Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.706
Filtrar
1.
Pharmacology ; 107(1-2): 46-53, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34788751

RESUMO

AIM: The aim of this study was to assess the influence of adrenomedullary secretion on the plasma glucose, lactate, and free fatty acids (FFAs) during running exercise in rats submitted to intracerebroventricular (i.c.v.) injection of physostigmine (PHY). PHY i.c.v. was used to activate the central cholinergic system. METHODS: Wistar rats were divided into sham-saline (sham-SAL), sham-PHY, adrenal medullectomy-SAL, and ADM-PHY groups. The plasma concentrations of glucose, lactate, and FFAs were determined immediately before and after i.c.v. injection of 20 µL of SAL or PHY at rest and during running exercise on a treadmill. RESULTS: The i.c.v. injection of PHY at rest increased plasma glucose in the sham group, but not in the ADM group. An increase in plasma glucose, lactate, and FFAs mobilization from adipose tissue was observed during physical exercise in the sham-SAL group; however, the increase in plasma glucose was greater with i.c.v. PHY. Moreover, the hyperglycemia induced by exercise and PHY in the ADM group were blunted by ADM, whereas FFA mobilization was unaffected. CONCLUSION: These results indicate that there is a dual metabolic control by which activation of the central cholinergic pathway increases plasma glucose but not FFA during rest and exercise, and that this hyperglycemic response is dependent on adrenomedullary secretion.


Assuntos
Medula Suprarrenal/fisiologia , Fibras Colinérgicas/fisiologia , Metabolismo/fisiologia , Esforço Físico/fisiologia , Medula Suprarrenal/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Fibras Colinérgicas/efeitos dos fármacos , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/farmacologia , Ácidos Graxos não Esterificados/sangue , Injeções Intraventriculares , Ácido Láctico/sangue , Masculino , Metabolismo/efeitos dos fármacos , Condicionamento Físico Animal , Fisostigmina/administração & dosagem , Fisostigmina/farmacologia , Ratos Wistar
2.
Pharmacology ; 107(1-2): 81-89, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34794150

RESUMO

INTRODUCTION: The present study examined the effects of fatty acid amide hydrolase inhibitor URB597 on the level of plasma catecholamine and their content, synthesis, and degradation in the adrenal medulla of male and female rats subjected to chronic unpredictable stress (CUS). MATERIAL AND METHODS: Male and female Wistar rats were exposed to the 6 weeks of CUS and treated intraperitoneally with either 0.3 mg/kg/day of URB597 or vehicle in the last 2 weeks of stress protocol. Catecholamines' plasma levels and catecholamines' levels in adrenal medulla were examined using Elabscience ELISA kits. Western blot analysis was used to detect the protein in the medulla. RESULTS: The results of our experiment showed that adrenal weights and catecholamine of unstressed control were higher in females and that CUS induced further enlargement of adrenal glands and catecholamine content and its synthesis compared to male rats. CUS caused an increase of plasma norepinephrine and depletion of norepinephrine content as well as unchanged synthesis and degradation of catecholamine in the adrenal medulla of male rats. URB597 reduced enlarged adrenals and catecholamine content and its synthesis in stressed female rats. URB597 reduces increased plasma norepinephrine and restores its content in the adrenal medulla, unchanging the expression of enzyme synthesis, while reduced protein levels of monoamine oxidase A in male rats are exposed to CUS. DISCUSSION: Our results support the role of endocannabinoids as an antistress mechanism that inhibits elevated adrenomedullary activation and promotes its recovery to baseline in both male and female stressed rats.


Assuntos
Medula Suprarrenal/metabolismo , Amidoidrolases/antagonistas & inibidores , Benzamidas/farmacologia , Carbamatos/farmacologia , Catecolaminas/metabolismo , Dor/metabolismo , Estresse Psicológico/metabolismo , Medula Suprarrenal/efeitos dos fármacos , Animais , Benzamidas/uso terapêutico , Carbamatos/uso terapêutico , Catecol O-Metiltransferase/metabolismo , Endocanabinoides/fisiologia , Feminino , Masculino , Monoaminoxidase/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Ratos Wistar
3.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065933

RESUMO

Neonicotinoid insecticides are nicotine-derived molecules which exert acute neurotoxic effects over the insect central nervous system by activating nicotinic acetylcholine receptors (nAChRs). However, these receptors are also present in the mammalian central and peripheral nervous system, where the effects of neonicotinoids are faintly known. In mammals, cholinergic synapses are crucial for the control of vascular tone, blood pressure and skeletal muscle contraction. We therefore hypothesized that neonicotinoids could affect cholinergic networks in mammals and sought to highlight functional consequences of acute intoxication in rats with sub-lethal concentrations of the highly used acetamiprid (ACE) and clothianidin (CLO). In this view, we characterized their electrophysiological effects on rat α3ß4 nAChRs, knowing that it is predominantly expressed in ganglia of the vegetative nervous system and the adrenal medulla, which initiates catecholamine secretion. Both molecules exhibited a weak agonist effect on α3ß4 receptors. Accordingly, their influence on epinephrine secretion from rat adrenal glands was also weak at 100 µM, but it was stronger at 500 µM. Challenging ACE or CLO together with nicotine (NIC) ended up with paradoxical effects on secretion. In addition, we measured the rat arterial blood pressure (ABP) in vivo by arterial catheterization. As expected, NIC induced a significant increase in ABP. ACE and CLO did not affect the ABP in the same conditions. However, simultaneous exposure of rats to both NIC and ACE/CLO promoted an increase of ABP and induced a biphasic response. Modeling the interaction of ACE or CLO on α3ß4 nAChR is consistent with a binding site located in the agonist pocket of the receptor. We present a transversal experimental approach of mammal intoxication with neonicotinoids at different scales, including in vitro, ex vivo, in vivo and in silico. It paves the way of the acute and chronic toxicity for this class of insecticides on mammalian organisms.


Assuntos
Epinefrina/metabolismo , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nicotina/toxicidade , Receptores Nicotínicos/metabolismo , Medula Suprarrenal/efeitos dos fármacos , Medula Suprarrenal/metabolismo , Animais , Pressão Arterial/efeitos dos fármacos , Modelos Animais de Doenças , Agonismo Parcial de Drogas , Gânglios/efeitos dos fármacos , Gânglios/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Guanidinas/toxicidade , Masculino , Ratos , Tiazóis/toxicidade , Testes de Toxicidade Subaguda
4.
Biochem Biophys Res Commun ; 548: 84-90, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33636639

RESUMO

Brain nicotinic acetylcholine receptors (nAChRs) reportedly suppress the micturition, but the mechanisms responsible for this suppression remain unclear. We previously reported that intracerebroventricularly administered (±)-epibatidine (non-selective nAChR agonist) activated the sympatho-adrenomedullary system, which can affect the micturition. Therefore, we investigated (1) whether intracerebroventricularly administered (±)-epibatidine-induced effects on the micturition were dependent on the sympatho-adrenomedullary system, and (2) brain nAChR subtypes involved in the (±)-epibatidine-induced effects in urethane-anesthetized male Wistar rats. Plasma noradrenaline and adrenaline (catecholamines) were measured just before and 5 min after (±)-epibatidine administration. Evaluation of urodynamic parameters, intercontraction intervals (ICI) and maximal voiding pressure (MVP) by cystometry was started 1 h before (±)-epibatidine administration or intracerebroventricular pretreatment with other drugs and continued 1 h after (±)-epibatidine administration. Intracerebroventricularly administered (±)-epibatidine elevated plasma catecholamines and prolonged ICI without affecting MVP, and these changes were suppressed by intracerebroventricularly pretreated mecamylamine (non-selective nAChR antagonist). Acute bilateral adrenalectomy abolished the (±)-epibatidine-induced elevation of plasma catecholamines, but had no effect on the (±)-epibatidine-induced ICI prolongation. The latter was suppressed by intracerebroventricularly pretreated methyllycaconitine (selective α7-nAChR antagonist), SR95531 (GABAA antagonist), and SCH50911 (GABAB antagonist), but not by dihydro-ß-erythroidine (selective α4ß2-nAChR antagonist). Intracerebroventricularly administered PHA568487 (selective α7-nAChR agonist) prolonged ICI without affecting MVP, similar to (±)-epibatidine. These results suggest that stimulation of brain α7-nAChRs suppresses the rat micturition through brain GABAA/GABAB receptors, independently of the sympatho-adrenomedullary outflow modulation.


Assuntos
Encéfalo/metabolismo , Receptores de GABA/metabolismo , Micção , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Medula Suprarrenal/efeitos dos fármacos , Medula Suprarrenal/metabolismo , Adrenalectomia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Epinefrina/sangue , Masculino , Contração Muscular/efeitos dos fármacos , Norepinefrina/sangue , Piridinas/farmacologia , Ratos Wistar , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo
5.
Neurochem Res ; 46(2): 159-164, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33170479

RESUMO

The corticotropin-releasing hormone family of peptides is involved in regulating the neuroendocrine stress response. Also, the vagus nerve plays an important role in the transmission of immune system-related signals to brain structures, thereby orchestrating the neuroendocrine stress response. Therefore, we investigated gene expression of urocortin 2 (Ucn2) and c-fos, a markers of neuronal activity, within the hypothalamic paraventricular nucleus (PVN), a brain structure involved in neuroendocrine and neuroimmune responses, as well as in the adrenal medulla and spleen in vagotomized rats exposed to immune challenge. In addition, markers of neuroendocrine stress response activity were investigated in the adrenal medulla, spleen, and plasma. Intraperitoneal administration of lipopolysaccharide (LPS) induced a significant increase of c-fos and Ucn2 gene expression in the PVN, and adrenal medulla as well as increases of plasma corticosterone levels. In addition, LPS administration induced a significant increase in the gene expression of tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) in the adrenal medulla. In the spleen, LPS administration increased gene expression of c-fos, while gene expression of TH and PNMT was significantly reduced, and gene expression of Ucn2 was not affected. Subdiaphragmatic vagotomy significantly attenuated the LPS-induced increases of gene expression of c-fos and Ucn2 in the PVN and Ucn2 in the adrenal medulla. Our data has shown that Ucn2 may be involved in regulation of the HPA axis in response to immune challenge. In addition, our findings indicate that the effect of immune challenge on gene expression of Ucn2 is mediated by vagal pathways.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Urocortinas/metabolismo , Medula Suprarrenal/efeitos dos fármacos , Animais , Hormônio Liberador da Corticotropina/genética , Masculino , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Baço/efeitos dos fármacos , Urocortinas/genética , Vagotomia , Nervo Vago/cirurgia
6.
Bull Exp Biol Med ; 169(3): 398-400, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32748142

RESUMO

We studied histophysiology of the adrenal medulla in adult (70-day-old) male Wistar rats developmentally exposed to low doses of endocrine disruptor DDT. It was found that exposure to DDT during the prenatal and postnatal ontogeny decelerated the development of the adrenal medulla and reduced the synthesis of tyrosine hydroxylase, the rate-liming enzyme of catecholamine synthesis, in chromaffin cells, which led to a decrease in epinephrine secretion into the blood.


Assuntos
Medula Suprarrenal/efeitos dos fármacos , Disruptores Endócrinos/farmacologia , Medula Suprarrenal/metabolismo , Animais , Catecolaminas/metabolismo , Células Cromafins/efeitos dos fármacos , Células Cromafins/metabolismo , DDT/farmacologia , Epinefrina/sangue , Masculino , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo
7.
Psychoneuroendocrinology ; 119: 104750, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32569990

RESUMO

BACKGROUND AND AIMS: The gut microbiota produces metabolites that are an integral part of the metabolome and, as such, of the host physiology. Changes in gut microbiota metabolism could therefore contribute to pathophysiological processes. We showed previously that a chronic and moderate overproduction of indole from tryptophan in male individuals of the highly stress-sensitive F344 rat strain induced anxiety-like and helplessness behaviors. The aim of the present study was to extend the scope of these findings by investigating whether emotional behaviors of male mice that are moderately stress-sensitive but chronically exposed to environmental stressors would also be affected by indole. METHODS: We colonized germ-free male C3H/HeN mice with a wild-type indole-producing Escherichia coli strain, or with the non-indole producing mutant. Gnotobiotic mice were subjected to an unpredictable chronic mild stress procedure, then to a set of tests aimed at assessing anxiety-like (novelty and elevated plus maze tests) and depression-like behaviors (coat state, splash, nesting, tail suspension and sucrose tests). Results of the individual tests were aggregated into a common z-score to estimate the overall emotional response to chronic mild stress and chronic indole production. We also carried out biochemical and molecular analyses in gut mucosa, plasma, brain hippocampus and striatum, and adrenal glands, to examine biological correlates that are usually associated with stress, anxiety and depression. RESULTS: Chronic mild stress caused coat state degradation and anhedonia in both indole-producing and non-indole producing mice, but it did not influence behaviors in the other tests. Chronic indole production did not influence mice behavior when tests were considered individually, but it increased the overall emotionality z-score, specifically in mice under chronic mild stress. Interestingly, in the same mice, indole induced a dramatic increase of the expression of the adrenomedullary Pnmt gene, which is involved in catecholamine biosynthesis. By contrast, systemic tryptophan bioavailability, brain serotonin and dopamine levels and turnover, as well as expression of gut and brain genes involved in cytokine production and tryptophan metabolism along the serotonin and kynurenine pathways, remained similar in all mice. CONCLUSIONS: Chronic indole production by the gut microbiota increased the vulnerability of male mice to the adverse effects of chronic mild stress on emotional behaviors. It also targeted catecholamine biosynthetic pathway of the adrenal medulla, which plays a pivotal role in body's physiological adaptation to stressful events. Future studies will aim to investigate the action mechanisms responsible for these effects.


Assuntos
Medula Suprarrenal/efeitos dos fármacos , Emoções/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Indóis/farmacologia , Estresse Psicológico , Medula Suprarrenal/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Doença Crônica , Indóis/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Estresse Psicológico/metabolismo , Estresse Psicológico/microbiologia , Estresse Psicológico/patologia , Estresse Psicológico/psicologia , Fatores de Tempo
8.
Eur J Pharmacol ; 872: 172956, 2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32001221

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) acts on adrenal medullary (AM) cells as a neurotransmitter of the sympathetic preganglionic nerve. In guinea-pig AM cells, PACAP induces little catecholamine secretion, but enhances secretion evoked by stimulants, whereas in other animals, such as mouse, PACAP itself induces depolarization and/or catecholamine secretion. The present studies aim to explore the physiological implication of these species differences in PACAP actions, the ion channel mechanism for PACAP-induced depolarization, and the mechanism for facilitation of muscarinic receptor-mediated cation currents in mouse and guinea-pig AM cells. The perforated patch clamp technique was used to record the whole-cell current in isolated AM cells. The amplitudes of 3 nM PACAP-induced inward currents were significantly larger in mouse AM cells than guinea-pig, whereas 1 µM muscarine-induced currents were larger in guinea-pig AM cells than mouse. Exposure to PACAP consistently resulted in enhancement of muscarine-induced currents in guinea-pig AM cells and facilitation of cell membrane insertion of heteromeric TRPC1-TRPC4 channels in response to muscarine in PC12 cells. The PACAP-induced current was inhibited by 30 µM 9-phenanthrol, a specific TRPM4 channel inhibitor, and abolished by replacement of external Na+ with N-methyl D-glucamine. TRPM4-like immunoreactivity was located at the cell periphery in AM cells. The present results indicate that PACAP and muscarinic receptors are major metabotropic receptors mediating generation of depolarizing inward currents in mouse and guinea-pig AM cells, respectively. We conclude that PACAP activates TRPM4-like channels and enhance the muscarinic current through facilitating the membrane insertion of TRPC1-TRPC4 channels in AM cells.


Assuntos
Medula Suprarrenal/efeitos dos fármacos , Células Cromafins/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores Muscarínicos/metabolismo , Medula Suprarrenal/citologia , Medula Suprarrenal/metabolismo , Animais , Linhagem Celular Tumoral , Células Cromafins/metabolismo , Cobaias , Células HEK293 , Humanos , Masculino , Camundongos , Muscarina/farmacologia , Técnicas de Patch-Clamp , Ratos , Canais de Cátion TRPC , Canais de Cátion TRPM
10.
Br J Pharmacol ; 175(19): 3758-3772, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30007012

RESUMO

BACKGROUND AND PURPOSE: We have demonstrated that i.c.v.-administered (±)-epibatidine, a nicotinic ACh receptor (nAChR) agonist, induced secretion of noradrenaline and adrenaline (catecholamines) from the rat adrenal medulla with dihydro-ß-erythroidin (an α4ß2 nAChR antagonist)-sensitive brain mechanisms. Here, we examined central mechanisms for the (±)-epibatidine-induced responses, focusing on brain NOS and NO-mediated mechanisms, soluble GC (sGC) and protein S-nitrosylation (a posttranslational modification of protein cysteine thiol groups), in urethane-anaesthetized (1.0 g·kg-1 , i.p.) male Wistar rats. EXPERIMENTAL APPROACH: (±)-Epibatidine was i.c.v. treated after i.c.v. pretreatment with each inhibitor described below. Then, plasma catecholamines were measured electrochemically after HPLC. Immunoreactivity of S-nitrosylated cysteine (SNO-Cys) in α4 nAChR subunit (α4)-positive spinally projecting neurones in the rat hypothalamic paraventricular nucleus (PVN, a regulatory centre of adrenomedullary outflow) after i.c.v. (±)-epibatidine administration was also investigated. KEY RESULTS: (±)-Epibatidine-induced elevation of plasma catecholamines was significantly attenuated by L-NAME (non-selective NOS inhibitor), carboxy-PTIO (NO scavenger), BYK191023 [selective inducible NOS (iNOS) inhibitor] and dithiothreitol (thiol-reducing reagent), but not by 3-bromo-7-nitroindazole (selective neuronal NOS inhibitor) or ODQ (sGC inhibitor). (±)-Epibatidine increased the number of spinally projecting PVN neurones with α4- and SNO-Cys-immunoreactivities, and this increment was reduced by BYK191023. CONCLUSIONS AND IMPLICATIONS: Stimulation of brain nAChRs can induce elevation of plasma catecholamines through brain iNOS-derived NO-mediated protein S-nitrosylation in rats. Therefore, brain nAChRs (at least α4ß2 subtype) and NO might be useful targets for alleviation of catecholamines overflow induced by smoking.


Assuntos
Medula Suprarrenal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico/antagonistas & inibidores , Piridinas/farmacologia , Receptores Nicotínicos/metabolismo , Medula Suprarrenal/metabolismo , Animais , Encéfalo/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Catecolaminas/sangue , Catecolaminas/metabolismo , Infusões Intraventriculares , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Piridinas/administração & dosagem , Ratos , Ratos Wistar
11.
Acta Histochem ; 120(4): 363-372, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29628120

RESUMO

The adrenal medulla is crucial for the survival of species facing significant environmental changes. The parenchyma is composed mainly of chromaffin cells, ganglion cells and sustentacular cells (SC). The male viscacha exhibits seasonal variations of gonadal activity and other metabolic functions. The aim of this work was to investigate the influence of the reproductive conditions on the morphology of SC of this rodent. In addition, the effects of testosterone and melatonin on these cells were studied. Immunoexpression of S100 protein, GFAP and vimentin were analyzed. Furthermore, the distribution of adrenergic and noradrenergic chromaffin cells subpopulations was studied for the first time in this species. SC present long cytoplasmic processes in contact with chromaffin cells, probably generating an intraglandular communication network. Significant differences (p < 0.05) in the %IA (percentage of immunopositive area) for the S100 protein were observed according to winter (4.21 ±â€¯0.34) and summer (3.51 ±â€¯0.15) values. In castrated animals, the %IA (6.05 ±â€¯0.35) was significantly higher in relation to intact animals (3.95 ±â€¯0.40). In melatonin-treated animals the %IA (3.62 ±â€¯0.23) was significantly higher compared to control animals (2.65 ±â€¯0.26). GFAP immunoexpression was negative and no noradrenergic chromaffin cells were detected suggesting an adrenergic phenotype predominance. Vimentin was observed in SC, endothelial cells and connective tissue. Results indicate that SC exhibit variations along the annual reproductive cycle, along with castration and the melatonin administration. Our results suggest that in this rodent SC are not only support elements, but also participate in the modulation of the activity of the adrenal medulla; probably through paracrine effects.


Assuntos
Medula Suprarrenal/efeitos dos fármacos , Androgênios/farmacologia , Melatonina/farmacologia , Reprodução/efeitos dos fármacos , Medula Suprarrenal/ultraestrutura , Animais , Imuno-Histoquímica , Masculino , Estações do Ano
12.
Endocrinology ; 159(1): 341-355, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29077837

RESUMO

Catecholamine (CA) neurons in the ventrolateral medulla (VLM) contribute importantly to glucoregulation during glucose deficit. However, it is not known which CA neurons elicit different glucoregulatory responses or whether selective activation of CA neurons is sufficient to elicit these responses. Therefore, to selectively activate CA subpopulations, we injected male or female Th-Cre+ transgenic rats with the Cre-dependent DREADD construct, AAV2-DIO-hSyn-hM3D(Gq)-mCherry, at one of four rostrocaudal levels of the VLM: rostral C1 (C1r), middle C1 (C1m), the area of A1 and C1 overlap (A1/C1), and A1. Transfection was highly selective for CA neurons at each site. Systemic injection of the Designer Receptor Exclusively Activated by Designer Drugs (DREADD) receptor agonist, clozapine-N-oxide (CNO), stimulated feeding in rats transfected at C1r, C1m, or A1/C1 but not A1. CNO increased corticosterone secretion in rats transfected at C1m or A1/C1 but not A1. In contrast, CNO did not increase blood glucose or induce c-Fos expression in the spinal cord or adrenal medulla after transfection of any single VLM site but required dual transfection of both C1m and C1r, possibly indicating that CA neurons mediating blood glucose responses are more sparsely distributed in C1r and C1m than those mediating feeding and corticosterone secretion. These results show that selective activation of C1 CA neurons is sufficient to increase feeding, blood glucose levels, and corticosterone secretion and suggest that each of these responses is mediated by CA neurons concentrated at different levels of the C1 cell group.


Assuntos
Medula Suprarrenal/metabolismo , Catecolaminas/metabolismo , Bulbo/metabolismo , Neurônios/metabolismo , Variantes Farmacogenômicos , Receptores de Droga/metabolismo , Corno Lateral da Medula Espinal/metabolismo , Ativação Metabólica , Medula Suprarrenal/efeitos dos fármacos , Medula Suprarrenal/patologia , Animais , Antipsicóticos/efeitos adversos , Antipsicóticos/farmacocinética , Comportamento Animal/efeitos dos fármacos , Clozapina/efeitos adversos , Clozapina/análogos & derivados , Clozapina/farmacocinética , Comportamento Alimentar/efeitos dos fármacos , Feminino , Humanos , Hiperglicemia/induzido quimicamente , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Proteínas Luminescentes/administração & dosagem , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Bulbo/citologia , Bulbo/efeitos dos fármacos , Proteínas do Tecido Nervoso/administração & dosagem , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Especificidade de Órgãos , Ratos Transgênicos , Receptores de Droga/administração & dosagem , Receptores de Droga/agonistas , Receptores de Droga/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/metabolismo , Corno Lateral da Medula Espinal/efeitos dos fármacos , Corno Lateral da Medula Espinal/patologia , Proteína Vermelha Fluorescente
13.
J Biomol Struct Dyn ; 36(3): 609-620, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132600

RESUMO

The objective of the present study was to evaluate the effects of propolis, pollen, and caffeic acid phenethyl ester (CAPE) on tyrosine hydroxylase (TH) activity and total RNA levels of Nω-nitro-L-arginine methyl ester (L-NAME) inhibition of nitric oxide synthase in the heart, adrenal medulla, and hypothalamus of hypertensive male Sprague dawley rats. The TH activity in the adrenal medulla, heart, and hypothalamus of the rats was significantly increased in the L-NAME group vs. control (p < 0.05). Treatment with L-NAME led to a significant increase in blood pressure (BP) in the L-NAME group compared to control (p < 0.05). These data suggest that propolis, pollen, and CAPE may mediate diminished TH activity in the heart, adrenal medulla, and hypothalamus in hypertensive rats. The decreased TH activity may be due to the modulation and synthesis of catecholamines and BP effects. In addition, the binding mechanism of CAPE within the catalytic domain of TH was investigated by means of molecular modeling approaches. These data suggest that the amino acid residues, Glu429 and Ser354 of TH may play a pivotal role in the stabilization of CAPE within the active site as evaluated by molecular dynamics (MD) simulations. Gibbs binding free energy (ΔGbinding) of CAPE in complex with TH was also determined by post-processing MD analysis approaches (i.e. Poisson-Boltzmann Surface Area (MM-PBSA) method).


Assuntos
Hipertensão/tratamento farmacológico , Hipertensão/enzimologia , Óxido Nítrico Sintase/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase/genética , Medula Suprarrenal/efeitos dos fármacos , Medula Suprarrenal/metabolismo , Animais , Ácidos Cafeicos/administração & dosagem , Domínio Catalítico , Catecolaminas/biossíntese , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Humanos , Hipertensão/genética , Hipertensão/patologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , NG-Nitroarginina Metil Éster/administração & dosagem , Óxido Nítrico Sintase/química , Álcool Feniletílico/administração & dosagem , Álcool Feniletílico/análogos & derivados , Pólen/efeitos adversos , Própole/administração & dosagem , Ratos , Tirosina 3-Mono-Oxigenase/química
14.
Pol J Vet Sci ; 20(2): 339-346, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28865224

RESUMO

Stress causes the activation of both the hypothalamic-pituitary-adrenocortical axis and sympatho-adrenal system, thus leading to the release from the adrenal medulla of catecholamines: adrenaline and, to a lesser degree, noradrenaline. It has been established that in addition to catecholamines, the adrenomedullary cells produce a variety of neuropeptides, including corticoliberine (CRH), vasopressin (AVP), oxytocin (OXY) and proopiomelanocortine (POMC) - a precursor of the adrenocorticotropic hormone (ACTH). The aim of this study was to investigate adrenal medulla activity in vitro depending, on a dose of CRH, AVP and OXY on adrenaline and noradrenaline release. Pieces of sheep adrenal medulla tissue (about 50 mg) were put on 24-well plates and were incubated in 1 mL of Eagle medium without hormone (control) or supplemented only once with CRH, AVP and OXY in three doses (10-7, 10-8 and 10-9 M) in a volume of 10 µL. The results showed that CRH stimulates adrenaline and noradrenaline release from the adrenal medulla tissue. The stimulating influence of AVP on adrenaline release was visible after the application of the two lower doses of this neuropeptide; however, AVP reduced noradrenaline release from the adrenal medulla tissue. A strong, inhibitory OXY effect on catecholamine release was observed, regardless of the dose of this hormone. Our results indicate the important role of OXY in the inhibition of adrenal gland activity and thus a better adaptation to stress on the adrenal gland level.


Assuntos
Medula Suprarrenal/efeitos dos fármacos , Epinefrina/metabolismo , Hipotálamo/metabolismo , Neuropeptídeos/farmacologia , Norepinefrina/metabolismo , Ovinos/fisiologia , Medula Suprarrenal/metabolismo , Animais , Catecolaminas/genética , Catecolaminas/metabolismo , Epinefrina/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Norepinefrina/genética
15.
J Neurochem ; 143(2): 171-182, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28815595

RESUMO

Adrenal chromaffin cells (ACCs) are the neuroendocrine arm of the sympathetic nervous system and key mediators of the physiological stress response. Acetylcholine (ACh) released from preganglionic splanchnic nerves activates nicotinic acetylcholine receptors (nAChRs) on chromaffin cells causing membrane depolarization, opening voltage-gated Ca2+ channels (VGCC), and exocytosis of catecholamines and neuropeptides. The serotonin transporter is expressed in ACCs and interacts with 5-HT1A receptors to control secretion. In addition to blocking the serotonin transporter, some selective serotonin reuptake inhibitors (SSRIs) are also agonists at sigma-1 receptors which function as intracellular chaperone proteins and can translocate to the plasma membrane to modulate ion channels. Therefore, we investigated whether SSRIs and other sigma-1 receptor ligands can modulate stimulus-secretion coupling in ACCs. Escitalopram and fluvoxamine (100 nM to 1 µM) reversibly inhibited nAChR currents. The sigma-1 receptor antagonists NE-100 and BD-1047 also blocked nAChR currents (≈ 50% block at 100 nM) as did PRE-084, a sigma-1 receptor agonist. Block of nAChR currents by fluvoxamine and NE-100 was not additive suggesting a common site of action. VGCC currents were unaffected by the drugs. Neither the increase in cytosolic [Ca2+ ] nor the resulting catecholamine secretion evoked by direct membrane depolarization to bypass nAChRs was altered by fluvoxamine or NE-100. However, both Ca2+ entry and catecholamine secretion evoked by the cholinergic agonist carbachol were significantly reduced by fluvoxamine or NE-100. Together, our data suggest that sigma-1 receptors do not acutely regulate catecholamine secretion. Rather, SSRIs and other sigma-1 receptor ligands inhibit secretion evoked by cholinergic stimulation because of direct block of Ca2+ entry via nAChRs.


Assuntos
Medula Suprarrenal/metabolismo , Catecolaminas/metabolismo , Células Cromafins/metabolismo , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/fisiologia , Receptores sigma/fisiologia , Medula Suprarrenal/citologia , Medula Suprarrenal/efeitos dos fármacos , Animais , Anisóis/farmacologia , Catecolaminas/antagonistas & inibidores , Bovinos , Células Cultivadas , Células Cromafins/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Propilaminas/farmacologia , Receptores sigma/agonistas , Receptor Sigma-1
16.
Neuro Endocrinol Lett ; 38(3): 224-235, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28759191

RESUMO

OBJECTIVES: Impairment in glucose homeostasis is one of the factors that may alter the feeding drive, hunger and satiety signals, which essential to maintain a sufficient level of energy for daily activities especially among the elderly. Adrenal medulla is one of the important organs that involves in glucose homeostasis through secretion of catecholamines. The catecholamines biosynthesis pathway utilizes various enzymes and protein kinases. The aims of this study are to investigate the effects of age on the biosynthetic pathway of catecholamines in adrenal medulla by determining the level of blood glucose and blood catecholamines, the gene and protein expression of biosynthetic catecholamine enzymes (TH, DBH and PNMT) as well as protein kinase substrates that involved in the phosphorylation of TH in 2DG-induced rats. METHODS: Adrenal medulla from male Sprague Dawley rats at the age of 3-months (n=12) and 24-months (n=12) were further divided into two groups: 1) treatment group with 2DG to create glucoprivation condition and 2) the vehicle group which received normal saline as control. RESULTS: The results showed that the level of glucose, adrenaline and noradrenaline were increased in response to acute glucoprivation conditions in both young and old rats. No age-related differences were found in the basal gene expression of the enzymes that involved in the catecholamines biosynthesis pathway. Interestingly the expressions of TH and DBH protein as well as the level of TH phosphorylation at Ser40, PKA, PKC and ERK1/2 substrates were higher in basal condition of the aged rats. However, contradicted findings were obtained in glucoprivic condition, which the protein expressions of DBH, pERK1/2 and substrates for pPKC were increased in young rats. Only substrate for pCDK was highly expressed in the old rats in the glucoprivic condition, while pPKC and pERK1/2 were decreased significantly. The results demonstrate that adrenal medulla of young and old rats are responsive to glucose deficit and capable to restore the blood glucose level by increasing the levels of blood catecholamines. CONCLUSION: The present findings also suggest that, at least in rats, aging alters the protein expression of the biosynthetic catecholamine enzymes as well as protein kinase substrates that may attenuate the response to glucoprivation.


Assuntos
Medula Suprarrenal/efeitos dos fármacos , Desoxiglucose/farmacologia , Epinefrina/metabolismo , Glucose/metabolismo , Norepinefrina/metabolismo , Medula Suprarrenal/metabolismo , Fatores Etários , Animais , Glicemia/metabolismo , Dopamina beta-Hidroxilase/genética , Dopamina beta-Hidroxilase/metabolismo , Masculino , Feniletanolamina N-Metiltransferase/genética , Feniletanolamina N-Metiltransferase/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Folia Histochem Cytobiol ; 55(2): 74-85, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28691730

RESUMO

INTRODUCTION: In traditional medicine, Citrullus colocynthis is used to treat diabetes, hyperlipidemia, cardiovascular diseases, inflammation, and oxidative stress, all of which can appear when a diet rich in vegetable fats, such as palm oil, is continuously consumed. Such high-fat diets are chronic stressors of the hypothalamic-pituitary-adrenal axis. The objective of our study was to analyze and evaluate the effects of colocynth total alkaloids and glycosides on metabolic, hormonal, and structural disorders of the adrenal medulla in Wistar rats fed a high-fat diet. MATERIAL AND METHODS: Twenty six Wistar rats were distributed as follows: six control animals received a standard laboratory diet; twenty experimental rats received the standard laboratory diet supplemented with palm oil - the high-fat diet (HFD). After seven months of this diet, the HFD group was subdivided into rats treated for the next 2 months with either alkaloid extract (HFD-ALk group) or ethanol extract of glycosides (HFD-GLc) or animals on HFD only. Plasma metabolites and ACTH concentrations were measured by standard methods. Sections of adrenal medulla were stained by Heidenhain-Azan method and Sudan Black. RESULTS: The adrenal medulla of the HFD rats showed prominent structural changes, such as hypertrophy of chromaffin and ganglion cells, vacuolation, inflammatory foci, and fibrosis. The biochemical and hormonal parameters were significantly improved in the HFD rats treated with alkaloid and glycoside extracts of Citrullus colocynthis. Moreover, the morphological changes of the adrenal medulla were attenuated in HFD-ALk and HFD-Glc rats. CONCLUSIONS: The results of the study indicate that phytotherapy using Citrullus colocynthis alkaloids may correct metabolic and hormonal perturbations as well as adrenal medulla structure of rats maintained on HFD.


Assuntos
Medula Suprarrenal/efeitos dos fármacos , Alcaloides/farmacologia , Citrullus colocynthis/química , Dieta Hiperlipídica , Glicosídeos/farmacologia , Medula Suprarrenal/ultraestrutura , Hormônio Adrenocorticotrópico/sangue , Animais , Glicosídeos/química , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Ratos , Ratos Wistar
18.
Auton Neurosci ; 203: 74-80, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28202248

RESUMO

AIMS: A functional interaction between the corticotropin-releasing factor (CRF) system and noradrenergic neurons in the brain has been suggested. In the present study, we investigated the interrelationship between the central CRF-induced elevation of plasma catecholamines and adrenoceptor activation in the paraventricular nucleus of the hypothalamus (PVN) using urethane-anesthetized rats. MAIN METHODS: In rats under urethane anesthesia, a femoral venous line was inserted for infusion of saline, and a femoral arterial line was inserted for collecting blood samples. Next, animals were placed in a stereotaxic apparatus for the application of test agents. Catecholamines in the plasma were extracted by alumina absorption and were assayed with high-performance liquid chromatography with electrochemical detection. Quantification of noradrenaline in rat PVN microdialysates was performed with high-performance liquid chromatography with electrochemical detection. KEY FINDINGS: We showed that centrally administered CRF elevated noradrenaline release in the PVN. Furthermore, we demonstrated that microinjection of phenylephrine into the PVN induced elevation of plasma levels of adrenaline, but not of noradrenaline, whereas microinjection of isoproterenol into the PVN induced elevation of plasma levels of noradrenaline, but not of adrenaline. Bilateral blockade of adrenoceptors in the PVN revealed that phentolamine significantly suppressed the CRF-induced elevation of plasma adrenaline level, while propranolol significantly CRF-induced elevation of plasma noradrenaline level. SIGNIFICANCE: Our results suggest that centrally administered CRF-induced elevation of plasma levels of adrenaline and noradrenaline can be mediated via activation of α-adrenoceptors and ß-adrenoceptors, respectively, in the rat PVN.


Assuntos
Medula Suprarrenal/efeitos dos fármacos , Hormônio Liberador da Corticotropina/administração & dosagem , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Receptores Adrenérgicos alfa/metabolismo , Receptores Adrenérgicos beta/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Medula Suprarrenal/metabolismo , Adrenérgicos/farmacologia , Anestésicos Intravenosos/farmacologia , Animais , Hormônio Liberador da Corticotropina/metabolismo , Epinefrina/sangue , Isoproterenol/farmacologia , Masculino , Norepinefrina/sangue , Núcleo Hipotalâmico Paraventricular/metabolismo , Fentolamina/farmacologia , Fenilefrina/farmacologia , Propranolol/farmacologia , Ratos Wistar , Sistema Nervoso Simpático/metabolismo , Simpatomiméticos/farmacologia , Uretana/farmacologia
19.
J Cell Biochem ; 118(8): 2096-2107, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27958651

RESUMO

Immune activation can alter the activity of adrenal chromaffin cells. The effect of immune activation by lipopolysaccharide (LPS) on the regulation of tyrosine hydroxylase (TH) in the adrenal medulla in vivo was determined between 1 day and 6 months after LPS injection. The plasma levels of eleven cytokines were reduced 1 day after LPS injection, whereas the level for interleukin-10 was increased. The levels of all cytokines remained at control levels until 6 months when the levels of interleukin-6 and -4 were increased. One day after LPS injection, there was a decrease in TH-specific activity that may be due to decreased phosphorylation of serine 31 and 40. This decreased phosphorylation of serine 31 and 40 may be due to an increased activation of the protein phosphatase PP2A. One week after LPS injection, there was increased TH protein and increased phosphorylation of serine 40 that this was not accompanied by an increase in TH-specific activity. All TH parameters measured returned to basal levels between 1 month and 3 months. Six months after injection there was an increase in TH protein. This was associated with increased levels of the extracellular regulated kinase isoforms 1 and 2. This work shows that a single inflammatory event has the capacity to generate both short-term and long-term changes in TH regulation in the adrenal medulla of the adult animal. J. Cell. Biochem. 118: 2096-2107, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Medula Suprarrenal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Tirosina 3-Mono-Oxigenase/genética , Medula Suprarrenal/imunologia , Medula Suprarrenal/patologia , Animais , Peso Corporal/efeitos dos fármacos , Citocinas/genética , Citocinas/imunologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/imunologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Tirosina 3-Mono-Oxigenase/imunologia
20.
Acta Histochem ; 119(1): 48-56, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27889068

RESUMO

Diosgenin, a steroidal sapogenin of natural origin, has demonstrated benefits when it comes to the treatment of malignancies, cardiovascular issues and menopausal symptoms. In this study, we investigated the histological changes of the adrenal gland after diosgenin application in a rat model of the menopause. Middle-aged, acyclic female Wistar rats were divided into control (C; n=6) and diosgenin treated (D; n=6) groups. Diosgenin (100mg/kg b.w./day) was orally administered for four weeks, while C group received the vehicle alone. A histological approach included design-based stereology, histochemistry and immunohistochemistry. The adrenal cortex volume decreased in D females by 15% (p<0.05) while the volume of adrenal medulla increased (p<0.05) by 64%, compared to the same parameters in C group. Volume density of the zona glomerulosa (expressed per absolute adrenal gland volume) in D rats increased (p<0.05) by 22% in comparison with C animals. Diosgenin treatment decreased (p<0.05) the volume density of the zona fasciculata (expressed per volume of adrenal cortex) by 15% when compared to C females. Absolute volume of the zona reticularis in D group decreased (p<0.05) by 38% in comparison with the same parameter in C rats. Also, after diosgenin application, the volume density of the zona reticularis (expressed per volume of adrenal cortex) and the zona reticularis cell volume were decreased by 51% and 20% (p<0.05) respectively, compared to C animals. Our results, reflecting a decrease in many stereological parameters of the adrenal cortex, indicate that diosgenin took over the role of corticosteroid precursors and became incorporated into steroidogenesis.


Assuntos
Córtex Suprarrenal/efeitos dos fármacos , Medula Suprarrenal/efeitos dos fármacos , Diosgenina/farmacologia , Menopausa/efeitos dos fármacos , Esteroides/farmacologia , Administração Oral , Córtex Suprarrenal/ultraestrutura , Medula Suprarrenal/ultraestrutura , Animais , Feminino , Humanos , Menopausa/fisiologia , Modelos Animais , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA