Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Am J Trop Med Hyg ; 110(5): 994-998, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507807

RESUMO

Melioidosis, infection caused by Burkholderia pseudomallei, is characterized by robust innate immune responses. We have previously reported associations of TLR1 single nucleotide missense variant rs76600635 with mortality and of TLR5 nonsense variant rs5744168 with both bacteremia and mortality in single-center studies of patients with melioidosis in northeastern Thailand. The objective of this study was to externally validate the associations of rs76600635 and rs5744168 with bacteremia and mortality in a large multicenter cohort of melioidosis patients. We genotyped rs76600635 and rs5744168 in 1,338 melioidosis patients enrolled in a prospective parent cohort study conducted at nine hospitals in northeastern Thailand. The genotype frequencies of rs76600635 did not differ by bacteremia status (P = 0.27) or 28-day mortality (P = 0.84). The genotype frequencies of rs5744168 did not differ by either bacteremia status (P = 0.46) or 28-day mortality (P = 0.10). Assuming a dominant genetic model, there was no association of the rs76600635 variant with bacteremia (adjusted odds ratio [OR], 0.75; 95% CI, 0.54-1.04, P = 0.08) or 28-day mortality (adjusted OR, 0.96; 95% CI, 0.71-1.28, P = 0.77). There was no association of the rs5744168 variant with bacteremia (adjusted OR, 1.24; 95% CI, 0.76-2.03, P = 0.39) or 28-day mortality (adjusted OR, 1.22; 95% CI, 0.83-1.79, P = 0.21). There was also no association of either variant with 1-year mortality. We conclude that in a large multicenter cohort of patients hospitalized with melioidosis in northeastern Thailand, neither TLR1 missense variant rs76600635 nor TLR5 nonsense variant rs5744168 is associated with bacteremia or mortality.


Assuntos
Bacteriemia , Melioidose , Receptor 1 Toll-Like , Receptor 5 Toll-Like , Humanos , Melioidose/mortalidade , Melioidose/genética , Melioidose/microbiologia , Masculino , Feminino , Receptor 1 Toll-Like/genética , Tailândia/epidemiologia , Pessoa de Meia-Idade , Bacteriemia/mortalidade , Bacteriemia/microbiologia , Bacteriemia/genética , Receptor 5 Toll-Like/genética , Adulto , Estudos de Coortes , Polimorfismo de Nucleotídeo Único , Genótipo , Burkholderia pseudomallei/genética , Estudos Prospectivos , Idoso , Predisposição Genética para Doença
2.
Front Public Health ; 11: 1153352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250090

RESUMO

Melioidosis is a bacterial infection caused by Burkholderia pseudomallei (B. pseudomallei), posing a significant threat to public health. Rapid and accurate detection of B. pseudomallei is crucial for preventing and controlling melioidosis. However, identifying B. pseudomallei is challenging due to its high similarity to other species in the same genus. To address this issue, this study proposed a dual-target method that can specifically identify B. pseudomallei in less than 40 min. We analyzed 1722 B. pseudomallei genomes to construct large-scale pan-genomes and selected specific sequence tags in their core genomes that effectively distinguish B. pseudomallei from its closely related species. Specifically, we selected two specific tags, LC1 and LC2, which we combined with the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated proteins (Cas12a) system and recombinase polymerase amplification (RPA) pre-amplification. Our analysis showed that the dual-target RPA-CRISPR/Cas12a assay has a sensitivity of approximately 0.2 copies/reaction and 10 fg genomic DNA for LC1, and 2 copies/reaction and 20 fg genomic DNA for LC2. Additionally, our method can accurately and rapidly detect B. pseudomallei in human blood and moist soil samples using the specific sequence tags mentioned above. In conclusion, the dual-target RPA-CRISPR/Cas12a method is a valuable tool for the rapid and accurate identification of B. pseudomallei in clinical and environmental samples, aiding in the prevention and control of melioidosis.


Assuntos
Burkholderia pseudomallei , Melioidose , Humanos , Burkholderia pseudomallei/genética , Melioidose/diagnóstico , Melioidose/genética , Melioidose/microbiologia , Sistemas CRISPR-Cas
3.
Anal Chim Acta ; 1252: 341059, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-36935157

RESUMO

Burkholderia pseudomallei is the causative agent of melioidosis, a potentially life-threatening infectious disease, and poses public health risks in endemic areas. Due to the high mortality, intrinsic antibiotic resistance, and atypical manifestations, establishing a rapid, accurate, and sensitive identification of B. pseudomallei enables earlier diagnosis, proper treatments, and better outcomes of melioidosis. Herein, we present a One-Pot CRISPR-integrated assay for Instant and Visual Detection (termed OPC-IVD) of B. pseudomallei. The integration of recombinase polymerase amplification and CRISPR-Cas12a recognition-activated trans-cleavage, achieved a true all-in-one single-tube reaction system, initiating the amplification and cleavage simultaneously, which realized a facile sample-to-answer assay. This approach could be performed with simplified DNA extraction and completed around 30 min by holding the reaction tube in the hand. The detection limit of our OPC-IVD was determined to be 2.19 copy/uL of plasmid DNA, 12.5 CFU/mL of B. pseudomallei, and 61.5 CFU/mL of bacteria in spiked blood samples, respectively. Furthermore, the introduction of internal amplification control effectively reduced the occurrence of false negatives, which was incorporated in the reaction system, and amplified simultaneously with the target and read by naked eyes. The assay exhibited 100% accuracy when evaluated in clinical isolates and samples. The streamlined workflow of our OPC-IVD of B. pseudomallei enables a field-deployable, instrument-free, and ultra-fast approach that can be utilized by non-expert personnel in the field of molecular diagnosis of melioidosis especially in under-resourced setting.


Assuntos
Burkholderia pseudomallei , Melioidose , Humanos , Burkholderia pseudomallei/genética , Melioidose/diagnóstico , Melioidose/genética , Melioidose/microbiologia , Sistemas CRISPR-Cas
4.
Comput Math Methods Med ; 2021: 2085173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760021

RESUMO

PURPOSE: Sepsis becomes the main death reason in hospitals with rising incidence, causing a growing economic and medical burden. However, the genes related to the pathogenesis and prognosis of sepsis are still unclear, which is a problem that needs to be solved urgently. MATERIALS AND METHODS: Gene expression profiles of GSE69528 were obtained from the National Center for Biotechnology Information. Limma software package got employed to search for differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were used for enrichment analysis. Protein-protein interaction (PPI) network was built by the Search Tool for the Retrieval of Interacting Genes (STRING) database. RESULTS: We screened 101 DEGs, containing 81 upregulated DEGs and 20 downregulated DEGs. GO analysis demonstrated that the upregulated DEGs were chiefly concentrated in negative regulation of response to interferon-gamma and regulation of granulocyte differentiation. KEGG analysis revealed that the pathways of upregulated DEGs were concentrated in prion diseases, complement and coagulation cascades, and Staphylococcus aureus infection. The PPI network constructed by upregulated DEGs contained 67 nodes (proteins) and 110 edges (interactions). Analysis of bioinformatics results showed that CEACAM8, MPO, and RETN were hub genes of sepsis. CONCLUSION: Our analysis reveals a series of signal pathways and key genes related to the mechanism of sepsis, which are promising biotargets and biomarkers of sepsis.


Assuntos
Sepse/genética , Estudos de Casos e Controles , Biologia Computacional , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Melioidose/etiologia , Melioidose/genética , Melioidose/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Mapas de Interação de Proteínas/genética , Sepse/etiologia , Sepse/metabolismo , Transdução de Sinais , Software , Transcriptoma
5.
Dis Markers ; 2021: 6166492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691288

RESUMO

Melioidosis is a serious infectious disease caused by the environmental Gram-negative bacillus Burkholderia pseudomallei. It has been shown that the host immune system, mainly comprising various types of immune cells, fights against the disease. The present study was to specify correlation between septicemic melioidosis and the levels of multiple immune cells. First, the genes with differential expression patterns between patients with septicemic melioidosis (B. pseudomallei) and health donors (control/healthy) were identified. These genes being related to cytokine binding, cell adhesion molecule binding, and MHC relevant proteins may influence immune response. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed 23 enriched immune response pathways. We further leveraged the microarray data to investigate the relationship between immune response and septicemic melioidosis, using the CIBERSORT analysis. Comparison of the percentages of 22 immune cell types in B. pseudomallei vs. control/healthy revealed that those of CD4 memory resting cells, CD8+ T cells, B memory cells, and CD4 memory activated cells were low, whereas those of M0 macrophages, neutrophils, and gamma delta T cells were high. The multivariate logistic regression analysis further revealed that CD8+ T cells, M0 macrophages, neutrophils, and naive CD4+ cells were strongly associated with the onset of septicemic melioidosis, and M2 macrophages and neutrophils were associated with the survival in septicemic melioidosis. Taken together, these data point to a complex role of immune cells on the development and progression of melioidosis.


Assuntos
Bacteriemia/imunologia , Bacteriemia/mortalidade , Proteínas Sanguíneas/genética , Melioidose/imunologia , Melioidose/mortalidade , Bacteriemia/sangue , Bacteriemia/genética , Sangue/imunologia , Fenômenos Fisiológicos Sanguíneos , Proteínas Sanguíneas/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/fisiologia , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Macrófagos/imunologia , Macrófagos/fisiologia , Melioidose/sangue , Melioidose/genética
6.
Lancet Infect Dis ; 21(12): 1737-1746, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34303419

RESUMO

BACKGROUND: The global distribution of melioidosis is under considerable scrutiny, with both unmasking of endemic disease in African and Pacific nations and evidence of more recent dispersal in the Americas. Because of the high incidence of disease in tropical northern Australia, The Darwin Prospective Melioidosis Study commenced in October, 1989. We present epidemiology, clinical features, outcomes, and bacterial genomics from this 30-year study, highlighting changes in the past decade. METHODS: The present study was a prospective analysis of epidemiological, clinical, and laboratory data for all culture-confirmed melioidosis cases from the tropical Northern Territory of Australia from Oct 1, 1989, until Sept 30, 2019. Cases were identified on the basis of culture-confirmed melioidosis, a laboratory-notifiable disease in the Northern Territory of Australia. Patients who were culture-positive were included in the study. Multivariable analysis determined predictors of clinical presentations and outcome. Incidence, survival, and cluster analyses were facilitated by population and rainfall data and genotyping of Burkholderia pseudomallei, including multilocus sequence typing and whole-genome sequencing. FINDINGS: There were 1148 individuals with culture-confirmed melioidosis, of whom 133 (12%) died. Median age was 50 years (IQR 38-60), 48 (4%) study participants were children younger than 15 years of age, 721 (63%) were male individuals, and 600 (52%) Indigenous Australians. All but 186 (16%) had clinical risk factors, 513 (45%) had diabetes, and 455 (40%) hazardous alcohol use. Only three (2%) of 133 fatalities had no identified risk. Pneumonia was the most common presentation occurring in 595 (52%) patients. Bacteraemia occurred in 633 (56%) of 1135 patients, septic shock in 240 (21%) patients, and 180 (16%) patients required mechanical ventilation. Cases correlated with rainfall, with 80% of infections occurring during the wet season (November to April). Median annual incidence was 20·5 cases per 100 000 people; the highest annual incidence in Indigenous Australians was 103·6 per 100 000 in 2011-12. Over the 30 years, annual incidences increased, as did the proportion of patients with diabetes, although mortality decreased to 17 (6%) of 278 patients over the past 5 years. Genotyping of B pseudomallei confirmed case clusters linked to environmental sources and defined evolving and new sequence types. INTERPRETATION: Melioidosis is an opportunistic infection with a diverse spectrum of clinical presentations and severity. With early diagnosis, specific antimicrobial therapy, and state-of-the-art intensive care, mortality can be reduced to less than 10%. However, mortality remains much higher in the many endemic regions where health resources remain scarce. Genotyping of B pseudomallei informs evolving local and global epidemiology. FUNDING: The Australian National Health and Medical Research Council.


Assuntos
Melioidose/epidemiologia , Adolescente , Adulto , Burkholderia pseudomallei , Feminino , Genoma Bacteriano , Humanos , Incidência , Masculino , Melioidose/genética , Melioidose/mortalidade , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Northern Territory/epidemiologia , Estudos Prospectivos , Fatores de Risco , Sequenciamento Completo do Genoma , Adulto Jovem
7.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32444871

RESUMO

The aerobic, Gram-negative motile bacillus, Burkholderia pseudomallei is a facultative intracellular bacterium causing melioidosis, a critical disease of public health importance, which is widely endemic in the tropics and subtropical regions of the world. Melioidosis is associated with high case fatality rates in animals and humans; even with treatment, its mortality is 20-50%. It also infects plants and is designated as a biothreat agent. B. pseudomallei is pathogenic due to its ability to invade, resist factors in serum and survive intracellularly. Despite its importance, to date only a few effector proteins have been functionally characterized, and there is not much information regarding the host-pathogen protein-protein interactions (PPI) of this system, which are important to studying infection mechanisms and thereby develop prevention measures. We explored two computational approaches, the homology-based interolog and the domain-based method, to predict genome-scale host-pathogen interactions (HPIs) between two different strains of B. pseudomallei (prototypical, and highly virulent) and human. In total, 76 335 common HPIs (between the two strains) were predicted involving 8264 human and 1753 B. pseudomallei proteins. Among the unique PPIs, 14 131 non-redundant HPIs were found to be unique between the prototypical strain and human, compared to 3043 non-redundant HPIs between the highly virulent strain and human. The protein hubs analysis showed that most B. pseudomallei proteins formed a hub with human dnaK complex proteins associated with tuberculosis, a disease similar in symptoms to melioidosis. In addition, drug-binding and carbohydrate-binding mechanisms were found overrepresented within the host-pathogen network, and metabolic pathways were frequently activated according to the pathway enrichment. Subcellular localization analysis showed that most of the pathogen proteins are targeting human proteins inside cytoplasm and nucleus. We also discovered the host targets of the drug-related pathogen proteins and proteins that form T3SS and T6SS in B. pseudomallei. Additionally, a comparison between the unique PPI patterns present in the prototypical and highly virulent strains was performed. The current study is the first report on developing a genome-scale host-pathogen protein interaction networks between the human and B. pseudomallei, a critical biothreat agent. We have identified novel virulence factors and their interacting partners in the human proteome. These PPIs can be further validated by high-throughput experiments and may give new insights on how B. pseudomallei interacts with its host, which will help medical researchers in developing better prevention measures.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/metabolismo , Simulação por Computador , Melioidose/metabolismo , Fatores de Virulência/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Melioidose/tratamento farmacológico , Melioidose/genética , Melioidose/microbiologia , Terapia de Alvo Molecular/métodos , Preparações Farmacêuticas/administração & dosagem , Ligação Proteica/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Virulência/genética , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/genética
8.
Emerg Microbes Infect ; 10(1): 8-18, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33256556

RESUMO

Melioidosis is an often lethal tropical disease caused by the Gram-negative bacillus, Burkholderia pseudomallei. The study objective was to characterize transcriptomes in melioidosis patients and identify genes associated with outcome. Whole blood RNA-seq was performed in a discovery set of 29 melioidosis patients and 3 healthy controls. Transcriptomic profiles of patients who did not survive to 28 days were compared with patients who survived and healthy controls, showing 65 genes were significantly up-regulated and 218 were down-regulated in non-survivors compared to survivors. Up-regulated genes were involved in myeloid leukocyte activation, Toll-like receptor cascades and reactive oxygen species metabolic processes. Down-regulated genes were hematopoietic cell lineage, adaptive immune system and lymphocyte activation pathways. RT-qPCR was performed for 28 genes in a validation set of 60 melioidosis patients and 20 healthy controls, confirming differential expression. IL1R2, GAS7, S100A9, IRAK3, and NFKBIA were significantly higher in non-survivors compared with survivors (P < 0.005) and healthy controls (P < 0.0001). The AUROCC of these genes for mortality discrimination ranged from 0.80-0.88. In survivors, expression of IL1R2, S100A9 and IRAK3 genes decreased significantly over 28 days (P < 0.05). These findings augment our understanding of this severe infection, showing expression levels of specific genes are potential biomarkers to predict melioidosis outcomes.


Assuntos
Biomarcadores/sangue , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Melioidose/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Melioidose/sangue , Melioidose/genética , Pessoa de Meia-Idade , Estudos Prospectivos , Análise de Sequência de RNA , Análise de Sobrevida
9.
Sci Rep ; 10(1): 19242, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159122

RESUMO

Phospholipase C (PLC) enzymes are key virulence factors in several pathogenic bacteria. Burkholderia pseudomallei, the causative agent of melioidosis, possesses at least three plc genes (plc1, plc2 and plc3). We found that in culture medium plc1 gene expression increased with increasing pH, whilst expression of the plc3 gene was pH (4.5 to 9.0) independent. Expression of the plc2 gene was not detected in culture medium. All three plc genes were expressed during macrophage infection by B. pseudomallei K96243. Comparing B. pseudomallei wild-type with plc mutants revealed that plc2, plc12 or plc123 mutants showed reduced intracellular survival in macrophages and reduced plaque formation in HeLa cells. However, plc1 or plc3 mutants showed no significant differences in plaque formation compared to wild-type bacteria. These findings suggest that Plc2, but not Plc1 or Plc3 are required for infection of host cells. In Galleria mellonella, plc1, plc2 or plc3 mutants were not attenuated compared to the wild-type strain, but multiple plc mutants showed reduced virulence. These findings indicate functional redundancy of the B. pseudomallei phospholipases in virulence.


Assuntos
Proteínas de Bactérias , Burkholderia pseudomallei , Melioidose , Fosfolipases Tipo C , Fatores de Virulência , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/enzimologia , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , Linhagem Celular , Melioidose/enzimologia , Melioidose/genética , Camundongos , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
10.
PLoS Negl Trop Dis ; 14(9): e0008659, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32986699

RESUMO

BACKGROUND: Melioidosis therapy is divided into an intravenous intensive phase and an oral eradication phase. The Darwin melioidosis treatment guideline has evolved over two decades, with over 1150 consecutive patients with culture-confirmed melioidosis managed under the Darwin Prospective Melioidosis Study. The current guideline, published in 2015, has been associated with low rates of recrudescence, relapse and mortality, and together with the treatment trials in Thailand, forms the basis for consensus global guidelines. We aimed to reassess the Darwin guideline and determine if any adjustments to the recommendations better reflect current practice in melioidosis therapy at Royal Darwin Hospital. METHODOLOGY/PRINCIPAL FINDINGS: This retrospective cohort study reviews the characteristics, admission duration, duration of intravenous antibiotics, recrudescence, recurrence and mortality in all patients presenting with first episode culture-confirmed melioidosis in the tropical north of Australia's Northern Territory from 1st October 2012 until 1st January 2017. 234 patients were available for analysis. 16 (6.8%) died during the intensive phase treatment and 6 (2.6%) did not have complete treatment at Royal Darwin Hospital, leaving 212 patients for analysis. Six (2.8%) patients had recrudescence during therapy and 10 (4.7%) had recurrent melioidosis (relapse or new infection) after completion of therapy. Persisting osteomyelitis requiring surgery was an important reason for recrudescence as was unrecognized osteomyelitis for relapse. For patients presenting with an antibiotic duration determining focus of pneumonia, durations of intravenous antibiotics were often prolonged beyond the current 2-week minimum treatment recommendation. Prolongation of therapy in pneumonia mostly occurred in patients presenting with multi-lobar disease or with concurrent blood culture positivity. CONCLUSIONS/SIGNIFICANCE: The 2015 Darwin melioidosis guideline is working well with low rates of recrudescence, relapse and mortality. Based on the practice of the treating clinicians, the 2020 revision of the guideline has been adjusted to include a duration of a minimum of 3 weeks of intravenous antibiotics for those with concurrent bacteraemia and pneumonia involving only a single lobe and those with bilateral and unilateral multi-lobar pneumonias who do not have bacteraemia. We also extend to a minimum of 4 weeks intravenous therapy for those with concurrent bacteraemia and bilateral or unilateral multi-lobar pneumonia.


Assuntos
Antibacterianos/uso terapêutico , Melioidose/tratamento farmacológico , Melioidose/genética , Seleção Genética , Administração Intravenosa/métodos , Adulto , Bacteriemia/tratamento farmacológico , Burkholderia pseudomallei , Feminino , Guias como Assunto , Humanos , Masculino , Melioidose/mortalidade , Pessoa de Meia-Idade , Northern Territory , Osteomielite/cirurgia , Estudos Prospectivos , Recidiva , Estudos Retrospectivos , Tailândia
11.
Biomed Res Int ; 2019: 9451791, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31355287

RESUMO

Melioidosis and leptospirosis, caused by two different bacteria, Burkholderia pseudomallei and Leptospira spp., are potentially fatal infections that share a very similar spectrum of clinical features and cause significant mortality and morbidity in humans and livestock. Early detection is important for better clinical consequences. To our knowledge, there is no diagnostic tool available to simultaneously detect and differentiate melioidosis and leptospirosis in humans and animals. In this study, we described a duplex TaqMan probe-based qPCR for the detection of B. pseudomallei and Leptospira spp. DNA. The performance of the assay was evaluated on 20 B. pseudomallei isolates, 23 Leptospira strains, and 39 other microorganisms, as well as two sets of serially diluted reference strains. The duplex qPCR assay was able to detect 0.02 pg (~ 4 copies) Leptospira spp. DNA and 0.2 pg (~ 25.6 copies) B. pseudomallei DNA. No undesired amplification was observed in other microorganisms. In conclusion, the duplex qPCR assay was sensitive and specific for the detection of B. pseudomallei & Leptospira spp. DNA and is suitable for further analytical and clinical evaluation.


Assuntos
Burkholderia pseudomallei/genética , DNA Bacteriano/genética , Leptospira/genética , Leptospirose , Melioidose , Reação em Cadeia da Polimerase em Tempo Real , Animais , Humanos , Hidrólise , Leptospirose/diagnóstico , Leptospirose/genética , Melioidose/diagnóstico , Melioidose/genética
12.
PLoS Negl Trop Dis ; 13(5): e0007354, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31067234

RESUMO

BACKGROUND: Toll-like receptors (TLRs) are sentinel receptors of the innate immune system. TLR4 detects bacterial lipopolysaccharide (LPS) and TLR5 detects bacterial flagellin. A common human nonsense polymorphism, TLR5:c.1174C>T, results in a non-functional TLR5 protein. Individuals carrying this variant have decreased mortality from melioidosis, infection caused by the flagellated Gram-negative bacterium Burkholderia pseudomallei. Although impaired flagellin-dependent signaling in carriers of TLR5:c.1174C>T is well established, this study tested the hypothesis that a functional effect of TLR5:c.1174C>T is flagellin-independent and involves LPS-TLR4 pathways. METHODOLOGY/PRINCIPAL FINDINGS: Whole blood from two independent cohorts of individuals genotyped at TLR5:c.1174C>T was stimulated with wild type or aflagellated B. pseudomallei or purified bacterial motifs followed by plasma cytokine measurements. Blood from individuals carrying the TLR5:c.1174C>T variant produced less IL-6 and IL-10 in response to an aflagellated B. pseudomallei mutant and less IL-8 in response to purified B. pseudomallei LPS than blood from individuals without the variant. TLR5 expression in THP1 cells was silenced using siRNA; these cells were stimulated with LPS before cytokine levels in cell supernatants were quantified by ELISA. In these cells following LPS stimulation, silencing of TLR5 with siRNA reduced both TNF-α and IL-8 levels. These effects were not explained by differences in TLR4 mRNA expression or NF-κB or IRF activation. CONCLUSIONS/SIGNIFICANCE: The effects of the common nonsense TLR5:c.1174C>T polymorphism on the host inflammatory response to B. pseudomallei may not be restricted to flagellin-driven pathways. Moreover, TLR5 may modulate TLR4-dependent cytokine production. While these results may have broader implications for the role of TLR5 in the innate immune response in melioidosis and other conditions, further studies of the mechanisms underlying these observations are required.


Assuntos
Burkholderia pseudomallei/imunologia , Flagelina/imunologia , Melioidose/genética , Melioidose/imunologia , Polimorfismo Genético , Receptor 5 Toll-Like/genética , Adolescente , Adulto , Idoso , Burkholderia pseudomallei/genética , Códon sem Sentido , Estudos de Coortes , Feminino , Flagelina/genética , Humanos , Imunidade Inata , Interleucina-10/genética , Interleucina-10/imunologia , Masculino , Melioidose/microbiologia , Pessoa de Meia-Idade , NF-kappa B/genética , NF-kappa B/imunologia , Mutação Puntual , Receptor 5 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Adulto Jovem
13.
Emerg Microbes Infect ; 8(1): 282-290, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30866782

RESUMO

Melioidosis, an infectious disease caused by the bacterium Burkholderia pseudomallei, is a common cause of sepsis in Southeast Asia. We investigated whether novel TLR1 coding variants are associated with outcome in Thai patients with melioidosis. We performed exonic sequencing on a discovery set of patients with extreme phenotypes (mild vs. severe) of bacteremic melioidosis. We analysed the association of missense variants in TLR1 with severe melioidosis in a by-gene analysis. We then genotyped key variants and tested the association with death in two additional sets of melioidosis patients. Using a by-gene analysis, TLR1 was associated with severe bacteremic melioidosis (P = 0.016). One of the eight TLR1 variants identified, rs76600635, a common variant in East Asians, was associated with in-hospital mortality in a replication set of melioidosis patients (adjusted odds ratio 1.71, 95% CI 1.01-2.88, P = 0.04.) In a validation set of patients, the point estimate of effect of the association of rs76600635 with 28-day mortality was similar but not statistically significant (adjusted odds ratio 1.81, 95% CI 0.96-3.44, P = 0.07). Restricting the validation set analysis to patients recruited in a comparable fashion to the discovery and replication sets, rs76600635 was significantly associated with 28-day mortality (adjusted odds ratio 3.88, 95% CI 1.43-10.56, P = 0.01). Exonic sequencing identifies TLR1 as a gene associated with a severe phenotype of bacteremic melioidosis. The TLR1 variant rs76600635, common in East Asian populations, may be associated with poor outcomes from melioidosis. This variant has not been previously associated with outcomes in sepsis and requires further study.


Assuntos
Bacteriemia/mortalidade , Melioidose/mortalidade , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Receptor 1 Toll-Like/genética , Adulto , Bacteriemia/genética , Análise Mutacional de DNA , Éxons , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Melioidose/genética , Pessoa de Meia-Idade , Tailândia
14.
PLoS One ; 13(11): e0206845, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30395628

RESUMO

Burkholderia pseudomallei is the environmental bacillus that causes melioidosis; a disease clinically significant in Australia and Southeast Asia but emerging in tropical and sub-tropical regions around the globe. Previous studies have placed the ancestral population of the organism in Australia with a single lineage disseminated to Southeast Asia. We have previously characterized B. pseudomallei isolates from New Guinea and the Torres Strait archipelago; remote regions that share paleogeographic ties with Australia. These studies identified regional biogeographical boundaries. In this study, we utilize whole-genome sequencing to reconstruct ancient evolutionary relationships and ascertain correlations between paleogeography and present-day distribution of this bacterium in Australasia. Our results indicate that B. pseudomallei from New Guinea fall into a single clade within the Australian population. Furthermore, clades from New Guinea are region-specific; an observation possibly linked to limited recent anthropogenic influence in comparison to mainland Australia and Southeast Asia. Isolates from the Torres Strait archipelago were distinct yet scattered among those from mainland Australia. These results provide evidence that the New Guinean and Torres Strait lineages may be remnants of an ancient portion of the Australian population. Rising sea levels isolated New Guinea and the Torres Strait Islands from each other and the Australian mainland, and may have allowed long-term isolated evolution of these lineages, providing support for a theory of microbial biogeography congruent with that of macro flora and fauna. Moreover, these findings indicate that contemporary microbial biogeography theories should consider recent and ongoing impacts of globalisation and human activity.


Assuntos
Burkholderia pseudomallei/genética , DNA Bacteriano/genética , Melioidose/genética , Filogenia , Antropologia Médica/história , Australásia , Austrália , Burkholderia pseudomallei/patogenicidade , Variação Genética , História Antiga , Humanos , Melioidose/microbiologia , Nova Guiné , Sequenciamento Completo do Genoma
15.
Infect Immun ; 86(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30037795

RESUMO

Burkholderia pseudomallei causes the severe disease melioidosis. The bacterium subverts the host immune system and replicates inside cells, and host mortality results primarily from sepsis-related complications. Lipopolysaccharide (LPS) is a major virulence factor and mediator of sepsis that many pathogens capable of intracellular growth modify to reduce their immunological "footprint." The binding strength of B. pseudomallei LPS for human LPS binding protein (hLBP) was measured using surface plasmon resonance. The structures of lipid A isolated from B. pseudomallei under different temperatures were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and the gene expression of two lipid A remodeling genes, lpxO and pagL, was investigated. The LPS was characterized for its ability to trigger tumor necrosis factor alpha (TNF-α) release and to activate caspase-11-triggered pyroptosis by introduction of LPS into the cytosol. Lipid A from long-term chronic-infection isolates was isolated and characterized by MALDI-TOF MS and also by the ability to trigger caspase-11-mediated cell death. Lipid A from B. pseudomallei 1026b lpxO and pagL mutants were characterized by positive- and negative-mode MALDI-TOF MS to ultimately identify their role in lipid A structural modifications. Replication of lpxO and pagL mutants and their complements within macrophages showed that lipid A remodeling can effect growth in host cells and activation of caspase-11-mediated cytotoxicity.


Assuntos
Burkholderia pseudomallei/metabolismo , Burkholderia pseudomallei/patogenicidade , Lipídeo A/metabolismo , Lipopolissacarídeos/metabolismo , Melioidose/microbiologia , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Animais , Apoptose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/crescimento & desenvolvimento , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Humanos , Lipídeo A/química , Melioidose/genética , Melioidose/metabolismo , Melioidose/fisiopatologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Ligação Proteica , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Infect Immun ; 86(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29440370

RESUMO

The naturally antibiotic-resistant bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a disease with stubbornly high mortality and a complex, protracted treatment regimen. The worldwide incidence of melioidosis is likely grossly underreported, though it is known to be highly endemic in northern Australia and Southeast Asia. Bacterial disulfide bond (DSB) proteins catalyze the oxidative folding and isomerization of disulfide bonds in substrate proteins. In the present study, we demonstrate that B. pseudomallei membrane protein disulfide bond protein B (BpsDsbB) forms a functional redox relay with the previously characterized virulence mediator B. pseudomallei disulfide bond protein A (BpsDsbA). Genomic analysis of diverse B. pseudomallei clinical isolates demonstrated that dsbB is a highly conserved core gene. Critically, we show that DsbB is required for virulence in B. pseudomallei A panel of B. pseudomalleidsbB deletion strains (K96243, 576, MSHR2511, MSHR0305b, and MSHR5858) were phenotypically diverse according to the results of in vitro assays that assess hallmarks of virulence. Irrespective of their in vitro virulence phenotypes, two deletion strains were attenuated in a BALB/c mouse model of infection. A crystal structure of a DsbB-derived peptide complexed with BpsDsbA provides the first molecular characterization of their interaction. This work contributes to our broader understanding of DSB redox biology and will support the design of antimicrobial drugs active against this important family of bacterial virulence targets.


Assuntos
Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , Melioidose/patologia , Proteínas de Membrana/imunologia , Camundongos Endogâmicos BALB C/imunologia , Oxirredutases/imunologia , Virulência/genética , Animais , Austrália , Burkholderia pseudomallei/imunologia , Modelos Animais de Doenças , Melioidose/genética , Melioidose/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Oxirredutases/genética , Oxirredutases/metabolismo , Virulência/imunologia
17.
PLoS One ; 12(7): e0180203, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686630

RESUMO

Caspase-6 is a member of the executioner caspases and known to play a role in innate and adaptive immune processes. However, its role in infectious diseases has rarely been addressed yet. We here examined the impact of caspase-6 in an in vivo infection model using the Gram-negative rod Burkholderia pseudomallei, causing the infectious disease melioidosis that is endemic in tropical and subtropical areas around the world. Caspase-6-/- and C57BL/6 wild type mice were challenged with B. pseudomallei for comparing mortality, bacterial burden and inflammatory cytokine expression. Bone-marrow derived macrophages were used to analyse the bactericidal activity in absence of caspase-6. Caspase-6 deficiency was associated with higher mortality and bacterial burden in vivo after B. pseudomallei infection. The bactericidal activity of caspase-6-/- macrophages was impaired compared to wild type cells. Caspase-6-/- mice showed higher expression of the IL-1ß gene, known to be detrimental in murine melioidosis. Expression of the IL-10 gene was also increased in caspase-6-/- mice as early as 6 hours after infection. Treatment with exogenous IL-10 rendered mice more susceptible against B. pseudomallei challenge. Thus, caspase-6 seems to play a crucial role for determining resistance against the causative agent of melioidosis. To our knowledge this is the first report showing that caspase-6 is crucial for mediating resistance in an in vivo infection model. Caspase-6 influences the expression of detrimental cytokines and therefore seems to be important for achieving a well-balanced immune response that contributes for an efficient elimination of the pathogen.


Assuntos
Burkholderia pseudomallei/genética , Caspase 6/genética , Interleucina-10/administração & dosagem , Interleucina-1beta/biossíntese , Melioidose/genética , Animais , Burkholderia pseudomallei/patogenicidade , Resistência Microbiana a Medicamentos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-10/biossíntese , Interleucina-1beta/genética , Macrófagos/metabolismo , Macrófagos/patologia , Melioidose/microbiologia , Melioidose/patologia , Camundongos , Camundongos Knockout
18.
Sci Rep ; 6: 33528, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27634329

RESUMO

Burkholderia pseudomallei, the etiological agent for melioidosis, is known to secrete a type III secretion system (TTSS) protein into the host's internal milieu. One of the TTSS effector protein, BipC, has been shown to play an important role in the B. pseudomallei pathogenesis. To identify the host response profile that was directly or indirectly regulated by this protein, genome-wide transcriptome approach was used to examine the gene expression profiles of infected mice. The transcriptome analysis of the liver and spleen revealed that a total of approximately 1,000 genes were transcriptionally affected by BipC. Genes involved in bacterial invasion, regulation of actin cytoskeleton, and MAPK signalling pathway were over-expressed and may be specifically regulated by BipC in vivo. These results suggest that BipC mainly targets pathways related to the cellular processes which could modulate the cellular trafficking processes. The host transcriptional response exhibited remarkable differences with and without the presence of the BipC protein. Overall, the detailed picture of this study provides new insights that BipC may have evolved to efficiently manipulate host-cell pathways which is crucial in the intracellular lifecycle of B. pseudomallei.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/metabolismo , Eucariotos/metabolismo , Espaço Intracelular/microbiologia , Transdução de Sinais , Sistemas de Secreção Tipo III , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Fígado/microbiologia , Fígado/patologia , Melioidose/sangue , Melioidose/genética , Melioidose/microbiologia , Melioidose/patologia , Camundongos Endogâmicos BALB C , Anotação de Sequência Molecular , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Software , Transcriptoma
19.
Infect Immun ; 84(7): 1941-1956, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27091931

RESUMO

Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an often severe infection that regularly involves respiratory disease following inhalation exposure. Intranasal (i.n.) inoculation of mice represents an experimental approach used to study the contributions of bacterial capsular polysaccharide I (CPS I) to virulence during acute disease. We used aerosol delivery of B. pseudomallei to establish respiratory infection in mice and studied CPS I in the context of innate immune responses. CPS I improved B. pseudomallei survival in vivo and triggered multiple cytokine responses, neutrophil infiltration, and acute inflammatory histopathology in the spleen, liver, nasal-associated lymphoid tissue, and olfactory mucosa (OM). To further explore the role of the OM response to B. pseudomallei infection, we infected human olfactory ensheathing cells (OECs) in vitro and measured bacterial invasion and the cytokine responses induced following infection. Human OECs killed >90% of the B. pseudomallei in a CPS I-independent manner and exhibited an antibacterial cytokine response comprising granulocyte colony-stimulating factor, tumor necrosis factor alpha, and several regulatory cytokines. In-depth genome-wide transcriptomic profiling of the OEC response by RNA-Seq revealed a network of signaling pathways activated in OECs following infection involving a novel group of 378 genes that encode biological pathways controlling cellular movement, inflammation, immunological disease, and molecular transport. This represents the first antimicrobial program to be described in human OECs and establishes the extensive transcriptional defense network accessible in these cells. Collectively, these findings show a role for CPS I in B. pseudomallei survival in vivo following inhalation infection and the antibacterial signaling network that exists in human OM and OECs.


Assuntos
Cápsulas Bacterianas/imunologia , Burkholderia pseudomallei/imunologia , Interações Hospedeiro-Patógeno/imunologia , Melioidose/imunologia , Melioidose/microbiologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/microbiologia , Animais , Cápsulas Bacterianas/genética , Carga Bacteriana , Burkholderia pseudomallei/genética , Células Cultivadas , Biologia Computacional/métodos , Citocinas/metabolismo , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunidade Inata , Melioidose/genética , Melioidose/metabolismo , Camundongos , Mutação , Infiltração de Neutrófilos , Neurônios Receptores Olfatórios/imunologia , Neurônios Receptores Olfatórios/metabolismo , Neurônios Receptores Olfatórios/microbiologia , Infecções Respiratórias/genética , Infecções Respiratórias/metabolismo , Transdução de Sinais , Virulência , Fatores de Virulência
20.
Artigo em Russo | MEDLINE | ID: mdl-30695386

RESUMO

AIM: Determine an optimal set of the most effective methods of identification and intraspecies typing ofcausative agents ofglanders and melioidosis. Materials andmethods. Bacteriologic, immunochemical, molecular-genetic methods were used. RESULTS: A possibility to identify collection strains of pathogenic and closely related Burkholderia in semiautomatic systems is studied. Means of detection of informative variable genome segments ofthe specified microorganisms were developed, methods of their genetic typing were selected. Effectiveness of application of precipitating mAbs for differentiation of Burkholderia was established. Data on diagnostic possibilities of immunoglobulins fluorescing based on monoclonal antibodies of various etiotropic directionality for detection and identification of B. mallei and B. pseudomallei are generalized. Experimental series of amplification test-systems for identification of glanders and melioidosis causative agents in real-time PCR format are created. CONCLUSION: A number of methods for identification and typing of glanders and melioidosis causative agents is proposed.


Assuntos
Burkholderia mallei/genética , Burkholderia pseudomallei/genética , Mormo , Melioidose , Reação em Cadeia da Polimerase em Tempo Real , Animais , Mormo/diagnóstico , Mormo/genética , Humanos , Melioidose/diagnóstico , Melioidose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA