Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.154
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 380, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720246

RESUMO

BACKGROUND: Soybean (Glycine max), a vital grain and oilseed crop, serves as a primary source of plant protein and oil. Soil salinization poses a significant threat to soybean planting, highlighting the urgency to improve soybean resilience and adaptability to saline stress. Melatonin, recently identified as a key plant growth regulator, plays crucial roles in plant growth, development, and responses to environmental stress. However, the potential of melatonin to mitigate alkali stress in soybeans and the underlying mechanisms remain unclear. RESULTS: This study investigated the effects of exogenous melatonin on the soybean cultivar Zhonghuang 13 under alkaline stress. We employed physiological, biochemical, transcriptomic, and metabolomic analyses throughout both vegetative and pod-filling growth stages. Our findings demonstrate that melatonin significantly counteracts the detrimental effects of alkaline stress on soybean plants, promoting plant growth, photosynthesis, and antioxidant capacity. Transcriptomic analysis during both growth stages under alkaline stress, with and without melatonin treatment, identified 2,834 and 549 differentially expressed genes, respectively. These genes may play a vital role in regulating plant adaptation to abiotic stress. Notably, analysis of phytohormone biosynthesis pathways revealed altered expression of key genes, particularly in the ARF (auxin response factor), AUX/IAA (auxin/indole-3-acetic acid), and GH3 (Gretchen Hagen 3) families, during the early stress response. Metabolomic analysis during the pod-filling stage identified highly expressed metabolites responding to melatonin application, such as uteolin-7-O-(2''-O-rhamnosyl)rutinoside and Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside, which helped alleviate the damage caused by alkali stress. Furthermore, we identified 183 differentially expressed transcription factors, potentially playing a critical role in regulating plant adaptation to abiotic stress. Among these, the gene SoyZH13_04G073701 is particularly noteworthy as it regulates the key differentially expressed metabolite, the terpene metabolite Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside. WGCNA analysis identified this gene (SoyZH13_04G073701) as a hub gene, positively regulating the crucial differentially expressed metabolite of terpenoids, Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside. Our findings provide novel insights into how exogenous melatonin alleviates alkali stress in soybeans at different reproductive stages. CONCLUSIONS: Integrating transcriptomic and metabolomic approaches, our study elucidates the mechanisms by which exogenous melatonin ameliorates the inhibitory effects of alkaline stress on soybean growth and development. This occurs through modulation of biosynthesis pathways for key compounds, including terpenes, flavonoids, and phenolics. Our findings provide initial mechanistic insights into how melatonin mitigates alkaline stress in soybeans, offering a foundation for molecular breeding strategies to enhance salt-alkali tolerance in this crop.


Assuntos
Glycine max , Melatonina , Estresse Fisiológico , Transcriptoma , Melatonina/farmacologia , Glycine max/genética , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcriptoma/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metabolômica , Perfilação da Expressão Gênica , Álcalis , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Metaboloma/efeitos dos fármacos
2.
Int J Biol Sci ; 20(7): 2491-2506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725850

RESUMO

Colon inflammation is characterized by disturbances in the intestinal microbiota and inflammation. Melatonin (Mel) can improve colon inflammation. However, the underlying mechanism remains unclear. Recent studies suggest that m6A methylation modification may play an important role in inflammatory responses. This study aimed to explore the effects of melatonin and LPS-mediated m6A methylation on colon inflammation. Our study found that melatonin inhibits M1 macrophages, activates M2 macrophages, inhibit the secretion of pro-inflammatory factors, maintain colon homeostasis and improves colon inflammation through MTNR1B. In addition, the increased methylation level of m6A is associated with the occurrence of colon inflammation, and melatonin can also reduce the level of colon methylation to improve colon inflammation. Among them, the main methylated protein METTL3 can be inhibited by melatonin through MTNR1B. In a word, melatonin regulates m6A methylation by improving abnormal METTL3 protein level to reshape the microflora and activate macrophages to improve colon inflammation, mainly through MTNR1B.


Assuntos
Adenosina , Lipopolissacarídeos , Macrófagos , Melatonina , Melatonina/farmacologia , Melatonina/metabolismo , Animais , Camundongos , Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Metilação/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Metiltransferases/metabolismo , Metiltransferases/genética , Inflamação/metabolismo , Colo/metabolismo , Colo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/metabolismo , Receptor MT2 de Melatonina/metabolismo , Receptor MT2 de Melatonina/genética , Células RAW 264.7
3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731810

RESUMO

Dihydrochalcones (DHCs) constitute a specific class of flavonoids widely known for their various health-related advantages. Melatonin (MLT) has received attention worldwide as a master regulator in plants, but its roles in DHC accumulation remain unclear. Herein, the elicitation impacts of MLT on DHC biosynthesis were examined in Lithocarpus litseifolius, a valuable medicinal plant famous for its sweet flavor and anti-diabetes effect. Compared to the control, the foliar application of MLT significantly increased total flavonoid and DHC (phlorizin, trilobatin, and phloretin) levels in L. litseifolius leaves, especially when 100 µM MLT was utilized for 14 days. Moreover, antioxidant enzyme activities were boosted after MLT treatments, resulting in a decrease in the levels of intracellular reactive oxygen species. Remarkably, MLT triggered the biosynthesis of numerous phytohormones linked to secondary metabolism (salicylic acid, methyl jasmonic acid (MeJA), and ethylene), while reducing free JA contents in L. litseifolius. Additionally, the flavonoid biosynthetic enzyme activities were enhanced by the MLT in leaves. Multiple differentially expressed genes (DEGs) in RNA-seq might play a crucial role in MLT-elicited pathways, particularly those associated with the antioxidant system (SOD, CAT, and POD), transcription factor regulation (MYBs and bHLHs), and DHC metabolism (4CL, C4H, UGT71K1, and UGT88A1). As a result, MLT enhanced DHC accumulation in L. litseifolius leaves, primarily by modulating the antioxidant activity and co-regulating the physiological, hormonal, and transcriptional pathways of DHC metabolism.


Assuntos
Chalconas , Regulação da Expressão Gênica de Plantas , Melatonina , Reguladores de Crescimento de Plantas , Folhas de Planta , Folhas de Planta/metabolismo , Folhas de Planta/genética , Chalconas/metabolismo , Melatonina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Perfilação da Expressão Gênica , Flavonoides/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731967

RESUMO

Tryptophan metabolites, such as 5-hydroxytryptophan (5-HTP), serotonin, and melatonin, hold significant promise as supplements for managing various mood-related disorders, including depression and insomnia. However, their chemical production via chemical synthesis and phytochemical extraction presents drawbacks, such as the generation of toxic byproducts and low yields. In this study, we explore an alternative approach utilizing S. cerevisiae STG S101 for biosynthesis. Through a series of eleven experiments employing different combinations of tryptophan supplementation, Tween 20, and HEPES buffer, we investigated the production of these indolamines. The tryptophan metabolites were analyzed using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Notably, setups replacing peptone in the YPD media with tryptophan (Run 3) and incorporating tryptophan along with 25 mM HEPES buffer (Run 4) demonstrated successful biosynthesis of 5-HTP and serotonin. The highest 5-HTP and serotonin concentrations were 58.9 ± 16.0 mg L-1 and 0.0650 ± 0.00211 mg L-1, respectively. Melatonin concentrations were undetected in all the setups. These findings underscore the potential of using probiotic yeast strains as a safer and conceivably more cost-effective alternative for indolamine synthesis. The utilization of probiotic strains presents a promising avenue, potentially offering scalability, sustainability, reduced environmental impact, and feasibility for large-scale production.


Assuntos
5-Hidroxitriptofano , Vias Biossintéticas , Saccharomyces cerevisiae , Serotonina , Triptofano , Triptofano/metabolismo , Saccharomyces cerevisiae/metabolismo , Serotonina/metabolismo , Serotonina/biossíntese , 5-Hidroxitriptofano/metabolismo , Melatonina/metabolismo , Melatonina/biossíntese , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos
5.
BMC Genom Data ; 25(1): 41, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711007

RESUMO

BACKGROUND: Class III peroxidase (POD) enzymes play vital roles in plant development, hormone signaling, and stress responses. Despite extensive research on POD families in various plant species, the knowledge regarding the POD family in Chinese pear (Pyrus bretschenedri) is notably limited. RESULTS: We systematically characterized 113 POD family genes, designated as PbPOD1 to PbPOD113 based on their chromosomal locations. Phylogenetic analysis categorized these genes into seven distinct subfamilies (I to VII). The segmental duplication events were identified as a prevalent mechanism driving the expansion of the POD gene family. Microsynteny analysis, involving comparisons with Pyrus bretschenedri, Fragaria vesca, Prunus avium, Prunus mume and Prunus persica, highlighted the conservation of duplicated POD regions and their persistence through purifying selection during the evolutionary process. The expression patterns of PbPOD genes were performed across various plant organs and diverse fruit development stages using transcriptomic data. Furthermore, we identified stress-related cis-acting elements within the promoters of PbPOD genes, underscoring their involvement in hormonal and environmental stress responses. Notably, qRT-PCR analyses revealed distinctive expression patterns of PbPOD genes in response to melatonin (MEL), salicylic acid (SA), abscisic acid (ABA), and methyl jasmonate (MeJA), reflecting their responsiveness to abiotic stress and their role in fruit growth and development. CONCLUSIONS: In this study, we investigated the potential functions and evolutionary dynamics of PbPOD genes in Pyrus bretschenedri, positioning them as promising candidates for further research and valuable indicators for enhancing fruit quality through molecular breeding strategies.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Reguladores de Crescimento de Plantas , Pyrus , Pyrus/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Melatonina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Peroxidase/genética , Peroxidase/metabolismo , Acetatos/farmacologia , Acetatos/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento
6.
J Pineal Res ; 76(4): e12960, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747028

RESUMO

Natural products, known for their environmental safety, are regarded as a significant basis for the modification and advancement of fungicides. Melatonin, as a low-cost natural indole, exhibits diverse biological functions, including antifungal activity. However, its potential as an antifungal agent has not been fully explored. In this study, a series of melatonin derivatives targeting the mitogen-activated protein kinase (Mps1) protein of fungal pathogens were synthesized based on properties of melatonin, among which the trifluoromethyl-substituted derivative Mt-23 exhibited antifungal activity against seven plant pathogenic fungi, and effectively reduced the severity of crop diseases, including rice blast, Fusarium head blight of wheat and gray mold of tomato. In particular, its EC50 (5.4 µM) against the rice blast fungus Magnaporthe oryzae is only one-fourth that of isoprothiolane (22 µM), a commercial fungicide. Comparative analyzes revealed that Mt-23 simultaneously targets the conserved protein kinase Mps1 and lipid protein Cap20. Surface plasmon resonance assays showed that Mt-23 directly binds to Mps1 and Cap20. In this study, we provide a strategy for developing antifungal agents by modifying melatonin, and the resultant melatonin derivative Mt-23 is a commercially valuable, eco-friendly and broad-spectrum antifungal agent to combat crop disease.


Assuntos
Antifúngicos , Melatonina , Melatonina/farmacologia , Melatonina/química , Melatonina/análogos & derivados , Antifúngicos/farmacologia , Antifúngicos/química , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química
7.
J Pineal Res ; 76(4): e12958, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747060

RESUMO

Endothelial-to-mesenchymal transition (EndMT) is a complex biological process of cellular transdifferentiation by which endothelial cells (ECs) lose their characteristics and acquire mesenchymal properties, leading to cardiovascular remodeling and complications in the adult cardiovascular diseases environment. Melatonin is involved in numerous physiological and pathological processes, including aging, and has anti-inflammatory and antioxidant activities. This molecule is an effective therapeutic candidate for preventing oxidative stress, regulating endothelial function, and maintaining the EndMT balance to provide cardiovascular protection. Although recent studies have documented improved cardiac function by melatonin, the mechanism of action of melatonin on EndMT remains unclear. The present study investigated the effects of melatonin on induced EndMT by transforming growth factor-ß2/interleukin-1ß in both in vivo and in vitro models. The results revealed that melatonin reduced the migratory ability and reactive oxygen species levels of the cells and ameliorated mitochondrial dysfunction in vitro. Our findings indicate that melatonin prevents endothelial dysfunction and inhibits EndMT by activating related pathways, including nuclear factor kappa B and Smad. We also demonstrated that this molecule plays a crucial role in restoring cardiac function by regulating the EndMT process in the ischemic myocardial condition, both in vessel organoids and myocardial infarction (MI) animal models. In conclusion, melatonin is a promising agent that attenuates EC dysfunction and ameliorates cardiac damage compromising the EndMT process after MI.


Assuntos
Melatonina , NF-kappa B , Melatonina/farmacologia , Animais , NF-kappa B/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos , Camundongos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Espécies Reativas de Oxigênio/metabolismo
8.
Funct Plant Biol ; 512024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743838

RESUMO

Soil salinisation is an important abiotic stress faced in grape cultivating, leading to weakened plant vigour and reduced fruit quality. Melatonin as a novel hormone has shown positive exogenous application value. Therefore, this study used wine grape (Vitis vinifera ) 'Pinot Noir' as a test material to investigate the changes of foliar spraying with different concentrations of melatonin on the physiology and fruit quality of wine grapes in a field under simulated salt stress (200mmolL-1 NaCl). The results showed that foliar spraying of melatonin significantly increased the intercellular CO2 concentration, maximum photochemical quantum yield of PSII, relative chlorophyll and ascorbic acid content of the leaves, as well as the single spike weight, 100-grain weight, transverse and longitudinal diameters, malic acid, α-amino nitrogen and ammonia content of fruits, and decreased the initial fluorescence value of leaves, ascorbate peroxidase activity, glutathione content, fruit transverse to longitudinal ratio and tartaric acid content of plants under salt stress. Results of the comprehensive evaluation of the affiliation function indicated that 100µmolL-1 melatonin treatment had the best effect on reducing salt stress in grapes. In summary, melatonin application could enhance the salt tolerance of grapes by improving the photosynthetic capacity of grape plants under salt stress and promoting fruit development and quality formation, and these results provide new insights into the involvement of melatonin in the improvement of salt tolerance in crop, as well as some theoretical basis for the development and industrialisation of stress-resistant cultivation techniques for wine grapes.


Assuntos
Frutas , Melatonina , Fotossíntese , Folhas de Planta , Estresse Salino , Vitis , Vitis/efeitos dos fármacos , Vitis/fisiologia , Vitis/crescimento & desenvolvimento , Melatonina/farmacologia , Melatonina/administração & dosagem , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Estresse Salino/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Ácido Ascórbico/farmacologia , Vinho
9.
J Int Med Res ; 52(5): 3000605241239854, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38735057

RESUMO

OBJECTIVE: To assess the efficacy and safety of perioperative melatonin and melatonin agonists in preventing postoperative delirium (POD). METHODS: We conducted a systematic search for randomized controlled trials (RCTs) published through December 2022. The primary outcome was efficacy based on the incidence of POD (POD-I). Secondary outcomes included efficacy and safety according to the length of hospital or intensive care unit stay, in-hospital mortality, and adverse events. Subgroup analyses of POD-I were based on the type and dose of drug (low- and high-dose melatonin, ramelteon), the postoperative period (early or late), and the type of surgery. RESULTS: In the analysis (16 RCTs, 1981 patients), POD-I was lower in the treatment group than in the control group (risk ratio [RR] = 0.57). POD-I was lower in the high-dose melatonin group than in the control group (RR = 0.41), whereas no benefit was observed in the low-dose melatonin and ramelteon groups. POD-I was lower in the melatonin group in the early postoperative period (RR = 0.35) and in patients undergoing cardiopulmonary surgery (RR = 0.54). CONCLUSION: Perioperative melatonin or melatonin agonist treatment suppressed POD without severe adverse events, particularly at higher doses, during the early postoperative period, and after cardiopulmonary surgery.


Assuntos
Delírio , Melatonina , Complicações Pós-Operatórias , Melatonina/uso terapêutico , Melatonina/administração & dosagem , Melatonina/efeitos adversos , Humanos , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/tratamento farmacológico , Delírio/prevenção & controle , Delírio/tratamento farmacológico , Assistência Perioperatória/métodos , Indenos/uso terapêutico , Indenos/efeitos adversos , Indenos/administração & dosagem , Ensaios Clínicos Controlados Aleatórios como Assunto , Tempo de Internação , Resultado do Tratamento , Mortalidade Hospitalar
10.
Sci Rep ; 14(1): 10922, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740789

RESUMO

Melatonin receptors MT1 and MT2 are G protein-coupled receptors that mediate the effects of melatonin, a hormone involved in circadian rhythms and other physiological functions. Understanding the molecular interactions between these receptors and their ligands is crucial for developing novel therapeutic agents. In this study, we used molecular docking, molecular dynamics simulations, and quantum mechanics calculation to investigate the binding modes and affinities of three ligands: melatonin (MLT), ramelteon (RMT), and 2-phenylmelatonin (2-PMT) with both receptors. Based on the results, we identified key amino acids that contributed to the receptor-ligand interactions, such as Gln181/194, Phe179/192, and Asn162/175, which are conserved in both receptors. Additionally, we described new meaningful interactions with Gly108/Gly121, Val111/Val124, and Val191/Val204. Our results provide insights into receptor-ligand recognition's structural and energetic determinants and suggest potential strategies for designing more optimized molecules. This study enhances our understanding of receptor-ligand interactions and offers implications for future drug development.


Assuntos
Melatonina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Receptor MT1 de Melatonina , Receptor MT2 de Melatonina , Melatonina/metabolismo , Melatonina/química , Receptor MT2 de Melatonina/metabolismo , Receptor MT2 de Melatonina/química , Receptor MT1 de Melatonina/metabolismo , Receptor MT1 de Melatonina/química , Humanos , Ligantes , Teoria Quântica , Sítios de Ligação , Indenos/química , Indenos/metabolismo
11.
PLoS One ; 19(5): e0303040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713652

RESUMO

In the present study, we attempted to use melatonin combined with germination treatment to remove pesticide residues from contaminated grains. High levels of pesticide residues were detected in soybean seeds after soaking with chlorothalonil (10 mM) and malathion (1 mM) for 2 hours. Treatment with 50 µM melatonin for 5 days completely removed the pesticide residues, while in the control group, only 61-71% of pesticide residues were removed from soybean sprouts. Compared with the control, melatonin treatment for 7 days further increased the content of ascorbic acid (by 48-66%), total phenolics (by 52-68%), isoflavones (by 22-34%), the total antioxidant capacity (by 37-40%), and the accumulated levels of unsaturated fatty acids (C18:1, C18:2, and C18:3) (by 17-30%) in soybean sprouts. Moreover, melatonin treatment further increased the accumulation of ten components of phenols and isoflavones in soybean sprouts relative to those in the control. The ability of melatonin to accelerate the degradation of pesticide residues and promote the accumulation of antioxidant metabolites might be related to its ability to trigger the glutathione detoxification system in soybean sprouts. Melatonin promoted glutathione synthesis (by 49-139%) and elevated the activities of glutathione-S-transferase (by 24-78%) and glutathione reductase (by 38-61%). In summary, we report a new method in which combined treatment by melatonin and germination rapidly degrades pesticide residues in contaminated grains and improves the nutritional quality of food.


Assuntos
Antioxidantes , Germinação , Glycine max , Melatonina , Valor Nutritivo , Resíduos de Praguicidas , Sementes , Melatonina/farmacologia , Germinação/efeitos dos fármacos , Resíduos de Praguicidas/análise , Sementes/efeitos dos fármacos , Sementes/química , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Glycine max/química , Antioxidantes/metabolismo , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Fenóis/análise , Contaminação de Alimentos/análise , Glutationa/metabolismo
12.
Brain Behav ; 14(5): e3515, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38702895

RESUMO

INTRODUCTION: Maternal sleep deprivation (MSD), which induces inflammation and synaptic dysfunction in the hippocampus, has been associated with learning and memory impairment in offspring. Melatonin (Mel) has been shown to have anti-inflammatory, antioxidant, and neuroprotective function. However, the beneficial effect of Mel on MSD-induced cognitive impairment and its mechanisms are unknown. METHODS: In the present study, adult offspring suffered from MSD were injected with Mel (20 mg/kg) once a day during postnatal days 61-88. The cognitive function was evaluated by the Morris water maze test. Levels of proinflammatory cytokines were examined by enzyme-linked immunosorbent assay. The mRNA and protein levels of synaptic plasticity associated proteins were examined using reverse transcription-polymerase chain reaction and western blotting. RESULTS: The results showed that MSD impaired learning and memory in the offspring mice. MSD increased the levels of interleukin (IL)-1creIL-6, and tumor necrosis factor-α and decreased the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin in the hippocampus. Furthermore, Mel attenuated cognitive impairment and restored markers of inflammation and synaptic plasticity to control levels. CONCLUSIONS: These findings indicated that Mel could ameliorate learning and memory impairment induced by MSD, and these beneficial effects were related to improvement in inflammation and synaptic dysfunction.


Assuntos
Hipocampo , Melatonina , Transtornos da Memória , Plasticidade Neuronal , Privação do Sono , Animais , Melatonina/farmacologia , Melatonina/administração & dosagem , Privação do Sono/complicações , Privação do Sono/tratamento farmacológico , Privação do Sono/fisiopatologia , Camundongos , Masculino , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Feminino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Plasticidade Neuronal/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Gravidez , Privação Materna , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico
13.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732273

RESUMO

Drought and salinity stress reduce root hydraulic conductivity of plant seedlings, and melatonin application positively mitigates stress-induced damage. However, the underlying effect of melatonin priming on root hydraulic conductivity of seedlings under drought-salinity combined remains greatly unclear. In the current report, we investigated the influence of seeds of three wheat lines' 12 h priming with 100 µM of melatonin on root hydraulic conductivity (Lpr) and relevant physiological indicators of seedlings under PEG, NaCl, and PEG + NaCl combined stress. A previous study found that the combined PEG and NaCl stress remarkably reduced the Lpr of three wheat varieties, and its value could not be detected. Melatonin priming mitigated the adverse effects of combined PEG + NaCl stress on Lpr of H4399, Y1212, and X19 to 0.0071 mL·h-1·MPa-1, 0.2477 mL·h-1·MPa-1, and 0.4444 mL·h-1·MPa-1, respectively, by modulating translation levels of aquaporin genes and contributed root elongation and seedlings growth. The root length of H4399, Y1212, and X19 was increased by 129.07%, 141.64%, and 497.58%, respectively, after seeds pre-treatment with melatonin under PEG + NaCl combined stress. Melatonin -priming appreciably regulated antioxidant enzyme activities, reduced accumulation of osmotic regulators, decreased levels of malondialdehyde (MDA), and increased K+ content in stems and root of H4399, Y1212, and X19 under PEG + NaCl stress. The path investigation displayed that seeds primed with melatonin altered the modification of the path relationship between Lpr and leaf area under stress. The present study suggested that melatonin priming was a strategy as regards the enhancement of root hydraulic conductivity under PEG, NaCl, and PEG + NaCl stress, which efficiently enhanced wheat resistant to drought-salinity stress.


Assuntos
Secas , Melatonina , Raízes de Plantas , Salinidade , Plântula , Sementes , Triticum , Melatonina/farmacologia , Triticum/efeitos dos fármacos , Triticum/genética , Triticum/fisiologia , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/genética , Estresse Fisiológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Salino , Cloreto de Sódio/farmacologia , Antioxidantes/metabolismo , Água/metabolismo
14.
Plant Cell Rep ; 43(6): 139, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735908

RESUMO

KEY MESSAGE: Nitric oxide functions downstream of the melatonin in adjusting Cd-induced osmotic and oxidative stresses, upregulating the transcription of D4H and DAT genes, and increasing total alkaloid and vincristine contents. A few studies have investigated the relationship between melatonin (MT) and nitric oxide (NO) in regulating defensive responses. However, it is still unclear how MT and NO interact to regulate the biosynthesis of alkaloids and vincristine in leaves of Catharanthus roseus (L.) G. Don under Cd stress. Therefore, this context was explored in the present study. Results showed that Cd toxicity (200 µM) induced oxidative stress, decreased biomass, Chl a, and Chl b content, and increased the content of total alkaloid and vinblastine in the leaves. Application of both MT (100 µM) and sodium nitroprusside (200 µM SNP, as NO donor) enhanced endogenous NO content and accordingly increased metal tolerance index, the content of total alkaloid and vinblastine. It also upregulated the transcription of two respective genes (D4H and DAT) under non-stress and Cd stress conditions. Moreover, the MT and SNP treatments reduced the content of H2O2 and malondialdehyde, increased the activities of superoxide dismutase and ascorbate peroxidase, enhanced proline accumulation, and improved relative water content in leaves of Cd-exposed plants. The scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (cPTIO) averted the effects of MT on the content of total alkaloid and vinblastine and antioxidative responses. Still, the effects conferred by NO on attributes mentioned above were not significantly impaired by p-chlorophenylalanine (p-CPA as an inhibitor of MT biosynthesis). These findings and multivariate analyses indicate that MT motivated terpenoid indole alkaloid biosynthesis and mitigated Cd-induced oxidative stress in the leaves of periwinkle in a NO-dependent manner.


Assuntos
Cádmio , Catharanthus , Regulação da Expressão Gênica de Plantas , Melatonina , Óxido Nítrico , Estresse Oxidativo , Folhas de Planta , Vimblastina , Catharanthus/metabolismo , Catharanthus/genética , Catharanthus/efeitos dos fármacos , Óxido Nítrico/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Vimblastina/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
15.
J Pineal Res ; 76(4): e12959, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38738543

RESUMO

10-Hydroxycamptothecin (HCPT) is a widely used clinical anticancer drug but has a significant side effect profile. Melatonin has a beneficial impact on the chemotherapy of different cancer cells and reproductive processes, but the effect and underlying molecular mechanism of melatonin's involvement in the HCPT-induced side effects in cells, especially in the testicular cells, are poorly understood. In this study, we found that melatonin therapy significantly restored HCPT-induced testicular cell damage and did not affect the antitumor effect of HCPT. Further analysis found that melatonin therapy suppressed HCPT-induced DNA damage associated with ataxia-telangiectasia mutated- and Rad3-related and CHK1 phosphorylation levels in the testis. Changes in apoptosis-associated protein levels (Bax, Bcl-2, p53, and Cleaved caspase-3) and in reactive oxygen species-associated proteins (Nrf2 and Keap1) and index (malondialdehyde and glutathione) suggested that melatonin treatment relieved HCPT-induced cell apoptosis and oxidative damage, respectively. Mechanistically, melatonin-activated autophagy proteins (ATG7, Beclin1, and LC3bII/I) may induce p62-dependent autophagy to degrade Keap1, eliciting Nrf2 from Keap1-Nrf2 interaction to promote antioxidant enzyme expression such as HO-1, which would salvage HCPT-induced ROS production and mitochondrial dysfunction. Collectively, this study reveals that melatonin therapy may protect testicular cells from HCPT-induced damage via the activation of autophagy, which alleviates oxidative stress, mitochondrial dysfunction, and cell apoptosis.


Assuntos
Apoptose , Autofagia , Camptotecina , Proteína 1 Associada a ECH Semelhante a Kelch , Melatonina , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Testículo , Animais , Masculino , Melatonina/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Apoptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Camptotecina/farmacologia , Camptotecina/análogos & derivados , Testículo/efeitos dos fármacos , Testículo/metabolismo , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
CNS Neurosci Ther ; 30(5): e14741, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38702940

RESUMO

AIMS: Despite the success of single-cell RNA sequencing in identifying cellular heterogeneity in ischemic stroke, clarifying the mechanisms underlying these associations of differently expressed genes remains challenging. Several studies that integrate gene expression and gene expression quantitative trait loci (eQTLs) with genome wide-association study (GWAS) data to determine their causal role have been proposed. METHODS: Here, we combined Mendelian randomization (MR) framework and single cell (sc) RNA sequencing to study how differently expressed genes (DEGs) mediating the effect of gene expression on ischemic stroke. The hub gene was further validated in the in vitro model. RESULTS: We identified 2339 DEGs in 10 cell clusters. Among these DEGs, 58 genes were associated with the risk of ischemic stroke. After external validation with eQTL dataset, lactate dehydrogenase B (LDHB) is identified to be positively associated with ischemic stroke. The expression of LDHB has also been validated in sc RNA-seq with dominant expression in microglia and astrocytes, and melatonin is able to reduce the LDHB expression and activity in vitro ischemic models. CONCLUSION: Our study identifies LDHB as a novel biomarker for ischemic stroke via combining the sc RNA-seq and MR analysis.


Assuntos
AVC Isquêmico , L-Lactato Desidrogenase , Melatonina , Análise da Randomização Mendeliana , Análise de Sequência de RNA , Animais , Humanos , Estudo de Associação Genômica Ampla/métodos , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , Análise da Randomização Mendeliana/métodos , Locos de Características Quantitativas , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Camundongos
17.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732075

RESUMO

Melatonin and sericin exhibit antioxidant properties and may be useful in topical wound healing patches by maintaining redox balance, cell integrity, and regulating the inflammatory response. In human skin, melatonin suppresses damage caused by ultraviolet radiation (UVR) which involves numerous mechanisms associated with reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and enhancing apoptosis. Sericin is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). It is of interest because of its biodegradability, anti-oxidative, and anti-bacterial properties. Sericin inhibits tyrosinase activity and promotes cell proliferation that can be supportive and useful in melanoma treatment. In recent years, wound healing patches containing sericin and melatonin individually have attracted significant attention by the scientific community. In this review, we summarize the state of innovation of such patches during 2021-2023. To date, melatonin/sericin-polymer patches for application in post-operational wound healing treatment has been only sparingly investigated and it is an imperative to consider these materials as a promising approach targeting for skin tissue engineering or regenerative dermatology.


Assuntos
Melanoma , Melatonina , Sericinas , Cicatrização , Melatonina/uso terapêutico , Melatonina/farmacologia , Humanos , Cicatrização/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Animais , Sericinas/farmacologia , Sericinas/uso terapêutico , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
18.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732109

RESUMO

Adipose-derived mesenchymal stem cells (ASCs) are adult multipotent stem cells, able to differentiate toward neural elements other than cells of mesodermal lineage. The aim of this research was to test ASC neural differentiation using melatonin combined with conditioned media (CM) from glial cells. Isolated from the lipoaspirate of healthy donors, ASCs were expanded in a basal growth medium before undergoing neural differentiation procedures. For this purpose, CM obtained from olfactory ensheathing cells and from Schwann cells were used. In some samples, 1 µM of melatonin was added. After 1 and 7 days of culture, cells were studied using immunocytochemistry and flow cytometry to evaluate neural marker expression (Nestin, MAP2, Synapsin I, GFAP) under different conditions. The results confirmed that a successful neural differentiation was achieved by glial CM, whereas the addition of melatonin alone did not induce appreciable changes. When melatonin was combined with CM, ASC neural differentiation was enhanced, as demonstrated by a further improvement of neuronal marker expression, whereas glial differentiation was attenuated. A dynamic modulation was also observed, testing the expression of melatonin receptors. In conclusion, our data suggest that melatonin's neurogenic differentiation ability can be usefully exploited to obtain neuronal-like differentiated ASCs for potential therapeutic strategies.


Assuntos
Diferenciação Celular , Melatonina , Células-Tronco Mesenquimais , Melatonina/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Humanos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Tecido Adiposo/citologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células de Schwann/citologia , Células de Schwann/metabolismo , Células de Schwann/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Adulto , Nestina/metabolismo , Nestina/genética , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/citologia , Neuroglia/metabolismo , Sinapsinas/metabolismo
19.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38674136

RESUMO

Cereal crops are crucial for global food security; however, they are susceptible to various environmental stresses that significantly hamper their productivity. In response, melatonin has emerged as a promising regulator, offering potential benefits for stress tolerance and crop growth. This review explores the effects of melatonin on maize, sorghum, millet, rice, barley, and wheat, aiming to enhance their resilience to stress. The application of melatonin has shown promising outcomes, improving water use efficiency and reducing transpiration rates in millet under drought stress conditions. Furthermore, it enhances the salinity and heavy metal tolerance of millet by regulating the activity of stress-responsive genes. Similarly, melatonin application in sorghum enhances its resistance to high temperatures, low humidity, and nutrient deficiency, potentially involving the modulation of antioxidant defense and aspects related to photosynthetic genes. Melatonin also exerts protective effects against drought, salinity, heavy metal, extreme temperatures, and waterlogging stresses in maize, wheat, rice, and barley crops by decreasing reactive oxygen species (ROS) production through regulating the antioxidant defense system. The molecular reactions of melatonin upregulated photosynthesis, antioxidant defense mechanisms, the metabolic pathway, and genes and downregulated stress susceptibility genes. In conclusion, melatonin serves as a versatile tool in cereal crops, bolstering stress resistance and promoting sustainable development. Further investigations are warranted to elucidate the underlying molecular mechanisms and refine application techniques to fully harness the potential role of melatonin in cereal crop production systems.


Assuntos
Produtos Agrícolas , Grão Comestível , Melatonina , Estresse Fisiológico , Melatonina/metabolismo , Melatonina/farmacologia , Grão Comestível/metabolismo , Grão Comestível/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Secas , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo
20.
Nanotechnology ; 35(30)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38636478

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid plaques in the brain. The toxicity of amyloid to neuronal cell surfaces arises from interactions between small intermediate aggregates, namely amyloid oligomers, and the cell membrane. The nature of these interactions changes with age and disease progression. In our previous work, we demonstrated that both membrane composition and nanoscale structure play crucial roles in amyloid toxicity, and that membrane models mimicking healthy neuron were less affected by amyloid than model membranes mimicking AD neuronal membranes. This understanding introduces the possibility of modifying membrane properties with membrane-active molecules, such as melatonin, to protect them from amyloid-induced damage. In this study, we employed atomic force microscopy and localized surface plasmon resonance to investigate the protective effects of melatonin. We utilized synthetic lipid membranes that mimic the neuronal cellular membrane at various stages of AD and explored their interactions with amyloid-ß(1-42) in the presence of melatonin. Our findings reveal that the early diseased membrane model is particularly vulnerable to amyloid binding and subsequent damage. However, melatonin exerts its most potent protective effect on this early-stage membrane. These results suggest that melatonin could act at the membrane level to alleviate amyloid toxicity, offering the most protection during the initial stages of AD.


Assuntos
Peptídeos beta-Amiloides , Melatonina , Microscopia de Força Atômica , Ressonância de Plasmônio de Superfície , Melatonina/farmacologia , Melatonina/química , Microscopia de Força Atômica/métodos , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Bicamadas Lipídicas/química , Doença de Alzheimer/metabolismo , Humanos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA