Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39062617

RESUMO

The state of California (CA) added X-linked adrenoleukodystrophy (X-ALD) to newborn screening (NBS) in 2016 via the measurement of C26:0-lysophosphatidylcholine (C26:0-LPC) in a two-tier fashion, followed by sequencing of the ABCD1 gene. This has resulted in the identification of individuals with genetic conditions beyond X-ALD that can also result in elevated C26:0-LPC by NBS. We describe the biochemical, molecular, and clinical characteristics of nine patients from two metabolic centers in California who screened positive by NBS for elevated C26:0-LPC between 2016 and 2022 and were ultimately diagnosed with a genetic condition other than X-ALD. Seven individuals were diagnosed with Zellweger spectrum disorder (ZSD) due to biallelic variants in PEX genes. One male was diagnosed with Klinefelter syndrome and one female was found to have an X chromosome contiguous gene deletion syndrome after the identification of a heterozygous VUS and hemizygous VUS variant in ABCD1, respectively. Patients with ZSD had significantly higher first- and second-tier C26:0-LPC levels compared to the two non-ZSD cases. Identification of children with ZSD and atypical patterns of ABCD1 variants is a secondary benefit of NBS for X-ALD, leading to earlier diagnosis, prompt therapeutic initiation, and more accurate genetic counseling. As screening for X-ALD continues via the measurement of C26:0-LPC, our knowledge of additional genetic conditions associated with elevated C26:0-LPC will continue to advance, allowing for increased recognition of other genetic disorders for which early intervention is warranted.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia , Triagem Neonatal , Humanos , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/diagnóstico , Masculino , Feminino , Recém-Nascido , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Síndrome de Zellweger/genética , Síndrome de Zellweger/diagnóstico , California , Testes Genéticos/métodos
2.
Ital J Pediatr ; 50(1): 124, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956688

RESUMO

BACKGROUND: Addison's disease and X-linked adrenoleukodystrophy (X-ALD) (Addison's-only) are two diseases that need to be identified. Addison's disease is easy to diagnose clinically when only skin and mucosal pigmentation symptoms are present. However, X-ALD (Addison's-only) caused by ABCD1 gene variation is ignored, thus losing the opportunity for early treatment. This study described two patients with initial clinical diagnosis of Addison's disease. However, they rapidly developed neurological symptoms triggered by infection. After further genetic testing, the two patients were diagnosed with X-ALD. METHODS: We retrospectively analyzed X-ALD patients admitted to our hospital. Clinical features, laboratory test results, and imaging data were collected. Whole-exome sequencing was used in molecular genetics. RESULTS: Two patients were included in this study. Both of them had significantly increased adrenocorticotropic hormone level and skin and mucosal pigmentation. They were initially clinically diagnosed with Addison's disease and received hydrocortisone treatment. However, both patients developed progressive neurological symptoms following infectious disease. Further brain magnetic resonance imaging was completed, and the results suggested demyelinating lesions. Molecular genetics suggested variations in the ABCD1 gene, which were c.109_110insGCCA (p.C39Pfs*156), c.1394-2 A > C (NM_000033), respectively. Therefore, the two patients were finally diagnosed with X-ALD, whose classification had progressed from X-ALD (Addison's-only) to childhood cerebral adrenoleukodystrophy (CCALD). Moreover, the infection exacerbates the demyelinating lesions and accelerates the onset of neurological symptoms. Neither the two variation sites in this study had been previously reported, which extends the ABCD1 variation spectrum. CONCLUSIONS: Patients with only symptoms of adrenal insufficiency cannot be simply clinically diagnosed with Addison's disease. Being alert to the possibility of ABCD1 variation is necessary, and complete genetic testing is needed as soon as possible to identify X-ALD (Addison's-only) early to achieve regular monitoring of the disease and receive treatment early. In addition, infection, as a hit factor, may aggravate demyelinating lesions of CCALD. Thus, patients should be protected from external environmental factors to delay the progression of cerebral adrenoleukodystrophy.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia , Humanos , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Masculino , Estudos Retrospectivos , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Criança , Erros de Diagnóstico , Imageamento por Ressonância Magnética , Doença de Addison/diagnóstico , Doença de Addison/genética
3.
Mol Genet Genomic Med ; 12(7): e2499, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39051462

RESUMO

BACKGROUND: X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder attributed to ABCD1 mutations. Case reports with predominant brainstem involvement are rare. CASE PRESENTATION: In this study, we reported a plateau male worker of X-ALD characterized by progressive weakness accompanied by gait instability, mild nystagmus, and constipation. After 2 years of onset, a brain Magnetic Resonance Image (MRI) scan showed no abnormality but genetic analysis revealed a heterozygous mutation (c.1534G>A) in the ABCD1 gene. After 7 years of onset, although the patient was given aggressive dietary and symptomatic treatment in the course of the disease, a brain MRI scan showed predominantly brainstem damage, but serum concentrations of very long-chain fatty acids were normal, and he had been bedridden for almost 2 years with severe bladder dysfunction, forcing him to undergo cystostomy. The patient was discharged with improved urinary retention and renal function. CONCLUSIONS: We reported an X-ALD patient with a novel ABCD1 variation characterized by brainstem damage and retrospectively summarized the clinical manifestation, MRI features, and genetic features of X-ALD patients with brainstem damage.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia , Tronco Encefálico , Mutação de Sentido Incorreto , Humanos , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/patologia , Adrenoleucodistrofia/diagnóstico , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Masculino , Tronco Encefálico/patologia , Tronco Encefálico/diagnóstico por imagem , Adulto , Imageamento por Ressonância Magnética
4.
Brain ; 147(6): 2069-2084, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38763511

RESUMO

The peroxisomal disease adrenoleukodystrophy (X-ALD) is caused by loss of the transporter of very-long-chain fatty acids (VLCFAs), ABCD1. An excess of VLCFAs disrupts essential homeostatic functions crucial for axonal maintenance, including redox metabolism, glycolysis and mitochondrial respiration. As mitochondrial function and morphology are intertwined, we set out to investigate the role of mitochondrial dynamics in X-ALD models. Using quantitative 3D transmission electron microscopy, we revealed mitochondrial fragmentation in corticospinal axons in Abcd1- mice. In patient fibroblasts, an excess of VLCFAs triggers mitochondrial fragmentation through the redox-dependent phosphorylation of DRP1 (DRP1S616). The blockade of DRP1-driven fission by the peptide P110 effectively preserved mitochondrial morphology. Furthermore, mRNA inhibition of DRP1 not only prevented mitochondrial fragmentation but also protected axonal health in a Caenorhabditis elegans model of X-ALD, underscoring DRP1 as a potential therapeutic target. Elevated levels of circulating cell-free mtDNA in patients' CSF align this leukodystrophy with primary mitochondrial disorders. Our findings underscore the intricate interplay between peroxisomal dysfunction, mitochondrial dynamics and axonal integrity in X-ALD, shedding light on potential avenues for therapeutic intervention.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia , Dinaminas , Dinâmica Mitocondrial , Adrenoleucodistrofia/metabolismo , Adrenoleucodistrofia/patologia , Adrenoleucodistrofia/genética , Animais , Dinâmica Mitocondrial/fisiologia , Humanos , Camundongos , Dinaminas/metabolismo , Dinaminas/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Caenorhabditis elegans , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Axônios/patologia , Axônios/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Masculino , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Modelos Animais de Doenças , Tratos Piramidais/patologia , Tratos Piramidais/metabolismo , Fragmentos de Peptídeos , GTP Fosfo-Hidrolases
5.
Mol Ther ; 32(7): 2190-2206, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796705

RESUMO

X-linked adrenoleukodystrophy (ALD), an inherited neurometabolic disorder caused by mutations in ABCD1, which encodes the peroxisomal ABC transporter, mainly affects the brain, spinal cord, adrenal glands, and testes. In ALD patients, very-long-chain fatty acids (VLCFAs) fail to enter the peroxisome and undergo subsequent ß-oxidation, resulting in their accumulation in the body. It has not been tested whether in vivo base editing or prime editing can be harnessed to ameliorate ALD. We developed a humanized mouse model of ALD by inserting a human cDNA containing the pathogenic variant into the mouse Abcd1 locus. The humanized ALD model showed increased levels of VLCFAs. To correct the mutation, we tested both base editing and prime editing and found that base editing using ABE8e(V106W) could correct the mutation in patient-derived fibroblasts at an efficiency of 7.4%. Adeno-associated virus (AAV)-mediated systemic delivery of NG-ABE8e(V106W) enabled robust correction of the pathogenic variant in the mouse brain (correction efficiency: ∼5.5%), spinal cord (∼5.1%), and adrenal gland (∼2%), leading to a significant reduction in the plasma levels of C26:0/C22:0. This established humanized mouse model and the successful correction of the pathogenic variant using a base editor serve as a significant step toward treating human ALD disease.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia , Dependovirus , Modelos Animais de Doenças , Edição de Genes , Terapia Genética , Animais , Adrenoleucodistrofia/terapia , Adrenoleucodistrofia/genética , Camundongos , Humanos , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Adenina , Mutação , Fibroblastos/metabolismo , Ácidos Graxos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia
6.
Medicine (Baltimore) ; 103(16): e37874, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640304

RESUMO

RATIONALE: X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene leading to very long chain fatty acid (VLCFA) accumulation. The disease demonstrates a spectrum of phenotypes including adrenomyeloneuropathy (AMN). We aimed to identify the genetic basis of disease in a patient presenting with AMN features in order to confirm the diagnosis, expand genetic knowledge of ABCD1 mutations, and elucidate potential genotype-phenotype associations to inform management. PATIENT CONCERNS: A 29-year-old male presented with a 4-year history of progressive spastic paraplegia, weakness of lower limbs, fecal incontinence, sexual dysfunction, hyperreflexia, and positive Babinski and Chaddock signs. DIAGNOSES: Neuroimaging revealed brain white matter changes and spinal cord thinning. Significantly elevated levels of hexacosanoic acid (C26:0) and tetracosanoic acid (C24:0) suggested very long chain fatty acids (VLCFA) metabolism disruption. Genetic testing identified a novel hemizygous ABCD1 mutation c.249dupC (p.F83fs). These findings confirmed a diagnosis of X-linked ALD with an AMN phenotype. INTERVENTIONS: The patient received dietary counseling to limit VLCFA intake. Monitoring for adrenal insufficiency and consideration of Lorenzo's oil were advised. Genetic counseling and testing were offered to at-risk relatives. OUTCOMES: At present, the patient continues to experience progressive paraplegia. Adrenal function remains normal thus far without steroid replacement. Family members have undergone predictive testing. LESSONS: This case expands the known mutation spectrum of ABCD1-linked X-ALD, providing insight into potential genotype-phenotype correlations. A thoughtful diagnostic approach integrating clinical, biochemical and genetic data facilitated diagnosis. Findings enabled genetic counseling for at-risk relatives regarding this X-linked disorder.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Insuficiência Adrenal , Adrenoleucodistrofia , Adulto , Humanos , Masculino , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Ácidos Graxos não Esterificados/metabolismo , Mutação , Paraplegia/genética , Fenótipo
7.
Stem Cell Res ; 74: 103298, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38176367

RESUMO

X-linked adrenoleukodystrophy is a metabolic disease associated with mutations in the ABCD1 gene (ATP-binding cassette subfamily D). Numerous pathogenic variants in this gene lead to a wide spectrum of symptoms, including adrenal insufficiency, slowly progressive dying-back axonopathy and demyelination of the central nervous system in specific phenotypes. The induced pluripotent stem cell line was derived from a patient diagnosed with x-ALD. Due to the complexity of developing working therapy based on animal models, it's crucial to obtain the cell model directly from patients. Peripheral blood mononuclear cells (PBMCs) isolated from the donor's whole blood were reprogrammed into induced pluripotent stem cells and then characterized. Expression of pluripotency markers SSEA4, TRA-1-60, SOX2, OCT4 is proven quantitatively and qualitatively, iPSCs demonstrate the ability to differentiate into three germ layers and the absence of Sendai virus expression factors.


Assuntos
Adrenoleucodistrofia , Animais , Humanos , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Leucócitos Mononucleares/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Mutação , Fenótipo
8.
Medicine (Baltimore) ; 103(2): e36946, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215098

RESUMO

RATIONALE: Adrenomyeloneuropathy (AMN) is a variant type of X-linked adrenoleukodystrophy, and it is a genetic metabolic disease with strong clinical heterogeneity so that it is easily misdiagnosed and underdiagnosed. Moreover, most patients with AMN have an insidious clinical onset and slow progression. Familiarity with the pathogenesis, clinical features, diagnosis, and treatment of AMN can help identify the disease at an early stage. PATIENT CONCERNS: We present a case of 35-year-old male, who was admitted to our hospital due to "immobility of the lower limbs for 2 years and worsening for half a year," accompanied by skin darkening and hyperpigmentation of lips, oral mucosa, and areola since puberty. DIAGNOSIS: The level of very long-chain fatty acids was high and genetic testing depicted that exon 1 of the ABCD1 gene had a missense mutation of C.761c>T, which was diagnosed as AMN. INTERVENTIONS: Baclofen was administered to improve muscle tension combined with glucocorticoid replacement therapy. OUTCOMES: The condition was relieved after half a year. LESSONS: The clinical manifestations of AMN are diverse. When patients with adrenocortical dysfunction complicated with progressive spastic paraplegia of lower limbs are involved, AMN should be highly suspected, and the determination of very long-chain fatty acids and genetic testing should be performed as soon as possible to confirm the diagnosis because early treatment can help prevent or delay the progression of the disease.


Assuntos
Insuficiência Adrenal , Adrenoleucodistrofia , Masculino , Humanos , Adulto , Adrenoleucodistrofia/complicações , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Insuficiência Adrenal/complicações , Insuficiência Adrenal/diagnóstico , Paraplegia , Extremidade Inferior , Ácidos Graxos
9.
J Med Case Rep ; 18(1): 25, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38245786

RESUMO

BACKGROUND: This article presents a case study of two white male siblings of 24 and 31 years of age of self-reported Ukrainian ethnicity diagnosed with adrenomyeloneuropathy (AMN) associated with a novel splice site mutation in the ABCD1 gene. AMN represents a form of X-linked adrenoleukodystrophy (X-ALD) characterized by demyelination of the spinal cord and peripheral nerves. The case also presents the first adult haematopoietic stem cell transplant (HSCT) for adrenomyeloneuropathy in Ukraine. The rarity of this mutation and its cerebral involvement and the treatment make this case noteworthy and underscore the significance of reporting it to contribute to the existing medical knowledge. CASE PRESENTATION: The patients of 24 and 31 years initially exhibited progressive gait disturbance, lower extremity pain, and urinary incontinence, with the older sibling experiencing more advanced symptoms of speech, hearing, and vision disturbances. A comprehensive genetic analysis identified an unreported splice site mutation in exon 3 of the ABCD1 gene, leading to the manifestation of AMN. The inheritance pattern was consistent with X-linked recessive transmission. The article also outlines the clinical features, magnetic resonance imaging (MRI), and nerve conduction study (NCS) findings. Moreover, it discusses the genetic profile of the affected individuals and female carriers within the family. The younger sibling underwent HSCT, which was complicated by mediastinal lymph node and lung tuberculosis, adding to the complexity of managing adult ALD patients. CONCLUSIONS: This report emphasizes the importance of genetic testing in diagnosing and comprehending the underlying mechanisms of rare genetic disorders, such as AMN with cerebral involvement. The identification of a novel splice site mutation expands our understanding of the genetic landscape of this condition. Additionally, the challenges and complications encountered during the hematopoietic stem cell transplant procedure underscore the need for cautious consideration and personalized approaches in adult ALD patients.


Assuntos
Adrenoleucodistrofia , Transplante de Células-Tronco Hematopoéticas , Adulto , Humanos , Masculino , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/terapia , Adrenoleucodistrofia/diagnóstico , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Etnicidade , Fenótipo , Irmãos , Ucrânia
10.
J Inherit Metab Dis ; 47(2): 289-301, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38146202

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a genetic neurodegenerative disorder caused by pathogenic variants in ABCD1, resulting in the accumulation of very-long-chain fatty acids (VLCFAs) in tissues. The etiology of X-ALD is unclear. Activated astrocytes play a pathological role in X-ALD. Recently, reactive astrocytes have been shown to induce neuronal cell death via saturated lipids in high-density lipoprotein (HDL), although how HDL from reactive astrocytes exhibits neurotoxic effects has yet to be determined. In this study, we obtained astrocytes from wild-type and Abcd1-deficient mice. HDL was purified from the culture supernatant of astrocytes, and the effect of HDL on neurons was evaluated in vitro. To our knowledge, this study shows for the first time that HDL obtained from Abcd1-deficient reactive astrocytes induces a significantly higher level of lactate dehydrogenase (LDH) release, a marker of cell damage, from mouse primary cortical neurons as compared to HDL from wild-type reactive astrocytes. Notably, HDL from Abcd1-deficient astrocytes contained significantly high amounts of VLCFA-containing phosphatidylcholine (PC) and LysoPC. Activation of Abcd1-deficient astrocytes led to the production of HDL containing decreased amounts of PC with arachidonic acid in sn-2 acyl moieties and increased amounts of LysoPC, presumably through cytosolic phospholipase A2 α upregulation. These results suggest that compositional changes in PC and LysoPC in HDL, due to Abcd1 deficiency and astrocyte activation, may contribute to neuronal damage. Our findings provide novel insights into central nervous system pathology in X-ALD.


Assuntos
Adrenoleucodistrofia , Camundongos , Animais , Adrenoleucodistrofia/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Astrócitos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Sistema Nervoso Central/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA