmacological approaches to mitigate mitochondrial stress rescued 5-FU-induced HSC death. Conversely, iNOS-NO signaling was required for demand-driven mitochondrial activity and proliferation during hematopoietic recovery, as iNOS-deficient mice and NO signaling inhibitors exhibit reduced mitochondrial activity. In conclusion, our study challenges the conventional view of iNOS-derived NO as a cytotoxic molecule and highlights its intriguing role in HSPCs. Together, our findings provide insights into the crucial role of the iNOS-NO-mitochondrial axis in regulating HSPCs and hematopoiesis.


Assuntos
Fluoruracila , Hematopoese , Células-Tronco Hematopoéticas , Mitocôndrias , Óxido Nítrico Sintase Tipo II , Óxido Nítrico , Transdução de Sinais , Animais , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Fluoruracila/farmacologia , Hematopoese/genética , Óxido Nítrico/metabolismo , Regeneração , Camundongos Knockout , Medula Óssea/metabolismo , Camundongos Endogâmicos C57BL
15.
Stem Cell Rev Rep ; 20(4): 1135-1149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438768

RESUMO

In the adult bone marrow (BM), endothelial cells (ECs) are an integral component of the hematopoietic stem cell (HSC)-supportive niche, which modulates HSC activity by producing secreted and membrane-bound paracrine signals. Within the BM, distinct vascular arteriole, transitional, and sinusoidal EC subtypes display unique paracrine expression profiles and create anatomically-discrete microenvironments. However, the relative contributions of vascular endothelial subtypes in supporting hematopoiesis is unclear. Moreover, constitutive expression and off-target activity of currently available endothelial-specific and endothelial-subtype-specific murine cre lines potentially confound data analysis and interpretation. To address this, we describe two tamoxifen-inducible cre-expressing lines, Vegfr3-creERT2 and Cx40-creERT2, that efficiently label sinusoidal/transitional and arteriole endothelium respectively in adult marrow, without off-target activity in hematopoietic or perivascular cells. Utilizing an established mouse model in which cre-dependent recombination constitutively-activates MAPK signaling within adult endothelium, we identify arteriole ECs as the driver of MAPK-mediated hematopoietic dysfunction. These results define complementary tamoxifen-inducible creERT2-expressing mouse lines that label functionally-discrete and non-overlapping sinusoidal/transitional and arteriole EC populations in the adult BM, providing a robust toolset to investigate the differential contributions of vascular subtypes in maintaining hematopoietic homeostasis.


Assuntos
Células Endoteliais , Integrases , Tamoxifeno , Animais , Camundongos , Células Endoteliais/metabolismo , Integrases/metabolismo , Integrases/genética , Tamoxifeno/farmacologia , Medula Óssea/metabolismo , Camundongos Transgênicos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Hematopoese
16.
Cells ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474370

RESUMO

Parathyroid hormone (PTH) plays a pivotal role in maintaining calcium homeostasis, largely by modulating bone remodeling processes. Its effects on bone are notably dependent on the duration and frequency of exposure. Specifically, PTH can initiate both bone formation and resorption, with the outcome being influenced by the manner of PTH administration: continuous or intermittent. In continuous administration, PTH tends to promote bone resorption, possibly by regulating certain genes within bone cells. Conversely, intermittent exposure generally favors bone formation, possibly through transient gene activation. PTH's role extends to various aspects of bone cell activity. It directly influences skeletal stem cells, osteoblastic lineage cells, osteocytes, and T cells, playing a critical role in bone generation. Simultaneously, it indirectly affects osteoclast precursor cells and osteoclasts, and has a direct impact on T cells, contributing to its role in bone resorption. Despite these insights, the intricate mechanisms through which PTH acts within the bone marrow niche are not entirely understood. This article reviews the dual roles of PTH-catabolic and anabolic-on bone cells, highlighting the cellular and molecular pathways involved in these processes. The complex interplay of these factors in bone remodeling underscores the need for further investigation to fully comprehend PTH's multifaceted influence on bone health.


Assuntos
Reabsorção Óssea , Hormônio Paratireóideo , Humanos , Osso e Ossos/metabolismo , Medula Óssea/metabolismo , Reabsorção Óssea/metabolismo , Osteoblastos/metabolismo , Hormônio Paratireóideo/metabolismo
17.
Exp Clin Transplant ; 22(2): 148-155, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38511985

RESUMO

OBJECTIVES: MicroRNAs play an important role in the development and function of neuron cells. Among these, the miRNA known as MIR96 is abundantly expressed in mammalian retina and significantly affects differentiation, maturation, and survival of human photoreceptor cells. In this study, a mimic to miRNA-96 was transfected into human bone marrowderived mesenchymal stem cells to explore the biological functions of MIR96 at differentiation processing. MATERIALS AND METHODS: A mimic to miRNA-96 and a competitive control were transfected into human bone marrow-derived mesenchymal stem cells using Lipofectamine. After 24 and 48 hours, we evaluated changes in expression levels of genes associated with neural progenitor and photoreceptor differentiation (OTX2, NRL, protein kinase C, SLC1A1, and recoverin) by real-time polymerase chain reaction. In addition, we measured expression of mRNA and protein of the CRX gene (neuroretinal progenitor cell marker) and the RHO gene (terminal differentiation marker) using real-time polymerase chain reaction and immunocytochemistry, respectively. RESULTS: Real-time polymerase chain reaction results showed increased levels of RHO and recoverin mRNA after 24 hours in transfected cells. In addition, mRNA levels of OTX2, CRX, NRL, RHO, recoverin, and protein kinase C increased after 48 hours in transfected cells. Immunocytochemistry results confirmed these findings by demonstrating RHO and CRX at both 24 and 48 hours in transfected cells. CONCLUSIONS: Control of the expression of MIR96 can be a good strategy to promote cell differentiation and can be used in cell therapy for retinal degeneration. Our results showed that human bone marrow-derived mesenchymal stem cells can differentiate into photoreceptor cells after transfection with MIR96. These results support therapeutic use of MIR96 in retinal degeneration and suggest human bone marrowderived mesenchymal stem cells as a promising tool for interventions.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Degeneração Retiniana , Animais , Humanos , Degeneração Retiniana/metabolismo , Recoverina/metabolismo , Medula Óssea/metabolismo , Células Fotorreceptoras/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Proteína Quinase C/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
18.
Arch Biochem Biophys ; 754: 109954, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432564

RESUMO

Iron overload has detrimental effects on bone marrow mesenchymal stem cells (BMMSCs), cells crucial for bone marrow homeostasis and hematopoiesis support. Excessive iron accumulation leads to the production of reactive oxygen species (ROS), resulting in cell death, cell cycle arrest, and disruption of vital cellular pathways. Although apoptosis has been extensively studied, other programmed cell death mechanisms including autophagy, necroptosis, and ferroptosis also play significant roles in iron overload-induced bone marrow cell death. Studies have highlighted the involvement of ROS production, DNA damage, MAPK pathways, and mitochondrial dysfunction in apoptosis. In addition, autophagy and ferroptosis are activated, as shown by the degradation of cellular components and lipid peroxidation, respectively. However, several compounds and antioxidants show promise in mitigating iron overload-induced cell death by modulating ROS levels, MAPK pathways, and mitochondrial integrity. Despite early indications, more comprehensive research and clinical studies are needed to better understand the interplay between these programmed cell death mechanisms and enable development of effective therapeutic strategies. This review article emphasizes the importance of studying multiple cell death pathways simultaneously and investigating potential rescuers to combat iron overload-induced bone marrow cell death.


Assuntos
Sobrecarga de Ferro , Ferro , Humanos , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Medula Óssea/metabolismo , Sobrecarga de Ferro/metabolismo , Apoptose , Células da Medula Óssea/metabolismo
20.
Chem Biol Drug Des ; 103(3): e14501, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38453253

RESUMO

The toxic effects of nanoparticles-silver oxide (Ag2 O) limited its use. However, loading Ag2 O nanoparticles into titanium dioxide (TiO2 ) nanotubes (Ag2 O-TiO2 -NTs) has more efficient biological activity and safety. The aim of this study was to observe the effect of Ag2 O-TiO2 -NTs on osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and its mechanism. The enzyme activity of lactate dehydrogenase (LDH) and the expression of RUNX family transcription factor 2 (Runx2), OPN, OCN in BMSCs were detected by quantitative real time polymerase chain reaction. At 14 days of induction, the mineralization ability and alkaline phosphatase (ALP) activity of cells in each group were observed by Alizarin Red S staining and ALP staining. In addition, the protein levels of tumor necrosis factor-α (TNF-α) and ß-catenin in BMSCs of each group were observed by western blot. After 14 days of the induction, the mineralization ability and ALP activity of BMSCs in the Ag2 O-TiO2 -NTs group were significantly enhanced compared with those in the Ag2 O and TiO2 groups. Western blot analysis showed that the BMSCs in the Ag2 O-TiO2 -NTs group exhibited much lower protein level of TNF-α and higher protein level of ß-catenin than those in the Ag2 O and TiO2 groups.Ag2 O-TiO2 -NTs enhance the osteogenic activity of BMSCs by modulating TNF-α/ß-catenin signaling.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Fator de Necrose Tumoral alfa/metabolismo , beta Catenina/metabolismo , Cateninas/metabolismo , Cateninas/farmacologia , Medula Óssea/metabolismo , Células Cultivadas , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA