Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Melanoma Res ; 34(3): 225-233, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469881

RESUMO

Currently, numerous studies suggest a potential association between the gut microbiota and the progression of melanoma. Hence, our objective was to examine the genetic impact of the gut microbiota on melanoma through the utilization of the Mendelian randomization (MR) approach. This research employed Bacteroides, Streptococcus, Proteobacteria, and Lachnospiraceae as exposure variables and cutaneous melanoma (CM) as the outcome in a two-sample MR analysis. In this MR research, the primary analytical approach was the random-effects inverse-variance weighting (IVW) model. Complementary methods included weighted median, MR Egger, and basic and weighted models. We assessed both heterogeneity and horizontal pleiotropy in our study, scrutinizing whether the analysis results were affected by any individual SNP. The random-effects IVW outcomes indicated that Streptococcus, Bacteroides, Lachnospiraceae and Proteobacteria had no causal relationship with CM, with odds ratios of 1.001 [95% confidence interval (CI) = 0.998-1.004, P  = 0.444], 0.999 (95% CI = 0.996-1.002, P  = 0.692), 1.001 (95% CI = 0.998-1.003, P  = 0.306), and 0.999 (95% CI = 0.997-1.002, P  = 0.998), respectively. No analyses exhibited heterogeneity, horizontal pleiotropy, or deviations. Our research determined that Bacteroides, Streptococcus, Proteobacteria, and Lachnospiraceae do not induce CM at the genetic level. However, we cannot dismiss the possibility that these four gut microbiotas might influence CM through other mechanisms.


Assuntos
Microbioma Gastrointestinal , Melanoma , Análise da Randomização Mendeliana , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/microbiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/microbiologia , Melanoma Maligno Cutâneo
2.
Nature ; 617(7960): 377-385, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37138075

RESUMO

The gut microbiota is a crucial regulator of anti-tumour immunity during immune checkpoint inhibitor therapy. Several bacteria that promote an anti-tumour response to immune checkpoint inhibitors have been identified in mice1-6. Moreover, transplantation of faecal specimens from responders can improve the efficacy of anti-PD-1 therapy in patients with melanoma7,8. However, the increased efficacy from faecal transplants is variable and how gut bacteria promote anti-tumour immunity remains unclear. Here we show that the gut microbiome downregulates PD-L2 expression and its binding partner repulsive guidance molecule b (RGMb) to promote anti-tumour immunity and identify bacterial species that mediate this effect. PD-L1 and PD-L2 share PD-1 as a binding partner, but PD-L2 can also bind RGMb. We demonstrate that blockade of PD-L2-RGMb interactions can overcome microbiome-dependent resistance to PD-1 pathway inhibitors. Antibody-mediated blockade of the PD-L2-RGMb pathway or conditional deletion of RGMb in T cells combined with an anti-PD-1 or anti-PD-L1 antibody promotes anti-tumour responses in multiple mouse tumour models that do not respond to anti-PD-1 or anti-PD-L1 alone (germ-free mice, antibiotic-treated mice and even mice colonized with stool samples from a patient who did not respond to treatment). These studies identify downregulation of the PD-L2-RGMb pathway as a specific mechanism by which the gut microbiota can promote responses to PD-1 checkpoint blockade. The results also define a potentially effective immunological strategy for treating patients who do not respond to PD-1 cancer immunotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Imunoterapia , Melanoma , Microbiota , Animais , Humanos , Camundongos , Moléculas de Adesão Celular Neuronais , Modelos Animais de Doenças , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transplante de Microbiota Fecal , Vida Livre de Germes , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/imunologia , Melanoma/microbiologia , Melanoma/terapia , Ligação Proteica/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
3.
Science ; 374(6575): 1632-1640, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941392

RESUMO

Gut bacteria modulate the response to immune checkpoint blockade (ICB) treatment in cancer, but the effect of diet and supplements on this interaction is not well studied. We assessed fecal microbiota profiles, dietary habits, and commercially available probiotic supplement use in melanoma patients and performed parallel preclinical studies. Higher dietary fiber was associated with significantly improved progression-free survival in 128 patients on ICB, with the most pronounced benefit observed in patients with sufficient dietary fiber intake and no probiotic use. Findings were recapitulated in preclinical models, which demonstrated impaired treatment response to anti­programmed cell death 1 (anti­PD-1)­based therapy in mice receiving a low-fiber diet or probiotics, with a lower frequency of interferon-γ­positive cytotoxic T cells in the tumor microenvironment. Together, these data have clinical implications for patients receiving ICB for cancer.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/terapia , Probióticos , Animais , Estudos de Coortes , Ácidos Graxos Voláteis/análise , Transplante de Microbiota Fecal , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Imunoterapia , Masculino , Melanoma/imunologia , Melanoma/microbiologia , Melanoma Experimental/imunologia , Melanoma Experimental/microbiologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Intervalo Livre de Progressão , Linfócitos T
4.
Cancer Biomark ; 32(3): 251-262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34459386

RESUMO

BACKGROUND: To explore the suppressive effect of Apoptin-loaded oncolytic adenovirus (Ad-VT) on luciferase-labeled human melanoma cells in vitro and in vivo. METHODS: The stable luciferase-expressing human melanoma cells A375-luc or M14-luc were obtained by transfecting the plasmid pGL4.51 and selection with G418, followed by luciferase activity, genetic stability and bioluminescence intensity assays. In vitro, the inhibitory effects of Ad-VT on A375-luc or M14-luc were evaluated using the MTS cell proliferation, FITC-Annexin V apoptosis detection, transwell migration, Matrigel invasion and scratch assays. The inhibition pathway in Ad-VT-infected A375-luc and M14-luc cells were analyzed by JC-1 staining and Western-blot detection of mitochondrial apoptosis-related proteins. In vivo, the suppressive effects of Ad-VT on A375-luc or M14-luc were assessed by living imaging technology, tumor volume, bioluminescence intensity, survival curves and immunohistochemical analysis of the tumors from the xenograft tumor model BALB/c nude mice. RESULTS: The growth and migration of A375-luc and M14-luc were significantly inhibited by Ad-VT in vitro. The evaluations of A375-luc and M14-luc tumor models in BALB/c nude mice were successfully performed using living imaging technology. Ad-VT had an anti-tumor effect by reducing tumor growth and increasing survival in vivo. Ad-VT significantly changed the mitochondrial membrane potential by triggering the the mitochondrial release of apoptosis-related proteins, AIF (apoptosis inducing factor), ARTS (Apoptosis-Related Proteins), and Cyto-c (cytochrome c) from the mitochondria. CONCLUSION: Ad-VT reduced the mitochondrial membrane potential in A375-luc or M14-luc cells and induced the mitochondrial release of AIF, ARTS and Cyto-C. Ad-VT induced apoptosis in A375-luc or M14-luc cells via the mitochondrial apoptotic pathway.


Assuntos
Adenoviridae/patogenicidade , Melanoma/microbiologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancer Cell ; 39(9): 1202-1213.e6, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34329585

RESUMO

Studies suggest that the efficacy of cancer chemotherapy and immunotherapy is influenced by intestinal bacteria. However, the influence of the microbiome on radiation therapy is not as well understood, and the microbiome comprises more than bacteria. Here, we find that intestinal fungi regulate antitumor immune responses following radiation in mouse models of breast cancer and melanoma and that fungi and bacteria have opposite influences on these responses. Antibiotic-mediated depletion or gnotobiotic exclusion of fungi enhances responsiveness to radiation, whereas antibiotic-mediated depletion of bacteria reduces responsiveness and is associated with overgrowth of commensal fungi. Further, elevated intratumoral expression of Dectin-1, a primary innate sensor of fungi, is negatively associated with survival in patients with breast cancer and is required for the effects of commensal fungi in mouse models of radiation therapy.


Assuntos
Antifúngicos/administração & dosagem , Bactérias/classificação , Neoplasias da Mama/terapia , Fungos/efeitos dos fármacos , Lectinas Tipo C/genética , Melanoma/terapia , Animais , Antifúngicos/farmacologia , Bactérias/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/microbiologia , Terapia Combinada , Regulação para Baixo , Feminino , Fungos/classificação , Fungos/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Melanoma/imunologia , Melanoma/microbiologia , Camundongos , Simbiose , Linfócitos T/metabolismo , Macrófagos Associados a Tumor/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Genome Biol ; 22(1): 187, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162397

RESUMO

BACKGROUND: The human microbiome plays an important role in cancer. Accumulating evidence indicates that commensal microbiome-derived DNA may be represented in minute quantities in the cell-free DNA of human blood and could possibly be harnessed as a new cancer biomarker. However, there has been limited use of rigorous experimental controls to account for contamination, which invariably affects low-biomass microbiome studies. RESULTS: We apply a combination of 16S-rRNA-gene sequencing and droplet digital PCR to determine if the specific detection of cell-free microbial DNA (cfmDNA) is possible in metastatic melanoma patients. Compared to matched stool and saliva samples, the absolute concentration of cfmDNA is low but significantly above the levels detected from negative controls. The microbial community of plasma is strongly influenced by laboratory and reagent contaminants introduced during the DNA extraction and sequencing processes. Through the application of an in silico decontamination strategy including the filtering of amplicon sequence variants (ASVs) with batch dependent abundances and those with a higher prevalence in negative controls, we identify known gut commensal bacteria, such as Faecalibacterium, Bacteroides and Ruminococcus, and also other uncharacterised ASVs. We analyse additional plasma samples, highlighting the potential of this framework to identify differences in cfmDNA between healthy and cancer patients. CONCLUSIONS: Together, these observations indicate that plasma can harbour a low yet detectable level of cfmDNA. The results highlight the importance of accounting for contamination and provide an analytical decontamination framework to allow the accurate detection of cfmDNA for future biomarker studies in cancer and other diseases.


Assuntos
Ácidos Nucleicos Livres/genética , DNA Bacteriano/genética , Melanoma/microbiologia , Microbiota/genética , Neoplasias Cutâneas/microbiologia , Bacteroides/classificação , Bacteroides/genética , Bacteroides/isolamento & purificação , Ácidos Nucleicos Livres/sangue , Contaminação por DNA , DNA Bacteriano/sangue , Faecalibacterium/classificação , Faecalibacterium/genética , Faecalibacterium/isolamento & purificação , Fezes/microbiologia , Humanos , Melanoma/diagnóstico , Melanoma/patologia , Metástase Neoplásica , Estadiamento de Neoplasias , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Ruminococcus/classificação , Ruminococcus/genética , Ruminococcus/isolamento & purificação , Saliva/microbiologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Simbiose/fisiologia
7.
Eur J Cancer ; 151: 25-34, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33962358

RESUMO

OBJECTIVE: The gut microbiome plays an important role in systemic inflammation and immune response. Microbes can translocate and reside in tumour niches. However, it is unclear how the intratumour microbiome affects immunity in human cancer. The purpose of this study was to investigate the association between intratumour bacteria, infiltrating CD8+ T cells and patient survival in cutaneous melanoma. METHODS: Using The Cancer Genome Altas's cutaneous melanoma RNA sequencing data, levels of intratumour bacteria and infiltrating CD8+ T cells were determined. Correlation between intratumour bacteria and infiltrating CD8+ T cells or chemokine gene expression and survival analysis of infiltrating CD8+ T cells and Lachnoclostridium in cutaneous melanoma were performed. RESULTS: Patients with low levels of CD8+ T cells have significantly shorter survival than those with high levels. The adjusted hazard ratio was 1.57 (low vs high) (95% confidence interval: 1.17-2.10, p = 0.002). Intratumour bacteria of the Lachnoclostridium genus ranked top in a positive association with infiltrating CD8+ T cells (correlation coefficient = 0.38, p = 9.4 × 10-14), followed by Gelidibacter (0.31, p = 1.13 × 10-9), Flammeovirga (0.29, p = 1.96 × 10-8) and Acinetobacter (0.28, p = 8.94 × 10-8). These intratumour genera positively correlated with chemokine CXCL9, CXCL10 and CCL5 expression. The high Lachnoclostridium load significantly reduced the mortality risk (p = 0.0003). However, no statistically significant correlation was observed between intratumour Lachnoclostridium abundance and the levels of either NK, B or CD4+ T cells. CONCLUSION: Intratumour-residing gut microbiota could modulate chemokine levels and affect CD8+ T-cell infiltration, consequently influencing patient survival in cutaneous melanoma. Manipulating the intratumour gut microbiome may benefit patient outcomes for those undergoing immunotherapy.


Assuntos
Bactérias/crescimento & desenvolvimento , Translocação Bacteriana , Microbioma Gastrointestinal , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Melanoma/microbiologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/microbiologia , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carga Bacteriana , Quimiocinas/genética , Quimiocinas/metabolismo , Clostridiales/crescimento & desenvolvimento , Citotoxicidade Imunológica , Feminino , Humanos , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Melanoma/metabolismo , Melanoma/mortalidade , Pessoa de Meia-Idade , Prognóstico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/mortalidade , Linfócitos T Citotóxicos/metabolismo , Adulto Jovem
8.
Nature ; 592(7852): 138-143, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731925

RESUMO

A variety of species of bacteria are known to colonize human tumours1-11, proliferate within them and modulate immune function, which ultimately affects the survival of patients with cancer and their responses to treatment12-14. However, it is not known whether antigens derived from intracellular bacteria are presented by the human leukocyte antigen class I and II (HLA-I and HLA-II, respectively) molecules of tumour cells, or whether such antigens elicit a tumour-infiltrating T cell immune response. Here we used 16S rRNA gene sequencing and HLA peptidomics to identify a peptide repertoire derived from intracellular bacteria that was presented on HLA-I and HLA-II molecules in melanoma tumours. Our analysis of 17 melanoma metastases (derived from 9 patients) revealed 248 and 35 unique HLA-I and HLA-II peptides, respectively, that were derived from 41 species of bacteria. We identified recurrent bacterial peptides in tumours from different patients, as well as in different tumours from the same patient. Our study reveals that peptides derived from intracellular bacteria can be presented by tumour cells and elicit immune reactivity, and thus provides insight into a mechanism by which bacteria influence activation of the immune system and responses to therapy.


Assuntos
Antígenos de Bactérias/análise , Antígenos de Bactérias/imunologia , Bactérias/imunologia , Antígenos HLA/imunologia , Melanoma/imunologia , Melanoma/microbiologia , Peptídeos/análise , Peptídeos/imunologia , Apresentação de Antígeno , Bactérias/classificação , Bactérias/genética , Linhagem Celular Tumoral , Técnicas de Cocultura , Antígenos HLA/análise , Humanos , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma/patologia , Metástase Neoplásica/imunologia , Filogenia , RNA Ribossômico 16S/genética
9.
Methods Mol Biol ; 2265: 461-474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33704734

RESUMO

Gut microbiota influence and modulate host immune responses. In preclinical cancer models, mice lacking gut microbiota have a markedly diminished response to immune checkpoint inhibitor therapy. Further, in melanoma patients, specific commensal gut microbiota have been associated with a positive clinical response to immunotherapy. In order to study the gut microbiome and metabolome, we have developed methods for fecal sample collection and processing, microbiome and metabolome profiling, and bioinformatic analysis. This protocol will be a useful tool for interrogating the taxonomic composition and functional output of a melanoma patient's gut microbiome.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal , Melanoma , Metaboloma , Metabolômica , Animais , Humanos , Melanoma/metabolismo , Melanoma/microbiologia , Camundongos
10.
Pigment Cell Melanoma Res ; 34(2): 244-255, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33438345

RESUMO

Melanocytes are static, minimally proliferative cells. This leaves them vulnerable in vitiligo. Yet upon malignant transformation, they form vicious tumors. This profound switch in physiology is accompanied by genetic change and is driven by environmental factors. If UV exposure in younger years supports malignant transformation and melanoma formation, it can likewise impart mutations on melanocytes that reduce their viability, to initiate vitiligo. A wide variety of microbes can influence these diametrically opposed outcomes before either disease takes hold. These microbes are vehicles of change that we are only beginning to study. Once a genetic modification occurs, there is a wide variety of immune cells ready to respond. Though it does not act alone, the T cell is among the most decisive responders in this process. The same biochemical process that offered the skin protection by producing melanin can become an Achilles heel for the cell when the T cells target melanosomal enzymes or, on occasion, neoantigens. T cells are precise, determined, and consequential when they strike. Here, we probe the relationship between the microbiome and its metabolites, epithelial integrity, and the activation of T cells that target benign and malignant melanocytes in vitiligo and melanoma.


Assuntos
Melaninas/metabolismo , Melanócitos/patologia , Melanoma/patologia , Microbiota , Transtornos da Pigmentação/patologia , Linfócitos T/imunologia , Distinções e Prêmios , Humanos , Melanócitos/imunologia , Melanócitos/microbiologia , Melanoma/imunologia , Melanoma/microbiologia , Transtornos da Pigmentação/imunologia , Transtornos da Pigmentação/microbiologia , Linfócitos T/classificação
11.
J Natl Cancer Inst ; 113(2): 162-170, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32294209

RESUMO

BACKGROUND: Gut microbial diversity is associated with improved response to immune checkpoint inhibitors (ICI). Based on the known detrimental impact that antibiotics have on microbiome diversity, we hypothesized that antibiotic receipt prior to ICI would be associated with decreased survival. METHODS: Patients with stage III and IV melanoma treated with ICI between 2008 and 2019 were selected from an institutional database. A window of antibiotic receipt within 3 months prior to the first infusion of ICI was prespecified. The primary outcome was overall survival (OS), and secondary outcomes were melanoma-specific mortality and immune-mediated colitis requiring intravenous steroids. All statistical tests were two-sided. RESULTS: There were 568 patients in our database of which 114 received antibiotics prior to ICI. Of the patients, 35.9% had stage III disease. On multivariable Cox proportional hazards analysis of patients with stage IV disease, the antibiotic-exposed group had statistically significantly worse OS (hazard ratio [HR] = 1.81, 95% confidence interval [CI] = 1.27 to 2.57; P <.001). The same effect was observed among antibiotic-exposed patients with stage III disease (HR = 2.78, 95% CI = 1.31 to 5.87; P =.007). When limited to only patients who received adjuvant ICI (n = 89), antibiotic-exposed patients also had statistically significantly worse OS (HR = 4.84, 95% CI = 1.09 to 21.50; P =.04). The antibiotic group had a greater incidence of colitis (HR = 2.14, 95% CI = 1.02 to 4.52; P =.046). CONCLUSION: Patients with stage III and IV melanoma exposed to antibiotics prior to ICI had statistically significantly worse OS than unexposed patients. Antibiotic exposure was associated with greater incidence of moderate to severe immune-mediated colitis. Given the large number of antibiotics prescribed annually, physicians should be judicious with their use in cancer populations likely to receive ICI.


Assuntos
Antibacterianos/efeitos adversos , Microbioma Gastrointestinal/genética , Variação Genética/efeitos dos fármacos , Melanoma/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Intervalo Livre de Doença , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Variação Genética/genética , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/efeitos adversos , Fatores Imunológicos/antagonistas & inibidores , Fatores Imunológicos/genética , Imunoterapia/efeitos adversos , Masculino , Melanoma/microbiologia , Melanoma/mortalidade , Melanoma/patologia , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Adulto Jovem
12.
Cancer Med ; 9(18): 6791-6801, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32750218

RESUMO

BACKGROUND: A growing number of studies show that intestinal microbiota affect the therapeutic effects of antineoplastic agents. Disulfiram (tetraethylthiuram disulfide, DSF) is an old alcohol-aversion drug that has been shown to be effective against various types of cancers in preclinical studies, while few studies are carried out to explore its mechanism. METHODS: A mice model of melanoma xenograft was generated and treated with antibiotics (Abx), disulfiram/copper (DSF/Cu2+ ), Abx + DSF/Cu2+ , and the tumor volume and survival curve were observed. Hematoxylin-eosin (HE) staining and western blotting (WB) were used to observe the protein changes related to cell morphology, inflammation, and apoptosis in tumor tissues. Quantitative real time polymerase chain reaction (qPCR) was used to detect the expression of pro-inflammatory cytokines in tumors. High-throughput sequencing was used to detect the effects of Abx and DSF/Cu2+ on intestinal microbiota. RESULTS: The DSF/Cu2+ and Abx + DSF/Cu2+ markedly delayed tumor progression and prolonged mice survival, of which the combination of Abx and DSF/Cu2+ possessed the best anti-tumor effect. Abx + DSF/Cu2+ significantly reduced the pro-inflammatory cytokines Interleukin-1ß (IL-1ß), IL-6 and tumor necrosis factor α (TNF-α) in tumors, and significantly reduced the expression of phosphorylated-protein kinase B (p-AKT)/protein kinase B (AKT), toll-like receptors 4 (TLR-4), and phosphorylated- nuclear factor kappa-B (p-NFκB)/NFκB in tumors. Moreover our high-throughput sequencing first indicated that the sound anti-cancer effect of Abx + DSF/Cu2+ had a strong connection with the increased abundance of intestinal beneficial bacteria Akkermansia, as well as the reduced abundance of opportunistic pathogenic bacteria Campylobacterales, Helicobacteraceae, and Coriobacteriaceae. CONCLUSIONS: The disturbed intestinal microbiota (increased abundance of opportunistic pathogens Campylobacterales, Helicobacteraceae, and Coriobacteriaceae) and the over-activated TLR4/NF-κB signaling pathway in tumor tissues deteriorated the cancer development, and the using of antibiotics is benefit to enhance the therapeutic effect of DSF on tumors via inhibiting the growth of opportunistic pathogenic bacteria.


Assuntos
Antibacterianos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Bactérias/efeitos dos fármacos , Dissulfiram/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Gluconatos/farmacologia , Intestinos/microbiologia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Interações Hospedeiro-Patógeno , Melanoma/microbiologia , Melanoma/patologia , Camundongos Endogâmicos C57BL , Neoplasias Cutâneas/microbiologia , Neoplasias Cutâneas/patologia
13.
Curr Oncol Rep ; 22(7): 74, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32577835

RESUMO

PURPOSE OF REVIEW: We review emerging evidence regarding the impact of gut microbes on antitumor immunity, and ongoing efforts to translate this in clinical trials. RECENT FINDINGS: Pre-clinical models and human cohort studies support a role for gut microbes in modulating overall immunity and immunotherapy response, and numerous trials are now underway exploring strategies to modulate gut microbes to enhance responses to cancer therapy. This includes the use of fecal microbiota transplant (FMT), which is being used to treat patients with Clostridium difficile infection among other non-cancer indications. The use of FMT is now being extended to modulate gut microbes in patients being treated with cancer immunotherapy, with the goal of enhancing responses and/or to ameliorate toxicity. However, significant complexities exist with such an approach and will be discussed herein. Data from ongoing studies of FMT in cancer will provide critical insights for optimization of this approach.


Assuntos
Transplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/fisiologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/terapia , Neoplasias/terapia , Humanos , Melanoma/microbiologia
14.
Br J Cancer ; 123(4): 534-541, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32499569

RESUMO

BACKGROUND: Host-microbiota interactions shape T-cell differentiation and promote tumour immunity. Although IL-9-producing T cells have been described as potent antitumour effectors, their role in microbiota-mediated tumour control remains unclear. METHODS: We analysed the impact of the intestinal microbiota on the differentiation of colonic lamina propria IL-9-producing T cells in germ-free and dysbiotic mice. Systemic effects of the intestinal microbiota on IL-9-producing T cells and the antitumour role of IL-9 were analysed in a model of melanoma-challenged dysbiotic mice. RESULTS: We show that germ-free mice have lower frequency of colonic lamina propria IL-9-producing T cells when compared with conventional mice, and that intestinal microbiota reconstitution restores cell frequencies. Long-term antibiotic treatment promotes host dysbiosis, diminishes intestinal IL-4 and TGF-ß gene expression, decreases the frequency of colonic lamina propria IL-9-producing T cells, increases the susceptibility to tumour development and reduces the frequency of IL-9-producing T cells in the tumour microenvironment. Faecal transplant restores intestinal microbiota diversity, and the frequency of IL-9-producing T cells in the lungs of dysbiotic animals, restraining tumour burden. Finally, recombinant IL-9 injection enhances tumour control in dysbiotic mice. CONCLUSIONS: Host-microbiota interactions are required for adequate differentiation and antitumour function of IL-9-producing T cells.


Assuntos
Antibacterianos/efeitos adversos , Disbiose/imunologia , Vida Livre de Germes , Interleucina-9/metabolismo , Melanoma/microbiologia , Linfócitos T/imunologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Disbiose/induzido quimicamente , Disbiose/terapia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Interleucina-4/metabolismo , Masculino , Melanoma/imunologia , Camundongos , Mucosa/efeitos dos fármacos , Mucosa/imunologia , Transplante de Neoplasias , Linfócitos T/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral
15.
Nature ; 579(7800): 567-574, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32214244

RESUMO

Systematic characterization of the cancer microbiome provides the opportunity to develop techniques that exploit non-human, microorganism-derived molecules in the diagnosis of a major human disease. Following recent demonstrations that some types of cancer show substantial microbial contributions1-10, we re-examined whole-genome and whole-transcriptome sequencing studies in The Cancer Genome Atlas11 (TCGA) of 33 types of cancer from treatment-naive patients (a total of 18,116 samples) for microbial reads, and found unique microbial signatures in tissue and blood within and between most major types of cancer. These TCGA blood signatures remained predictive when applied to patients with stage Ia-IIc cancer and cancers lacking any genomic alterations currently measured on two commercial-grade cell-free tumour DNA platforms, despite the use of very stringent decontamination analyses that discarded up to 92.3% of total sequence data. In addition, we could discriminate among samples from healthy, cancer-free individuals (n = 69) and those from patients with multiple types of cancer (prostate, lung, and melanoma; 100 samples in total) solely using plasma-derived, cell-free microbial nucleic acids. This potential microbiome-based oncology diagnostic tool warrants further exploration.


Assuntos
Microbiota/genética , Neoplasias/diagnóstico , Neoplasias/microbiologia , Plasma/microbiologia , Estudos de Casos e Controles , Estudos de Coortes , DNA Bacteriano/sangue , DNA Viral/sangue , Conjuntos de Dados como Assunto , Feminino , Humanos , Biópsia Líquida , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/microbiologia , Masculino , Melanoma/sangue , Melanoma/diagnóstico , Melanoma/microbiologia , Neoplasias/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/microbiologia , Reprodutibilidade dos Testes
16.
Curr Oncol Rep ; 21(8): 72, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263961

RESUMO

PURPOSE OF REVIEW: We discuss how potentially modifiable factors including obesity, the microbiome, diet, and exercise may impact melanoma development, progression, and therapeutic response. RECENT FINDINGS: Obesity is unexpectedly associated with improved outcomes with immune and targeted therapy in melanoma, with early mechanistic data suggesting leptin as one mediator. The gut microbiome is both a biomarker of response to immunotherapy and a potential target. As diet is a major determinant of the gut microbiome, ongoing studies are examining the interaction between diet, the gut microbiome, and immunity. Data are emerging for a potential role of exercise in reducing hypoxia and enhancing anti-tumor immunity, though this has not yet been well-studied in the context of contemporary therapies. Recent data suggests energy balance may play a role in the outcomes of metastatic melanoma. Further studies are needed to demonstrate mechanism and causality as well as the feasibility of targeting these factors.


Assuntos
Dieta , Exercício Físico , Microbioma Gastrointestinal/imunologia , Melanoma/imunologia , Obesidade/imunologia , Animais , Metabolismo Energético , Humanos , Imunoterapia , Leptina/imunologia , Melanoma/microbiologia , Melanoma/patologia , Melanoma/terapia
17.
Nat Commun ; 10(1): 1492, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940817

RESUMO

Accumulating evidence points to an important role for the gut microbiome in anti-tumor immunity. Here, we show that altered intestinal microbiota contributes to anti-tumor immunity, limiting tumor expansion. Mice lacking the ubiquitin ligase RNF5 exhibit attenuated activation of the unfolded protein response (UPR) components, which coincides with increased expression of inflammasome components, recruitment and activation of dendritic cells and reduced expression of antimicrobial peptides in intestinal epithelial cells. Reduced UPR expression is also seen in murine and human melanoma tumor specimens that responded to immune checkpoint therapy. Co-housing of Rnf5-/- and WT mice abolishes the anti-tumor immunity and tumor inhibition phenotype, whereas transfer of 11 bacterial strains, including B. rodentium, enriched in Rnf5-/- mice, establishes anti-tumor immunity and restricts melanoma growth in germ-free WT mice. Altered UPR signaling, exemplified in Rnf5-/- mice, coincides with altered gut microbiota composition and anti-tumor immunity to control melanoma growth.


Assuntos
Proliferação de Células , Microbioma Gastrointestinal , Melanoma/imunologia , Melanoma/microbiologia , Proteínas de Membrana/deficiência , Ubiquitina-Proteína Ligases/deficiência , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Humanos , Intestinos/imunologia , Intestinos/microbiologia , Melanoma/enzimologia , Melanoma/fisiopatologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Resposta a Proteínas não Dobradas
18.
Folia Microbiol (Praha) ; 64(3): 435-442, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30554379

RESUMO

Melanoma is the least common form of skin tumor, but it is potentially the most dangerous and responsible for the majority of skin cancer deaths. We suggest that the skin microbiome might be changed during the progression of melanoma. The aim of this study is to compare the composition of the skin microbiota between different locations (skin and melanoma) of a MeLiM (Melanoma-bearing Libechov Minipig) pig model (exophytic melanoma). Ninety samples were used for PCR-DGGE analysis with primers specifically targeting the V3 region of the 16S rRNA gene. The profiles were used for cluster analysis by UPGMA and principal coordinate analysis PCoA and also to calculate the diversity index (Simpson index of diversity). By comparing the obtained results, we found that both bacterial composition and diversity were significantly different between the skin and melanoma microbiomes. The abundances of Fusobacterium and Trueperella genera were significantly increased in melanoma samples, suggesting a strong relationship between melanoma development and skin microbiome changes.


Assuntos
Bactérias/classificação , Melanoma/microbiologia , Microbiota , Pele/microbiologia , Animais , Bactérias/isolamento & purificação , Primers do DNA , DNA Bacteriano/genética , Modelos Animais de Doenças , Fusobacterium/genética , Fusobacterium/isolamento & purificação , Variação Genética , Melanoma/patologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suínos , Porco Miniatura
19.
Biochem Biophys Res Commun ; 503(4): 3086-3092, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30166061

RESUMO

Melanoma is a recalcitrant cancer. To improve and individualize treatment for this disease, we previously developed a patient-derived orthotopic xenograft (PDOX) model for melanoma. We previously reported the individual efficacy of tumor-targeting Salmonella typhimurium A1-R (S. typhimurium A1-R) and recombinant methioninase (rMETase) for melanoma in the PDOX models of this disease. In the present study, we evaluated the efficacy of the combination of S. typhimurium A1-R with orally-administered rMETase (o-rMETase) for BRAF-V600E-negative melanoma in a PDOX model. Three weeks after implantation, 60 PDOX mouse models were randomized into six groups of 10 mice each: untreated control, temozolomide (TEM); o-rMETase; S. typhimurium A1-R; TEM + rMETase, S. typhimurium A1-R + rMETase. All treatments inhibited tumor growth compared to untreated control (TEM: p < 0.0001, rMETase: p < 0.0001, S. typhimurium A1-R: p < 0.0001, TEM + rMETase: p < 0.0001, S. typhimurium A1-R + rMETase: p < 0.0001). The most effective was the combination of S. typhimurium A1-R + o-rMETase which regressed this melanoma PDOX, thereby indicating a new paradigm for treatment of metastatic melanoma.


Assuntos
Antineoplásicos/uso terapêutico , Liases de Carbono-Enxofre/uso terapêutico , Melanoma/terapia , Pseudomonas putida/enzimologia , Salmonella typhimurium , Temozolomida/uso terapêutico , Administração Oral , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , Liases de Carbono-Enxofre/administração & dosagem , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Humanos , Masculino , Melanoma/genética , Melanoma/microbiologia , Melanoma/patologia , Camundongos Nus , Mutação Puntual , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico , Salmonella typhimurium/fisiologia , Temozolomida/administração & dosagem
20.
Cancer Gene Ther ; 25(5-6): 148-160, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29720674

RESUMO

There are currently numerous oncolytic viruses undergoing clinical trial evaluation in cancer patients and one agent, Talimogene laherparepvec, has been approved for the treatment of malignant melanoma. This progress highlights the huge clinical potential of this treatment modality, and the focus is now combining these agents with conventional anticancer treatments or agents that enhance viral replication, and thereby oncolysis, in the tumour microenvironment. We evaluated the combination of reovirus with rapamycin in B16F10 cell, a murine model of malignant melanoma, based on potential mechanisms by which mTOR inhibitors might enhance viral oncolysis. Rapamycin was not immunomodulatory in that it had no effect on the generation of an antireovirus-neutralising antibody response in C57/black 6 mice. The cell cycle effects of reovirus (increase G0/G1 fraction) were unaffected by concomitant or sequential exposure of rapamycin. However, rapamycin attenuated viral replication if given prior or concomitantly with reovirus and similarly reduced reovirus-induced apoptotic cell death Annexin V/PI and caspase 3/7 activation studies. We found clear evidence of synergistic antitumour effects of the combination both in vitro and in vivo, which was sequence dependent only in the in vitro setting. In conclusion, we have demonstrated synergistic antitumour efficacy of reovirus and rapamycin combination.


Assuntos
Orthoreovirus Mamífero 3/metabolismo , Melanoma/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/metabolismo , Sirolimo/farmacologia , Animais , Linhagem Celular Tumoral , Melanoma/microbiologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA